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Abstract

Objective: This paper aims to compare the performance of deep learning models focusing on local
texture features versus global contextual information in differentiating benign and malignant pul-
monary nodules. Methods: A total of 134 patients with pathologically confirmed pulmonary nodules,
treated between June 2023 and July 2025 at the First Affiliated Hospital of Shihezi University (51
benign, 83 malignant), were included. A total of 1172 CT slices containing pulmonary nodules were
collected and split into a training set and an internal test set at a 7:3 ratio. The training set was used
to train a ResNet-18 model focusing on local texture features and a Vision Transformer (ViT) model
emphasizing global contextual information. Model performance was evaluated using the area under
the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results: The
ViT model outperformed ResNet-18 on both the training and test sets. In the training set, the ViT
achieved an AUC of 0.977 and an accuracy of 0.978, while in the test set, it reached an AUC of 0.901
and an accuracy of 0.878, all higher than those of ResNet-18 (training set AUC 0.959, accuracy 0.930;
test set AUC 0.880, accuracy 0.812). DCA further indicated that the ViT model provided greater clin-
ical net benefit. Conclusion: In differentiating benign and malignant pulmonary nodules, modeling
global contextual information is superior to analyzing local texture features, representing a key fac-
tor in improving diagnostic performance.
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1. 5|8

TEAERVEEE A, 2 5 BURREA LT e Z R, SR 2 15% ) 8 7R 3R B
W12, BUEBAR TG 22 1] (2] BT 35043 - At es e = SR PRAEIR , (X AE RAAR A 7 vh R BN 25715
AT st P S T 55 T i 5 4 1) RSV T i SR AR A B G B (3] [4]. HAT, CT H#fiMiigs a5 %
A% O T B SR, FESEhrifAR AL, 3T CT X2 RBvE S 1 m il Kbkl . e, FAY
B R it 45 9 v vk 50% i 2 BRIE ST A RAE[S], Bt HAjHEE T CT ARG RS BT AR HT R
Wi (e R ROA E AT T2 T 4535 KN TEAS . AL B B AR K R S5 1) I A R 7] T S X o R
WHE[6], LA 2R S IR RIE bR AT HIWT, TiZId L 5 52 R 50 22 S igm, b — b3 7 5 3 fiti
SNBSS R 5 A — Bk

AR, N LA ReAESs 12 Wi AId m B 32 2 T T2 [ 7] [8]. 2T N TR BRI 7 15 Re 8 M =
G B SR EGR YERIAE , I TR 2 IR S ) S5 AT I IR R R, TR R S A iR A L
TR RS A T o B L HER F FIWT 9], o, BRI N4 (CNN)E B A5 8 IR 22 I HESE . 52
TR T it 45 R B 7 b, BE T CNN BOBEAY LS 0.856~0.898 A HERGZE[10] [11]. CNN
T AL 22 2 A AR R IS 0 Xl RS (R AE 02 2 1 B B 3 0 B R B RFAE R s o SR 17T, CNIN
PRS2 T AR, AR5 I RHUR S XS R ey e, RO i e K BE B AR Ok R A R4 ME R,
IXTE A3 5 K0 2 2 R 25 22 A8 I it 45 1 ) ] B8 A A 1k BB L[ 12] - 98 CNIN 7E AR 4 JR At b ¥ S BR
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AT

TR R EL T Transformer HIAL %Y (Vision Transformer, ViT)# 51 NBE2E5AZ 0 [ 13]. VIT RE ELAEH#E
KFERHIE R R, FEMSE WA A% 1 SO S5 00 T R I SE SR K R AERE /0, BRI O BT 451 R
PEIZ WM R (8 75 77 1)

[Rltk, AHEFC B e LEEE T CNN HEZE[) ResNet #5815 VIT #EAI/EARRT CT BMG HEE R4 R
PEMTEREZ 7, DARFEA R RFESR B (R S S ARRHE vs 2R BB JIRHE) TEI S 1 0 AT S I
Rk, Ittt A Ml SRS W ik SR A

2. ZIRNEFE
2.1. BUEXIE

AWFFNRIBEEREF, IN T 2023 4F 6 H & 2025 4 7 H WA ZE A 7 R348 — M B ER 2 T A
HATREHIS NS B3 . GIAPRERRG: (1) 328 CT BoRihiss i KiE N 5~30 mm; (2) H&4
i 78 55 AL 2R 2 AR 98 CT 362 <2 mm); (3) CT FHEEE T AR AIAHE 1 AN H o HEERbRUE A :
(1) RETEZARHUMEIRIT: () WRBEARFEFRA TR, (3) CT BE 2B =i m, ok
THWR RGN . BAIEYIN 134 iR, o RYESET S1H), SHEELEST 83 . BT AN TR [H
Wit IR RS E LA, SYIE SR RS, SRR E.

