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摘  要 

非小细胞肺癌(non-small cell lung cancer, NSCLC)是全球范围内发病率和死亡率最高的恶性肿瘤之一，

其中表皮生长因子受体(epidermal growth factor receptor, EGFR)突变是NSCLC最重要的分子标志物之

一。EGFR酪氨酸激酶抑制剂(EGFR-TKIs)已成为EGFR突变晚期NSCLC患者的标准治疗方案，并极大地改

善了患者的生存预后。然而，尽管一线EGFR-TKIs治疗可取得较好的初始疗效，但几乎所有患者最终都

会发生耐药并导致疾病进展。耐药机制包括EGFR基因二次突变(如T790M、C797S)、旁路通路激活(如
MET扩增、HER2扩增)、组织学转化(如小细胞肺癌转化)及上皮–间质转化(epithelial-mesenchymal 
transition, EMT)等。此外，部分患者在初始EGFR-TKIs治疗时即表现出原发耐药。近年来，针对EGFR-
TKIs耐药的研究取得了显著进展，包括联合治疗策略、靶向新突变药物以及免疫治疗等新兴疗法的探索。

本文综述EGFR-TKIs治疗EGFR突变NSCLC进展的耐药机制、治疗策略及未来发展方向，以期为临床实践

提供参考。 
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Abstract 
Non-small cell lung cancer (NSCLC) is one of the most prevalent and lethal malignancies worldwide, 
with epidermal growth factor receptor (EGFR) mutations being a key molecular biomarker. EGFR ty-
rosine kinase inhibitors (EGFR-TKIs) have become the standard treatment for patients with advanced 
EGFR-mutant NSCLC, significantly improving survival outcomes. However, despite the initial efficacy 
of first-line EGFR-TKIs therapy, nearly all patients eventually develop resistance, leading to disease 
progression. Resistance mechanisms include secondary EGFR mutations (e.g., T790M, C797S), activa-
tion of bypass pathways (e.g., MET amplification, HER2 amplification), histological transformation 
(e.g., small cell lung cancer transformation), and epithelial-mesenchymal transition (EMT). Addi-
tionally, some patients exhibit primary resistance to EGFR-TKIs at treatment initiation. In recent 
years, significant advances have been made in overcoming EGFR-TKIs resistance, including combi-
nation therapy strategies, targeted agents against emerging mutations, and novel immunothera-
peutic approaches. This review summarizes the resistance mechanisms, therapeutic strategies, and 
future directions of EGFR-TKIs treatment in EGFR-mutant NSCLC, aiming to provide insights for clin-
ical practice. 
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1. EGFR-TKIs 获得性耐药机制 

EGFR 酪氨酸激酶抑制剂(EGFR-TKIs)是 EGFR 突变阳性非小细胞肺癌(NSCLC)患者的主要治疗手

段。然而，尽管 EGFR-TKIs 可有效延长患者生存期，绝大多数患者在治疗一段时间后仍会出现获得性耐

药，导致疾病进展。三代 EGFR-TKIs (如奥希替尼)虽能克服 T790M 突变导致的耐药，但仍无法避免 C797S
突变、旁路通路激活、肿瘤微环境(TME)重塑、肿瘤异质性及组织学转化等多种耐药机制的影响[1]。深入

理解 EGFR-TKIs 的耐药机制，对于优化后续治疗策略、延长患者生存期具有重要意义。 

1.1. 二次突变介导的耐药 

在 EGFR-TKIs 治疗过程中，肿瘤细胞可能通过获得性突变逃避药物抑制。T790M 突变是第一、二代

EGFR-TKIs (如吉非替尼、厄洛替尼、阿法替尼)耐药的主要机制之一，该突变增强 ATP 结合位点对 ATP
的亲和力，从而削弱药物抑制 EGFR 活性的能力[2] [3]。研究表明，约 45%~65%的患者在接受第一、二

代 EGFR-TKIs 治疗后会发展出 T790M 突变[4]-[6]。 
奥希替尼等第三代 EGFR-TKIs 可有效抑制 T790M 介导的耐药机制，但目前，C797S 突变已成为其

