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Abstract

As important immune regulatory molecules, the expression level of immune checkpoint proteins
directly affects the efficacy of tumor immunotherapy. Research has found that the ubiquitination
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degradation pathway plays a key role in regulating immune checkpoint gene expression. By system-
atically analyzing the ubiquitination degradation mechanisms of major immune checkpoint mole-
cules such as PD-1, PD-L1, and CTLA-4, the regulatory roles of key molecules such as E3 ubiquitin lig-
ase and deubiquitinase in this process are elucidated, revealing the relationship between ubiquitina-
tion modification and immune escape. A deep understanding of the ubiquitination degradation regu-
latory network ofimmune checkpoint genes provides a theoretical basis for developing novel tumor
immunotherapy strategies.
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1. 5|15

o PR B8 55 3 TR AU S e B (R B SRR A 1, P PEAE TS 32 4K-1 (Programmed Death-1, PD-1),
FEFPEAET-Hi k-1 (Programmed Death Ligand-1, PD-L1), ZHA&E T #kE 400 <P 5 -4 (Cytotoxic T-
Lymphocyte Associated Protein-4, CTLA-4), 40 % 43K -3 (Lymphocyte Activation Gene-3, LAG-3),
T 40 A4 5 BREE A 26 B 4549183 (T-cell Immunoglobulin and Mucin domain-3, TIM-3)25 ¥4 sk 2 4 % 1
T, PR A ST S O S BT AT RN, RO R G 0k ) B ML

TR FERY], Rt & nURIS I R A mE R k. KEFEKI EGFR, SRC, ERBB2 45 12
AN IR AT T 55 P Jes BB %o G B AR 25 5 411 79) (Immiune Checkpoint Inhibitors, ICIS)VA YT I M[1], BRIk 24
7 LAG-3 72 M6 o 5 B G MRS Hh IR T D BE, ARBIF SC S8 R I E R 400 B A G S5 i 4 5 2 5 i eg %
WEIR[2], FHHTHEIT R, Xing 554k 1E BRAF/MEK I 77 §E L i PD-L1 ik I-4 56 S R AG 25 sl AU 3],
Kanumuambidi %5 A& I e o A 20 ff 32 IR o540 B P s S e (4], AR, B A G A 2 R AR 1 R R
JE B 2 T BRI M AR e 4 W . BAR ICIs ZEIGIRIAIT RS R ek, (HB 3 N AR B 2
S, MZANHIE R ZRE, A ARE T B E AREF Rz RIS, REITZE - EAMKR
GUIE AT Gk 2 S RIA R DGR, $ER B3 12 FIEERE S 252 RALER MR ES, SRz BB
LR e B IR NOC R, NIF R BUR S VR YT T SR A e B A

2. 2% - BERBEARZHTA
21. ZF - EABEERRS

2 % - & ABEK & 48 (Ubiquitin-Proteasome System, UPS) /2 41 fifd P £ 55 %2 ) 25 11 B i 42, (E4EFF
B ARAaS T 4 e R OERI[5]. 2R GUEL & RE e RS B IO, R BE
fekirdrd, MEAEFERNEAR, WRMARNE AR RIS, 2= e it =2
A S 8 2H B R 2 BBk S N SE R, 12 3 AL (Ubiquitin-activating Enzyme, E1) L = Jif £ (Adenosine Tri-
phosphate, ATP) ikt 1) 7 sNildZ 270, XA EL-iZ =B Be R4 [6] . 72 3 25 & (Ubiquitin-conjugating
Enzyme, E2)M\ E1 #5232 &, TR E2-IZ = BBR E &4, 12 R IEHRF(Ubiquitin Ligase, E3)FF 51 1H
EEE, Iz RN B2 F R 2R R O R IR b, TR IR [7]. AN REER A gmigey 2 1
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E1 fig, 40 4~ E2 FgAHEL 600 1 E3 i, XFhEa RIS IR T iz RGBS R R, 2 R IEM
BB R E A A E 4ris, B iR-48 (K4A8)r S 2 Bz R R4 I E A RS 5,
B 26S BRI IR G SR E BN EE, T 2 R-63 (Ke3) AL miE N 2 Rz &
BMYESHESHS, BEHEZEE(Deoxyribonucleic Acid, DNA)E & 25k [k F2[8]