CT BIg sk B 2R AL S (331 %, 35 GE LightSpeed Ultra (16 H). GE LightSpeed VCT (64 ).
IR uCT 768 LA [ ] SOMATOM Force. T #2538 NG TR 5185 RG(PACS) FHEEL. MbniE
UGB, BRI PES — B SRR % 1 mm x 1 mm x 1 mm, 5% CT BMLHI & 58 M A 23 910 2
1200 Hounsfield Units(HU)f1—350 HU. A5 EI% i 234 L DICOM #& 2R 17 .

2.2. ERSEISTHALE

— 4 B HAEZ I U FHEE A A FH ITK-SNAP (FiUAS 3.8.0, http://www.itksnap.org/)%J 55451 fifi 25 7 1%
JEFRTE KGR X B (ROT),  FAE T 3 (I R 50 35 B IR R B A A . AW 70 R 5 T 1 X I
(bounding box)bRvETT 2, RIZE A AE 457 F BBl 0000 £ 1F 75 % X3 DA 7 a5 24515 e LRt i e, bRvE e
FH A EABEE LR m AU R R, JRR R . B2, AL 1172
7K(554 5k RPEMGSE MG, 618 skBMEMGSE 1 B B E L1 2 CT BB T R80T .

2.3. REEJERIWE

N IE LR SRR, 1172 5K CT RS — %R 64 x 64 1585, FHORATF N JPEG #5:0. FT
B HHE I 7:3 1 E I AR (n = 820) RTINS (n = 352).

T H R FH ) ResNet-18 BEAYEE T 4B, LM 1 R 18 840 N 5k 5 ) v (batch_size,
channels = 3, height = 64, width = 64), A ESEEL 4 7 x 7 W _4EERZENRE =3, filmE =
32, DI stride = 2 x 2)ATHIPRHIESEEL, [ J5#2 N\ BatchNorm2d Zi#47IH—4k, FFAHH ReLU F#if A
K. B, BT 3 x 3 R RIALZ B ) R ORAE . X4 24 DU A B 2 BB R G Bk VA
64, 128, 256 Al 512), FAMEHALE P BasicBlock #.7G. 4 BasicBlock %4 T 3 x 3 BHZ. it
JA—4LAT ReLU WU, FHI IR 22T G2 AR BEVH 2R I L, RN B s kR e AR I R ) . %, 4 iEId 4
JR TS5 A, S R 4 T 2 e 43 S T 5 SR

AT VIT B8 EET Transformer 4244 B4, K A\ B4 (batch_size = 1, channels = 3, height =
64, width = 64)% 734 16 1~ 16 x 16 [ patch, FfJ&-F it & 4% 52 2 WLt £ 1024 4ERFAEZS[H], TERUE
MRA (batch_size, 16, 1024)[¥] patch /751 5] NAJ2~ 2] (¥ class token ([CLS] token)Ff-Hf 2 3 ¥ 51 5 v (7 5]
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JE TR

TEARAE Ay (batch_size, 17, 1024)), [FEIRHE AL B 46 DUOR R = B AL B AS B . %FHIBEE %A £~ Trans-
former AL AL, MAMREEE Z L FEB MBI FFTENES . &2, BidHE[CLS] token FHEF 2
Z JZBAHLMLP) LB, R TS 4 .