主要耐药机制，显著限制了治疗效果和临床获益[7] [8]。C797S 突变发生在 EGFR 关键的 ATP 结合位点，

使 TKIs 失去对 EGFR 的抑制作用。该突变可分为顺式(C797S 和 T790M 位于同一等位基因)和反式(C797S
和 T790M 位于不同等位基因)两种类型，其中顺式 C797S 对所有 EGFR-TKIs 均耐药，而反式 C797S 仍
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可能对第一、二代 TKIs 保持敏感，提示联合使用第一代 TKIs 可能成为一种潜在策略[7] [8]。 

1.2. 旁路通路的激活 

在 EGFR 信号通路受抑制的情况下，肿瘤细胞可通过旁路通路维持信号传导，从而获得耐药性。MET
基因扩增是 EGFR-TKIs 耐药的重要机制之一，研究显示，MET 扩增在奥希替尼耐药患者中的发生率约

为 5%~30% [9]。该扩增可激活 PI3K/AKT 和 MAPK/ERK 信号通路，使肿瘤细胞不依赖 EGFR 信号仍可

存活，MET 抑制剂(如 capmatinib、tepotinib)联合 EGFR-TKIs 可部分克服该耐药机制[10] [11]。此外，

HER2 (ERBB2)基因扩增也可促进 EGFR-TKIs 耐药，其机制涉及 PI3K/AKT 和 MAPK 信号通路的持续激

活[12] [13]。针对 HER2 扩增的患者，HER2 靶向治疗(如 trastuzumab deruxtecan)在部分 EGFR-TKIs 耐药

患者中展现出一定疗效。此外，FGFR 和 IGF1R 信号的异常激活亦被证实可促进 EGFR-TKIs 耐药，针对

这些旁路通路的靶向治疗正在积极探索中[14]-[17]。 

1.3. 肿瘤微环境介导的耐药 

肿瘤微环境(TME)由肿瘤细胞、免疫细胞、成纤维细胞及基质成分构成，其动态变化在 EGFR-TKIs
耐药中发挥重要作用[2]。肿瘤相关巨噬细胞(TAMs)通过分泌炎症因子(如 IL-6、IL-10、TGF-β)促进肿瘤

细胞存活，并通过极化为 M2 型巨噬细胞增强免疫抑制作用[18]。此外，M2 型 TAMs 可上调 PD-L1 表

达，削弱免疫治疗和 EGFR-TKIs 的抗肿瘤作用[19]。 
癌相关成纤维细胞(CAFs)通过分泌肝细胞生长因子(HGF)激活 MET 信号通路，促进耐药[20]。同时，

CAF 释放的 TGF-β 可诱导肿瘤细胞发生上皮–间质转化(EMT)，进一步增强肿瘤侵袭和耐药能力[21]。
此外，EGFR-TKIs 耐药后，PD-L1 表达上调、调节性 T 细胞(Tregs)浸润增多，进一步削弱机体的抗肿瘤

免疫应答，因此 EGFR-TKIs 联合 PD-1/PD-L1 抑制剂成为研究热点[22] [23]。 

1.4. 组织学转化 

部分 EGFR 突变阳性的肺腺癌在耐药后可能转化为小细胞肺癌(SCLC)或鳞状细胞癌(SqCC)，这一现

象被称为组织学转化[24]-[26]。研究发现，TP53 和 RB1 的失活是肺腺癌向 SCLC 转化的主要驱动因素，

SCLC 具有高度增殖特征，并对 EGFR-TKIs 失去依赖性[27]。 
此外，少数患者的耐药肿瘤可转化为鳞状细胞癌，该类型对 EGFR-TKIs 无效。因此，动态监测患者

的组织学变化，并及时调整治疗策略，是提高 EGFR-TKIs 耐药患者生存率的重要手段[27]。 

2. EGFR-TKIs 耐药后的治疗策略 

2.1. 双特异性抗体为 EGFR-TKIs 耐药人群提供新的治疗选择 

2.1.1. EGFR 与 c-MET 双抗联合化疗  
埃万妥单抗(Amivantamab)是一种双特异性抗体，可同时靶向 EGFR 与 c-MET 在 EGFR-TKI 耐药的

NSCLC 患者中展现出潜在的治疗价值。基于 CHRYSALIS [28]和 CHRYSALIS 2 [29]研究，MARIPOSA-
2 作为一项全球 III 期随机对照临床试验，进一步评估了该药物联合方案在 EGFR 突变、奥希替尼耐药

NSCLC 患者中的疗效和安全性。该研究设立了三个治疗组：埃万妥单抗 + 拉泽替尼 + 培美曲塞 + 卡
铂(LACP 组)、埃万妥单抗 + 培美曲塞 + 卡铂(ACP 组)及单纯化疗组(CP 组)，以探讨拉泽替尼在联合方

