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Abstract

Acute kidney injury (AKI) is one of the most common and serious organ dysfunction in patients with
sepsis, which has the characteristics of high incidence, high mortality and expensive medical ex-
penses. Sepsis-associated AKI (SA-AKI) accounts for 40%~50% of AKI cases in intensive care unit
(ICU), and it is an independent risk factor for patients’ death. The traditional AKI prediction method
has some limitations, such as insufficient accuracy and poor timeliness, and it is difficult to effec-
tively identify the early deterioration of renal function. In recent years, machine learning algorithm
has been widely used in SA-AKI risk prediction, showing good prediction performance and clinical
application prospect. This paper summarizes the epidemiological characteristics, pathogenesis, di-
agnostic criteria and research progress of machine learning algorithm in the prediction of Sepsis-
associated AKI, analyzes the shortcomings and challenges of current research, and looks forward to
the future development direction.
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1. 5|8

SV BB (AKD 2 FREHUNN ZEOR B DhRe 2R N FERIIGIRSREAE, 2 FE& M X AR
RN B, ERNEZEEL, DULENE A PRERD N FEERI[ 1], MREERE 2 R g 5] i i 18
SN SRR BT BRI 8 S A i 28 B DO RERRAG, A2 EAE I 70 5 (ICU) R SR T 1) F B A 2 —[2]. AKI 2
JHeBRIE B 5 LI 28 B D RERRAS R I, WA, 29 45%~T0% M Ik BRAE % 2 kA2 AKT, 1078 R E5 PR o 26
HH, X — AT L 70%~80% [3].

JRFFIEAH G AKT (S-AKD AR FE G EF RIS %, Ea PRI K, BT 2 g,
TR RERE I B R, PR E S R KIATIUE (4] BEE R BRI R R 1 _ETHA N D22 A
B, S-AKI CL NG EAERE A A 8 KBk ik . SR, S-AKI % PAILIE ALET (serum creatinine, SCr) AR &
BT CW, XL bR B 100 K A 48~72 /B A LB B8 4k, J& T8 DhRer “W s 1847
BT BT AR ST L

Ak, BEE N TRRERORM PR KRR, HLas % ) HIRAE S-AKI Tl s B H BRI 77 J il 5
HEFONDZRE . AamRE, Ll EmA. BAEin. SERIE S 2 480E, Ve IR A6
AR E R AR ESC R BAE A, AL S-AKIT B 5 H TR B AU HE TIN AR 4L T 5iiigis, Ao
JH B SR PR i R BRI

2. BREFEHXE AKI BRITHR Y 5I&KREHE
2.1. SA-AKI B9 & 5 =R =

JERREAA OC AKI A2 ICU " LA AKT B8, (5 FTA AKLIRGI1 40%~50%. 2 TR FURR IR AT I5 2
WEF IR, BRERE B E Y AKI FIRAERAEAFEFARPAAEZES, XEESTRARE. SWibrdE. X E
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SRR A K. — AN 170 J3 BT 1 [ U B 78 I, R BEAE 38 1) AKT K AE 2R 45.2%,
M ARMRBEAE 8N 15.8% [5]. 78 BT MBI IR SR AR e S8 B b, AKT MRS — B, Wik
60%~70%

SA-AKI I FE % i 3 & T AR R BT B AKL. B RM, R4 AKIL IR B L% A
30%~50%, AR KA AKI HIIKEEAE B W AERAUN 10%~20% [6]. AKI ()™ B FLEE 50 50K B 1EA S,
G KDIGO 233, 1 ] AKI BE B IER LN 20%~25%, 2 N 35%, 3 WA EiE 50%~60%. B4k,
5 B WF IE B ARIB T (renal replacement therapy, RRT)H SA-AKI B E LR T &, Al 60%.

EAFERERE, ERRER AKI (KDIGO 1 ¥ 5 A RS Z A, — i Meta TN T 42
Tiwf 7i 3k 283,751 1l %, 25 R R RIE 2 SCr BTt 1(26.5 pmol/L) 53 Be i AL 238 I 67%A4H %[ 7]
KR F AR T TR FE AKT HA S 2R .

2.2. EREAFIHE

B E NHERE SA-AKI IS B o SRS R HE WA R 2 —, 265 B HEF 8% th T 15 IEfE
#HIRE T AIPEE 2, SA-AKI MRAEREE @ T HREH . BEFERYE R L (chronic kidney dis-
ease, CKD) ¥ /& SA-AKI (G ANBE, HARAEFR B INREILH & 1 2~3 1%(8].