2.4, BERINSGEIEE

EEREE S TR R, S BIEAN A 8, IIZRANIA 100 4. HEALESRA Adam, ¥
B S) Y 0,001, HRKBECH T8RS, TGRS, (R IR, SRR
BRI T 2 DL A B A AR

ARFFFA IR VIT B8 % ResNet-18 RS STUA, 00 2% TAREHE M4 F IB(AUC)T
FHLTE IR B SRR P O T PE A o I, S5k e S R 22 5 W (DCA) T B R B R - i
%, CIRAE IR PR R B AE L. AN, S BV R O T AR, AR SR Grad-
CAM 771 TR B R 22 0 4 LT 45 0 S DX, T 4807 BT 05 B B 45 0 S A

2.5. GLtESAT
AT R SPSS 19.0 Gitl 4R A T8 o b1 . EESRAR B R [ (A2 BT iR, &L
BIB(E 5 )RR, A2 7R RS HEAT .
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Figure 1. The image processing workflow and the architectures of the deep learning models used in this study. After manual
annotation of the region of interest (ROI) on the original CT images, two processing pipelines were applied: (1) the ROI was

directly fed into the convolutional neural network (ResNet-18), and (2) the ROI was divided into patches and then input into
the Vision Transformer (ViT). The structures of both deep learning models are shown in the figure

1. AARMEGCERERRESF IERZH. MEE CT BRI TRXBXIGRONRER, 575K ABRMLE
FR: —2% RO N ETRHEZ M 4 (ResNet-18); ZZ%T ROI B #H1T patch XI5 5N Vision Transformer (ViT)»
FNRE S IEBNERREINE R

3. &R
3.1. BEIGKFFE
REAWFREZFE —MEERK 134 HILFREGHIBUFLAINLE T BAWANKTFR .. HE R
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AAHFEN A 1o WEFNFERFBIERS Ny 53 %, Hoh 531 59 191(44.03%), Lotk 75 61(55.97%) . g1
FRIERKEARN 18.61 mm. &SI RE, S EE WL TA Em=50, 5 37.3%), HKNE Bt
(=30, {5 22.4%), HEASGTFLAFHM=13, HH 9.7%). A FHm=23, & 172%) 5% FHn=18,
5 13.4%).

Table 1. General characteristics of patients

=1 BEN—RER

WG PRAFE
Fi 5331+ 12.45
51
B 59 (44.03%)
p- g 75 (55.97%)
BRERmm, FHE £ HiEE) 18.61 + 6.13
B
£ b 50 (37.3%)
Tt 13 (9.7%)
VEENU 23 (17.2%)
72 bt 30 (22.4%)
e Rt 18 (13.4%)

3.2. REFIJEBHTMER

JEIE VIT A ResNet-18 F% FPR BE 2 SIS Tl e e an 14] 2 Fram . EVIZREE TR (R 2), VIT BRI
e, AUC 1HK 0977, #ERiZRIAE] 0.978, HURPER 0.975, FrRPER 0.982; MHHLZ T, ResNet-18 1
RFEVIGEN AUC, #ERZR . BUBIEFIR: 7% 20 5108 0.959. 0.930. 0.944 F10.916. AN FTINHASE S,
ViT #3588 T ResNet-18, AUC {EH>A 0.901, #EFIZRA 0.878, BUEMEA 0.906, RN 0.838; i
ResNet-18 B EMIASE N AUC, #ERRZE . BUSIEFIR: 5150715 0.8804 0.812, 0.824 F10.801. &fk
A, VIT BEAE I ZREEAN A NS Y DR A m I T P R, SRILH R UF 2 A Re

Table 2. Model prediction performance

= 2. REFUN R

YIZH(n = 820) AL (n = 352)
et Resnet-18 ViT Resnet-18 ViT
AUC 0.959 0.977 0.880 0.901

HER R 0.930 0.978 0.812 0.878
UK 0.944 0.975 0.824 0.906
FER 0.916 0.982 0.801 0.838

IR 7 HT(DCA) (14 3)itE— P R, fERZHSUEREZR T, P Fh R B 5 ST AR Tt 3 14 fii 225 4 11
R R AR T “AiRyT 7 5 “CARBANRYT” ISRIE, TR VAT BEAY I PRV R0 AR 78 I 2R SR P 3 U
AT IR 25T Resnet-18 B, SR HAE il 15 [ TR (1 1k PR ke 5 v 56 B T LE 1 S ANMA