2.2. E3 ZRERMS Xz R LEHITIEE

E3 7z Z & (Ubiquitin Ligase, E3)/27Z MBI AR s I CEEPAT 20 7, B IR R R AR B A
RIEZ BB IR R PE[]. ARIESE MRS IE, E3 12 R IR I 20 N H 1B A MR 135 2 X (Really Inter-
esting New Gene, RING)F FIZ5 1T E6-AP #3Lix [H]J5 15k (Homologous to E6-AP Carboxyl Terminus, HECT)
BUWRZE[10], RING %Y E3 &M IS H RING Stk [RINT 454 B2 BRI EE A, Rz RE M E2
HRERMEN, HECT A E3 M NIEL & E3-7Z2 R MKz R EIRWE A, EHREEET
RAFEPEEH[1L], =455 59 (TRIMS9)/E N H A i) RING A E3 44y, M #uh AKT (55
T B A I /N 2 e P e PR O A B, SRR AR 8[12]. 92 R AL (Deubiquitinating Enzymes, DUBS){F A
ZFEARSORERT, @Kz R - R 2 R AR, R SR R AR e YA D RE,
12 e 7 ME B A (Ubiquitin Specific Protease, USP) S il b Ji ik £ 5 41 B g AH 5915 5 18 % i s, Bk
FETPUPEANN 25 1 S5 AR ) 20 R, 7 A e g e R R OB, B3 2 IR 5 2502 R ALdE T 3l
AP R E A 2 =K, TSR i 0 B A R RS E PR NS, 75 F e i 75 AU R T %
EZOAEH[13].

YT TRIMBO 75 JE /N A it A R 8 vh (B (e VR4 VB, TR 20t 50 LA AR 40 i R AB49 Hy
WA R, BRI R IE TRIMSY FFREIIRERE, 25 R EoR: Mk TRIMS9 1] ff A549 Ziff 72 h 1
FAIE T 4.39 +£0.52 P& % 3.06 £ 0.41, TFELME 77.6 + 11.9 Mem? Ji/> & 39.7 + 8.5 4Mem?,  [F]i FF
1 TUNEL BHPESHH L] FRARANMLIT RS R K A2 2240 i £ (3 P < 0.05); 1M 33A TRIMS9 M| 2 AR e 2
N, FIfH AS49 41 72 h BEFE TG M 3.91£0.33 FhiE & 4.89£0.37, TEREEEEIM 62.3 £ 7.6 Nem?
% 985 + 10.3 Mem?,  H 23 FRK TUNEL FHPEZHM L. 4R 78 S 22868 /1 (35 P < 0.05). 7T
T FAR R B TRIMBO X A549 A AW = AT NS E R, BN B TRIM59 254/ H
i it SR B P ) - WL B L SR AR AR [12]

3. PD-1/PD-L1 B9;Z = 4k P& AR
3.1. PD-1 2RI S R EThEE

FEFP AT 52441 (Programmed Cell Death Protein 1, PD-1) 2 [ 51 7 41 th & 4 2 M55 s iR vk 3t
FIR T TS LE (2 Z B AL R [14] o T3 43 By RO AURAZ SIS IE S, PD-1 g Bt K232 Fl K289 £ s s %
Bz RSO, XA S I RAS B E N PD-1 R AR EME[15]. K232 {52 Rk 3 il it
HRR-48 (KAS) R T NIL KN £ Rz &4k, /T PD-1 & A A BRI R, 17 K289 {7 5 HI7Z &
B b U 8 oL 51 2 R -63 (K 63) %422 77 X il 4% PD-1 (¥ PN & B Ml I 5, IR AL 181 512 AL 2 (R A74E
SRS HARTTHLE], PD-1 P EX R S R -248 (Y 248) 07 M AR AL IR AS B4R K232 £ Sz Ak /K
F[16]. TEVEAGID T 4, PD-1 [0z =B REShESBUAHE, 5 T RIERIRERTIMIE, Mk
AR, K232 i S 2 B KPR ETF, (it PD-1 AP AR, AT T AR AR LR, Xt
P RRE M Rz R E I IE I R R PD-1 SR IREERITIRE, 25 T 4% N2 RS 40 iR 1,
N ER iR G A AT A TR A LA Bk B ) 4y kA
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3.2. Y% PD-1 ZZ R LEY E3 EEHEER