案中的作用。研究结果显示，ACP 组、LACP 组及 CP 组的中位无进展生存期(PFS)分别为 6.3、8.3 和 4.2
个月。与单纯化疗相比，ACP (HR = 0.48，95% CI 为 0.36~0.64；P < 0.001)和 LACP (HR = 0.44，95% CI
为 0.35~0.56；P < 0.001)均显著延长了患者的 PFS [30]，提示埃万妥单抗联合治疗可有效改善奥希替尼耐
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药 EGFR 突变 NSCLC 患者的预后。基于这一研究结果，2023 年 11 月，研究团队已向美国 FDA 递交新

适应证申请，拟批准埃万妥单抗联合化疗用于奥希替尼耐药的 EGFR 突变 NSCLC 患者。这一研究进展

有望为 TKI 耐药患者提供新的治疗选择，进一步完善 EGFR-TKI 耐药 NSCLC 的管理策略。 

2.1.2. PD-1 与 VEGF 双抗联合化疗 
在 EGFR-TKI 耐药的 NSCLC 患者中，免疫治疗联合抗血管生成药物及化疗的四药方案已成为研究

热点。其中，依沃西单抗(AK112)作为一种抗 PD-1/VEGF 双特异性抗体，在Ⅰ、Ⅱ期研究中展现出良好的

抗肿瘤活性[31]。 
HARMONi-A 研究的期中分析显示，依沃西单抗联合化疗较标准化疗可显著延长中位无进展生存期

(7.06 个月 vs. 4.8 个月，HR = 0.46，P < 0.001)，并提高客观缓解率(50.6% vs. 35.4%)。此外，该联合方案

在总生存期(OS)方面亦呈现延长趋势(17.1 个月 vs. 14.5 个月) [32]。基于该研究数据，2024 年 5 月，中国

国家药品监督管理局(NMPA)批准其联合化疗用于 EGFR-TKI 耐药的非鳞状 NSCLC 患者。此外，针对三

代 EGFR-TKI 耐药的 EGFR 突变 NSCLC 患者，HARMONi 国际多中心Ⅲ期研究仍在进行，以进一步评

估其临床价值。 
这一研究进展为 EGFR-TKI 耐药患者提供了新的治疗策略，强调了免疫联合治疗在该人群中的潜在

应用价值，同时也为未来的精准治疗探索提供了重要依据。 

2.2. ADC 有望为 EGFR-TKIs 耐药人群提供全新的治疗策略 

ADC 兼具靶向和细胞毒药物的双重抗肿瘤作用，多款 ADC 在 EGFR-TKIs 耐药人群显示了显著的初

步疗效，例如靶向人滋养层细胞表面抗原 2 (trophoblast cell surface antigen 2, TROP2)、人表皮生长因子受

体 3 (human epidermal growth factor receptor 3, HER3)、EGFR 以及 c-MET 的 ADC 均显示了极具前景的应

用价值[33]。 

2.2.1. TROP2 ADC  
TROP2 是一种细胞表面糖蛋白，在 NSCLC 腺癌和鳞癌中的高表达率分别为 64%和 75%，并与不良

预后密切相关[34]-[37]。针对 TROP2 的 ADC 成为 EGFR-TKIs 耐药后治疗的新兴策略。Dato-DXd 是一

款 TROP2 靶向 ADC，由可切割四肽接头连接拓扑异构酶 I 抑制剂 DXd，药物抗体比(DAR)为 4 [38]。
TROPION-Lung05 研究(NCT04484142)在 EGFR 突变 NSCLC 患者中显示客观缓解率(ORR)为 43.6%，提