FT Grad-CAM (IR AT AL SE (B 4) S8R, VAT R A% o v A 41 20 P il 458 1 ) e g [X 3,
TR N TR S SR IR M2 T, ResNet-18 #5574 £ BAE dr T R S SUCHAFAE, ik
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Figure 2. ROC curve evaluation of model predictive performance. (A) Training set; (B) External test set. The red
line represents the radiomics model, while the blue line represents the deep learning model (Resnet-18)
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Figure 3. DCA curve analysis of model predictions. (A) Training set; (B) External test set. Blue line represents the radiomics
model, red line represents the deep learning model (ResNet-18), black line indicates the “all-treatment” strategy; gray dashed
line represents the “no-treatment” strategy. DCA evaluates clinical utility by quantifying the net benefit of applying predictive
models at different threshold probabilities. A curve positioned higher indicates greater clinical decision-making value within
the corresponding threshold range.
3. BRETUNE) DCA BhZ 3 H#1. (A) WIEEE; (B) SMERMIKER. EEBEFNRTZGEFRE (Radiomics), L BLFZ
RERIES THB Resnet-18), BELSRT “SIAT FH; REELKE “SWFAT FM#. DCA BUE
WA E S EHR T A FUMR B R SR R A HIRARSA, #iskil s ERAARAE AN SETEE AR IR RR RN
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AT

ViT Resnet-18

Figure 4. Visualization heatmaps of malignant lung nodule predictions
generated by the ViT and ResNet-18 models. Red areas indicate re-
gions of primary focus for the models, while cooler colors represent
less relevant regions. The heatmaps show that both models are able to
localize key regions associated with malignant features, with the ViT
model tending to capture the global contextual information of the nod-
ule, whereas ResNet-18 primarily emphasizes local texture patterns.
These visualizations provide an intuitive illustration of the models’ de-
cision-making rationale

[ 4. ViT #2285 ResNet-18 B3 T 14 B 4515 FUR B FT AR AL 2 [
I EXEFRMIBOTNERAX, M EXigRRAEXERI
FIXig. HRERR, ARG EMNSEMEFHERXXRE
X, Hep Vil REGRTHESETHE/RLETXER, ™
ResNet-18 FEXEFEBLEBHFE. XLATILLERENMIBR
THEBANR KRR

4. ¥1ig

AT FIET B AR CT 5245, M T ResNet-18 E #2024 45 B F Vision Transformer (ViT)
B, FH T Mgy RPN . 25 R B7R, VIT BEALFE ISR [ Al i AR 35 B A9 30 = 1) AUC 1B, 1HERf
KRR, RIWHRTERER WG RN ERE. F, 3T Grad-CAM R Lgs R EIR, VIT #
RURE0E T A T A P 2451 A OGS X I & & /) B R /B R, T ResNet-18 8¢ 1 TGV Ry SCHR-IE . 31X
— R, Transformer ZEH7EAL IR T 25 5 4% B SOOI (1) it 45 57 i 2L AG S0 I RRAE R IR 77, By
FAN AR 2 Wi AL T T SE S SR . DCA At — B30 E 1 P AR LE 22 HU0 B T I PR 14 28 o
PR T AR YT” B ATIANIRYT Y RN, SRR TR LSS ST RLLE It 45 T R SR E R LR I R R
M E -

R CT B ZH T er, (H 5B 251 o2 W i v 2 Bhak . 387 5 1 45 1k
ZHRHBERE, HARANE. BEZHE, HRNEHEIR, A8 RHE AR E A i o LA
AIEEXAr RABMESE T Ak, SRR/, ALE . R A K RS DN 2R 38 RT RE R M2 W A I, T IX L
FRIETE IR PR S B ik = BRI BB B S —hr i, &5 RIS 7 5 o B, AR IR 2 FR 2 X
o JmAEk, FETARRI T 7 AL MSE T RT3 2] 77z o0, Hdsg g4l 2] i ik A
LR EE N IR JC I R I v 4 58 R ik DARAE IR 25755 (0 S o ok, IRl SCRpm &L BEALARMR SN 28 %
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SITER AR AL, DLSCEb R A EE TR A, 183 T 0.82~0.89 ) AUC fH[14][15], #nHAER
IS WOR S VE Al BV FENME . SR, AR A 7 il AR TS HE A 45797 ROT, AUFERS #E
77, T B R A 50 MO e i, X TR SE B I PR IR 5% ] R PR ) FEAE T B FH o