2R E3 2 RIEHR S SR ERET 32 44-1 (Programmed Cell Death Protein 1, PD-1)# [ 72 &AL &
WHR[17]. BOEIA S8R [ 1 (Stress-Induced Protein 1, STUBL)/E A/ B M1 E3 12 4820, @I H
VU ik 5 & (Tetratricopeptide Repeat, TPR) 45 #4315 7 PD-1 My BL (147 751, (LI IR-48 (K48)iEH I %
RZ BB, baid PD-1 3R ARSI R 1E[18]. RIERIMEIR RS A-B (Casitas B-lineage Lym-
phoma proto-oncogene-B, CBL-B)id i H H 1EA BB I1#i # K (Really Interesting New Gene, RING)&5 43 5 E2
Mgt &, [FIETEEL Sre [FIYEME 2 (Src Homology 2, SH2) 45 Fy3di iR B iR (L i PD-1 BN B, /5 PD-1 1] K63
Rz A, WA A B R AR A2 [19], MREEH 183 (Ring Finger Protein 183, RNF183)7E 4 iE
RIS FRIE LR, R RN PD-1 1 K232 A7 a8, JEIfHEL K48 ALz FAG (et PD-1 fr TR FEAR .

3.3. PD-L1 ;Z &L BEARIE R

FERFESET - 4A-1 (Programmed Death Ligand 1, PD-L1) 172 AL B ARIB IR S Je 24> ES 12 RIERBE/
SN E BE #2412 [20]. Speckle 74 POZ 7 14 (Speckle-type POZ Protein, SPOP){F A JEE iR 7 32 44, it 3
MATH &5 #3815 PD-L1 #11#) SPOP 4543117 %1)(SPOP-binding Consensus sequence, SBC)%: /7, %%
Cullin3-RING iZ ZiEB:HE 2 A4, 4k PD-L1 ) K178 1 132 R AL, F T I 8 (B A F R [21] -
TE TR, A DGR B 19 5K % 52 4 (Autocrine Motility Factor Receptor, AMFR/gp78)id it H 1%
JEE S5 R IBAR 7] PD-L1 FOHEEAIRZS , A1 S WE R AR ) A 5 19X AH 5<% i (Endoplasmic Reticulum Associated
Degradation, ERAD)i&4%, # i & EFE A 38 (Glycogen Synthase Kinase 34, GSK3p) /51 PD-L1 #fz ik 1&
Wik p 3% T 8 2 &4 5 1 (B-Transducin Repeat Containing Protein, f-TRCP) iR B A4s &, it Skpl-
Cullin-F-box (SCF) S &Mt K48 A1z Fik, Kz PD-L1 #k N\ & A AR 12 [22]

3.4. ZREWIEMHS PD-1/PD-L1 RILBIE

ZERB R G 2 2 UOR LR B % R M0 T 2 AR - 1R P SE T FE A4 -1 (Programmed
Cell Death Protein 1/Programmed Death Ligand 1, PD-1/PD-L1) {1 1 %A /K T [23]. fEHFEHEER, %
2 = AR 2R I B S 9X (Ubiquitin Specific Protease 9X, USPIX)iffi i it 6 22 (4 PD-L1 16 & -
48 (K48) Mz H 5%, F51 Speckle 4 POZ & [ (Speckle-type POZ Protein, SPOP) /15 1) 25 1 Filg {4 [ it i 1%,
MififasE PD-L1 A FKIA[24]. COPY {55 E &% 5 (COPY Signalosome subunit 5, CSN5)iE L %
Cullin-RING iz ZIEHBE TG YE, 1R PD-1 iz RMAKF, fERAMRKESRET, HEEE-63 (K63)
B2 FAEMNTF PD-1 A FAEHERE, TR RIA SR, REAM T, #RTEE 90-41H
%4 A1 37 (Heat Shock Protein 90-Cell Division Cycle 37, HSP90-CDC37)E &4iEid 5 PD-L1 454, BH
Tz AL ) 2R R, T B g #E [25].