示其在 TKI 耐药后的潜在应用价值[39]。此外，另一款 TROP2 靶向 ADC-SKB264，在 EGFR-TKIs 耐药

NSCLC 患者中的 ORR 达 60%，中位无进展生存期(PFS)为 11.1 个月[40]，进一步验证了 TROP2 靶向治

疗在此类患者中的临床潜力。这些研究结果表明，TROP2 靶向 ADC 可作为 EGFR-TKIs 耐药后的一种有

效治疗选择，为 NSCLC 患者提供新的治疗策略，值得进一步探索和验证。 

2.2.2. HER3 ADC  
HER3 在约 83%的 NSCLC 患者中表达，并与耐药及不良预后相关。EGFR 突变患者在靶向治疗后

HER3 表达上调，可能通过 EGFR-HER3 异源二聚化促进 TKI 耐药[41]-[43]，使 HER3 靶向 ADC 成为潜

在治疗选择。Patritumab deruxtecan (HER3-DXd)是首款 HER3 靶向 ADC，其Ⅰ期研究(NCT03260491)在
EGFR-TKIs 及化疗耐药 NSCLC 患者中显示 ORR 41.0%，PFS 6.4 个月，OS 16.2 个月[44] [45]。Ⅱ期研究

(NCT04619004)结果相似，Ⅲ期研究(NCT05338970)正在进行[46]。新型 HER3 ADC SHR-A2009 的Ⅰ期研

究显示，该药在 EGFR-TKIs 耐药患者中的 ORR 达 30.0%，DCR 76.7%，DOR 7.0 个月，安全性良好，Ⅲ
期研究已启动[47]。这些研究均初步显示了 HER3 ADC 良好的疗效及安全性，有望成为 EGFR-TKI 耐药

NSCLC 的新策略，但是临床研究开展少，样本量小，依据不足缺乏推广性，期待 HER3 靶向抗体偶联药
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物的更多大样本研究。 

2.2.3. HER3 与 EGFR ADC 
BL-B01D1 是一种靶向 EGFR 和 HER3 的双特异性 ADC，通过可裂解接头连接新型拓扑异构酶 I 抑

制剂。Ⅰ期研究显示，在 139 例晚期或转移性实体瘤患者中，该药的 ORR 为 45.3%，其中 EGFR 突变患

者(n = 40) ORR 达 67.5%，中位缓解持续时间(DOR) 8.5 个月，PFS 为 5.6 个月，展现出良好疗效[48]。目

前，针对 EGFR-TKIs 耐药患者，BL-B01D1 与含铂化疗的Ⅲ期临床研究正在进行，以进一步验证其疗效

与安全性。该药物有望成为 EGFR-TKIs 耐药 NSCLC 的新型治疗选择。 

2.2.4. 靶向 c-MET 的 ADC 
Telisotuzumab vedotin (Teliso-V)是一种靶向 c-MET 的 ADC，已获 FDA 突破性疗法认定，用于铂类

治疗失败且 c-MET 过表达的晚期 EGFR 野生型非鳞状 NSCLC 患者[49]。Ⅰb 期研究显示，Teliso-V 联合

厄洛替尼在 EGFR-TKIs 耐药且 c-MET 阳性 NSCLC 患者中的客观缓解率(ORR)为 32.1%，其中 c-MET 高

表达患者的 ORR 达 52.6% [50]。另一项研究表明，Teliso-V 联合奥希替尼在 EGFR 突变且奥希替尼耐药

且 c-MET 过表达患者中的 ORR 为 58% [51]。目前，Ⅲ期研究(NCT06093503)正在评估 Teliso-V 联合奥希

替尼相较于标准化疗在三代 EGFR-TKIs 耐药且 c-MET 过表达 NSCLC 中的疗效和安全性。该药物有望成

为此类患者的重要治疗选择。 

3. 小结 

双特异性抗体、针对不同靶点的 ADC 药物以及相应的联合治疗方案为治疗 EGFR 突变耐药 NSCLC
的治疗策略提供了新的方向，但尚有诸多问题值得探索。首先，有些数据尚不成熟，还需要大样本前瞻

性 III 期临床研究进行横向及纵向探索验证；其次，新靶向药物该如何寻找预测疗效的相关生物标志物，

又该如何优化获益人群；再者，针对联合治疗方案来说，药物的最佳选择，剂量、时间、顺序以及毒性管

理；最后，应积极探索联合治疗的相关协同机制及潜在耐药机制与对策。总之，抗血管生成药物、EGFR-
TKIs、免疫检查点抑制剂、双特异性抗体、新型抗体偶联药物等治疗与化疗的联合应用，在 EGFR 突变

耐药的晚期 NSCLC 的治疗中展现出广阔前景。未来研究将着重于利用多组学技术优化生物标志物体系，

探索更高效的联合治疗模式，并建立个体化、动态调整的治疗策略。同时，结合人工智能预测模型提升

治疗方案的敏感性与疗效，也将是领域内的重要发展趋势。 
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