FHECZ N, IREES: ) D5 e e B 23R I Z 2 UG BRHE, b N LT, FR S RS2 RER,
DR 48T R A SR A AT RE AR B T . 2O LU AR, SRR AL, TR
2 T TR TN ASE 2R 7 ST il 5 0 R ) R R I RS UE[16] [17]. ResNet-18 J&—Ff CNN [RIUR 2% S 14,
IS NTRZEERE, B T IRZEME PR R, I OAEZ R BRSO A TR PRl
PAFTIZ N FH[18]-[20]. SRTM, TEARFFEH, VIT BAILEIZRE AN IS B = 1) AUC. #EH
RN, BoR AL TSGR TRIIPERE . X AT VAR T VIT AR08 BSR4 N Z A patch
FHAH EEE VU AR LT UE R, A A HR I SR B A& 2% Bl 45 i BE s SR EBUE 4
FURFAE, T TE 2515 R 2 AT 55 h R I B A% 48 CNN BEAR I B o X TE 7L 4 AR, TENlSS
TR RIS, S A R E BT TR e Wi R B R .

S 5 R SCERHAE R B AR I 2 A LG, VIT H5 BRI 53 2 pateh i i 43 &) 3 = AL ] i) g A
S50 5 JE BRI L 2R R AR S K, AT A B A TR SR FUH . TR A S R (RSB RRAE . bR, VIT FEFRAT
(1 S 56 Hh 3 I H S DR P ) RSO AN B A AR, X T e I B AT A M R T A R R
R HIHT 4 patch embedding #iTAH3<, 1M ResNet-18 7EHEHU= SAFER TN BB Sk EHES, S8
AR IS R, IERQ, VIT BRSNS 58 S M SR AF 45T (I B E 5, WM 7E R 2/ 4T
F ROV AR T PERE . FET Grad-CAM FIRAGES it —20 oR, VIT REALTE SR IX dk ) SGyE B 4
Wy BEATH, ONRRIR SRR AL T BRSO R T ARG R SR Bs e b (0 S )

ITAESK, 3D-CNN 5 3D-VIT TEERZE545 5 b i R iuis, 76 HAthuge s 4538 B th BB A R P e[ 18)
[21]. HAEWEBRA CT M =4e4ii(5 5, 7RIS 1 B 5k IRHIE R #8 R = 098 7E IR AR 118
AW TS SN0 = YA R 45 T2 Wb () S SR, TESEBRRH , YR R e A
B, WERIZWOE T U BRI R ZE MR RS WA RSEER, 4Ry E
FX ROX — A AR HK, S OCES W R (U B L Z i B AR L I R ) A B ORI 2 T
R A IAY, R JERR KSR BE W IR s R F I Re JT o 25 b, R 3D BB AR R R @i, (H
AT 2D-VIT fEMRE. FCR SR tE 3R F 2D-ResNet-18, A4 7 RGBS ML T —4
SHE B SR 55 PR AT R A0 77 AR T ok %

AW FANAFAEL TRBR . e, AT NSRRI T, AR AR FmE, RRFITEL
Hl s KFEARBTRTIEVEDT 70 DLE— D IR 45 S A g e . LU, WR AUl RIE T A FRIZLS 1 CT W, B
BSHMEG R =T ZE T REFERAR T M, MM R I B — B . IhAh, AN AR R I
T CT B ME, REAIGKRE B G, ZHEEIE NS STt — BRI G 52
ePERe. BJa, ABFFCRHRN 4R IREE % 1454, RKATHRE 3D-CNN B 3D-VIT 5 =4, DI
S FIRAARR CT AR 2 AME B, AT IE— 4R TR (Vi PR S FH 8 )

g LATR, BTGB S MR, T RET CT WA VIT IR % ) BRL AR A0 58 HERf iR
ST A5 ) AR EGR A, SRORAEMSE T ROEIEAE O R E B EEE S X R R e
(IS4 B2 Wi B g T 7 I JELRE ,  JF o 380 i PR ARRAE $ B AT 4 AR A5 L L 4% o sy I PR S FH A /0,
it ez 7L A 7 A AR BB AL T VBRI S 5N E .
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