4. CTLA-4 RE MR BN E R T RHISIRFE
4.1. CTLA-4 B9 Z L PERILE

Y FEIE T k40 M A 540 -4 (Cytotoxic T-Lymphocyte Associated Protein 4, CTLA-4)f1iZ &AL F4
AL ) 52 30 R R (R B 2 YRR AR [26] . CTLA-4 23 FLEMI A B A IR 2R - R - MR - HER
(Tyrosine-Valine-Lysine-Methionine, YVKM)ZE /7, %7 51| BE A2 {614 5 -2 (Adaptor Protein 2, AP-2) /3 N
HTHMES, XOEZ BB SR A S [27]. M S8 [ 1 (Stress-Induced Protein 1, STUBL)# it Y
Jik # & (Tetratricopeptide Repeat, TPR)Z5 #3815 CTLA-4 ] YVKM 17, i1k K327 7 A H#i 2 ik-48
(K48) ALz F k&, BR5) CTLA-4 3N AN AREFIERT, SRR ImIE T YVKM HEF R 1A
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b, 520 STUBL HISE & 0%, TE U IR AL - 12 3= AL IR ML, F 588 1 38 (F-box Protein 38, FBXO38)
£} Skpl-Cullin-F-box (SCF) S &4 RN AIEEE, ¢ M) CTLA-4 N BB (b B figt e 51, A
FHIZ Z AR fR it #2[28].

42.LAG-3 5 TIM-3 f92£EE

Ik X 4 3% Ak i [R]-3 (Lymphocyte Activation Gene 3, LAG-3) 5 T 4l Jifd % BR 25 1A 6 & (1 45 Ky 45-3 (T-
cell Immunoglobulin and Mucin domain 3, TIM-3) 1172 210 1 4% F& Bt SRR 1K) 7 T-RFAE A ) REAR 2 [29]
LAG-3 73 M BL & A IR F IR AR - e dR - AR - D& - o2& - 7&K (Lysine-Isoleucine-
Glutamic acid-Glutamic acid-Leucine-Glutamic acid, KIEELE)J: 5, % 5IME N E3 12 5 E R 1 2 i 144
o215 K B A5 2 A 4 (Neural precursor cell Expressed Developmentally Down-regulated protein 4, NEDD4)
AR A, A3 K269 A7 5 (1 20 R -63 (K63) ALz AL B, 4% LAG-3 I 4 F R A [t fid i F2[30]
IR, HF8EE 128 (Ring Finger Protein 128, RNF128)ifid 1 51 LAG-3 ] R &5 MIRHE, 1%
AL R (R 2 R -48 (K48) ALz FA B, BIR Bl I A 1 g A4 At 1 e A

4.3. VISTA BIZ RIS URISE

V &5 Ry G BR B 3 0 PE T 40 B AL K7 (V-Domain Immunoglobulin Suppressor of T Cell Activation,
VISTAVER B7 FKIGH 5, Hiz ZAE I RS (1 5 FARFE[31]. VISTA MW B & A 2RI
MR AL, Hh K282 Al K301 7 s e KRBz mABINAL . B e 7 E 55 B H (8- Transducin
Repeat Containing Protein, S-TRCP)@ iR 5 VISTA 43 H 1B B AL M6 L B4 A% /7 51 (Phosphorylation-de-
pendent Degron, Phospho-degron), /-5 K282 fi s HIii & iR-48 (K48) Az # AL, #rid VISTA #EANE
H R R RIS IR [32] . TESRESRMF T, HIRISR BN 752 M4 A0 ¢ K17~ 6 (Tumor Necrosis Factor Receptor As-
sociated Factor 6, TRAF6)5 VISTA & it & & [X 18 (Proline-Rich Region, PRR)45 &, 4k K301 £z 4 [ #t
RAMR-63 (K63) ALV R AAE, 52 mm HE B 2% Th e e 1

4.4. FEIRBEERZRUNBIAEER

AR PR AT 250 F 12 BB INURIAAE R B ZE S, R T H R A= P Th RE A R 325 55 [33]
Eei i o, FERTESET: 32 4K-1 (Programmed Cell Death Protein 1, PD-1)F14H &5 T ik 240 AH <4t
J:-4 (Cytotoxic T-Lymphocyte Associated Protein 4, CTLA-4) ¥ B AK #4154 iR-48 (K48) Az Rk N S & A il
AR, T PR B2 4 AR % AL R R -3 (Lymphocyte Activation Gene 3, LAG-3) 1] T-#6i % 2-63 (K63)%iz &
AT IR B B R IR R (3 1) V B 2R 8 A A0 HI M T 413516 K F-(V-Domain Immunoglobulin
Suppressor of T Cell Activation, VISTA)ZR It &% 2 1172 22 AL r B0 AN 5 A0 1 PR Al -2 1, AR 7 X Ak
I A e B

Table 1. Comparison of ubiquitination modification characteristics of major immune checkpoint molecules

* 1 FERERELN FZENEIFFELR
GERER FEZRUMCRHEE ERERE  BEERYEHh) SR E3EERHRE  TEEERR

PD-1 4 K48 45 3 E SIS
CTLA-4 3 K48/K63 6.2 4 B OB B
LAG-3 5 K63 8.3 2 paTl2EN
TIM-3 3 K48/K63 5.7 3 RE®T
VISTA 6 K48 3.9 3 HE A
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5. BT 2R ME &% 87T R
5.1, fIEZRUMIGTAR

B ) S A AT U2 AL AB IR VR TT SRS OB MR e 5 VR T BB 2% 7 11 [34]

(1) E3 iz RIERBEINH]F MLN4924 3B 404 Cullin-RING JERBFIIGIL, BRI FFMERE TR AA-1
(Programmed Death Ligand 1, PD-L1) [z 2 A0 AR, S8BT MIR S ) B, 3Miil FRI7E J e 3 AR /N4
J Fifi e A R RS VR YT R, R ARG /N Z A F] 65% .

(2) FET 5 A /K R A HR A 14 (Proteolysis Targeting Chimera, PROTAC)EAR T & IR RE 7§ PC-346
Ry S PEAH 55 E3 BN 25 1 526 T (Cereblon, CRBN), {2 PD-L1 FI Itz RAGEME, 762 Fhhg
R v J 3L HA AT S R B e R s P (2 2)

Table 2. Mechanisms of action and efficacy of ubiquitination-targeted therapeutic drugs
= 2. BERZRATAMNERNSIRBR

Lk N Ly s 1 FILA wHEA I PRI Bt

MLN4924 E3 #1171 #1#i] Cullin-RING ¥4k PD-L1 [
PC-346 PROTAC A% CRBN [%fi# PD-L1 PD-L1 |

WP-1130 DUB 0l 7] ik USPOX i1 PD-L1 I A BT
HC-001 E3 W7 B STUBL i1k CTLA-4 I PR

(3) Lz HAblHZ H 4 HPEE ABF 9X (Ubiquitin Specific Protease 9X, USPIX) /N1~ 71 WP-
1130 @i 155 PD-L1 HZ RALFEME, FRARMR AR PD-L1 /K1 60%~80%, 3558 T 4 T
PR G N

(4) &M T bk 40 A AH 54 i -4 (Cytotoxic T-Lymphocyte Associated Protein 4, CTLA-4)iZ &
TR, A S 1 (Stress-Induced Protein 1, STUBL)#E 771 HC-001 i@ L ik CTLA-4 HI7Z %Ak
FfA, dhom T s 8cRii 2] 2.3 5.

5.2. BREREIBTTHRMB R

BTz FAABRHLER G S5 16 9T S IR T 1R T A i .

B, 12 ZERRE(Ubiquitin Ligase, E3) #7715 4 2 16 7 4 301 75 (Immune Checkpoint Inhibitors, 1CIs)
A L I8 X AL 3G SR IE T OR . B3 FEERRIIH MLN4924 FECFE 7 A0 T FL k-1 (Programmed
Death Ligand 1, PD-L1){)3Z RALBEME, SFEFTESET%24A-1 (Programmed Cell Death Protein 1, PD-1)i {4
VR FLTIDEF 7 A 0 3 P R A8ONE 5 R 2 i R AR 24997 1) 35% 3 TH 22 68%.

B, B A KRR A R & 14 (Proteolysis Targeting Chimera, PROTAC) AT & 1 I fE 4118 i e i3k
GPERG AT AT IR PR EPE AR, SIUE RREIRYT T RECA N R B A SE SRR, PC-346 5141
FPE T MREYHAAE <315 -4 (Cytotoxic T-Lymphocyte Associated Protein 4, CTLA-A)FiAAF VL I EES VA
I77E BB A0 RS b SR T 859 iR 4 ok 2

=, Kz &M (Deubiquitinating Enzymes, DUBS) /Il 75138 i 4 56 56 12 46 75 55 FRVZ SR AL R, 7R
E A PURZAR T 40 (Chimeric Antigen Receptor T-cell, CAR-T)¥& 7 TH B N /1, 2 R4 RiEE
H i 9X (Ubiquitin Specific Protease 9X, USPIX) il 7] WP-1130 55 CAR-T 4HAuItA M A AT $Em T 4z
TERIAR] 3.2 fis o
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BOIRER 1% e Se BB ML (0GR, ORI R R e Be a7 sk S i 1 H It . AROK, ai & E
L ZE AN RESE R A W BOR A Bt — 20 [ W) e RGPV SR AL B R R A X 2%, HESIAS TE R
RPIRIT IR -
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