EHFELRE R . L 003 . PR AR SA-AKT FIMNLER R R . IR R T AR
TEREPRIE B3 AR AR S R, B 5 KA SA-AKL, HTJS BE 25 . G iitiR A& BB A
AR IR AT SIIRD B R R AR B R AE N, AKT XURS B S8 T

TR SR T, MR TR A2 3 SA-AKT feis WL PR . S 2 BTk g dk e, AR
AN RIME, A G5 ER A5 RAE RN AKL[9]. MeAh, EREERTE . 552 M E 125930
Fiy HUBOE AR RS SA-AKT R A B VIAHG .

23. ERAIESETER

SA-AKI A 0 3 B3 HAE T S, JERT K TS 72 AR IR 5§ o 2 A7 A A G Lo 2 R N
P2V B AR 2 2K K 375 9% (end-stage renal disease, ESRD), 5 B KUIENTIGIT . WA RN, SA-AKI &
HFEIE 1N CKD IR R &K E AKL &1 2~3 £, @ % ESRD FIARIE I 5~10 f5[10]. iX
Fift “ AKI-CKD £ 7 INES I k52 3792 %0

MNEGF AR, SA-AKI BEWIN TERITHRA . AKLEEFERFEK, 1CU (8 i [ iE K,
B Z YT IR RS RRRIT . —IEE TR R, KA AKL MIRERIE B T30 b 2 B R R 2B
AKI F I 40%~60%, 5% RRT HEE R Em. E£HE, SA-AKL B 10 e 2 B2 2w T3k
AKI 3, 2938 2~3 Ji e AR fi[11].

3. SA-AKI BT AF 5% ML=
3.1. IEKEREE

— B TR AKL TSR KOS e, A SRR B 20T AKL BB R
T, BB IR, MR MR, EFTHAIET, CKD R AKI ML EBREE, K
S5 E RV IDAE VR IR 4 1 2 DL I B2 U AT 56 o BB R IILI « oL L5
RRBRILE . JEREFOTFR A AKL ROERIR % (12). HelpiE. FHEREZGYD. MBI T-TORIAK 52 C b
WIS AKL 0GR R B 2. — 5% rhob SRR T AKL-EPLFIERAS, WRapE, i35 B LA 1 b 25
TR AL T AKL SR LB RSN 13), (iRl SRR B R AKT (O
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RE 2> B0, BN 4 R O E TR SA-AKT. {H AKT XU 2 B5 O S AR 150 A0 B 2 4 22 o 1) A [R) T AN [
TXAE AT P it UG 3215 PR

3.2. EMFEMEEESESHE)

H AT AR EH T AKL S0 75 9% F 2GR E 7 R VP SEVRIFIAL GGt 2 T Ay
IR IE 7> R4S SOFA 4. SAPSII Wor5%, XESVFor KRG 5 M, (AR EG R, 7£
AKI TRl i) AUC {38 % 7F 0.6~0.7 Z[8][14]. Bell Z5(2015) [15]174F — A& 15, 872 4 Hr B miTHE 1 pA
FIWFFE R R, ANBER EEE < 30 g/L REE AKL KAR N 283%, BEHTAEE > 35 g/L BEM
10.1% (P <0.001). 2 KRR, (KA A MUAE & AKL 87 fE K 26 (OR = 2.84, 95%CI: 2.31-3.49).
I EE I DU LR S ThEg: (1) FERFMZRERAEBER, MAEA <25 g/L B, AREH & EE
Wb, BHEERTTE: ) BUAULER, BERASHEFEEMHME, REERE R, A R
(3) #AETiRe, W ANERR, (IKEEEARAES TS ARG, T Re i E .

Caraceni SR FUIESE, AEARAEEMIRIEM . ERIERET, AEAMUERED, HoT
ZER R AR, PUAMREAR IR TR, RCBHEEIR16]. BRAE AL, HMEFERES AKX
FiAH G, Zhang ZE[17]FF AR TRIAEAS AKI KR, RIETHEA < 150 mg/L EE AKI RAERE
EHmmTIEEA, fTEEAEERREEQ~3 R), Bei EBURM R R B RS RS . B ER-6 (IL-6)fFAE
B RAMMER 1, 7E AKL RIm L R R BEAEH o Skrypnyk SE[ 1818 7L ] T IL-6 25 AKI A
PP (1) WOE N R, B BE N, FECEAIME B IR BUKM: (2) (25 /MR S AR A I
TR INE S IR IE ARG (3) BEEEROE'E/NE LR AR TR, i caspase-3 1275 541
ST P85 2 R (PCT)EMRERIE A ¢ AKT Fll oh B3 EZAME . Gao Z5[ 191/ L &I PCT > 2.0 ng/mL
B AKI RAEREZERT PCT<0.5ng/mL #B¥, PCT MY WL Y™ HEALRE, &858 IF 0GR g &
DIAH G o BB C B2 [ (hs-CRP)FE N S Pk B s B 2 1, FE TR 7E 22 Tt 5 P 75 B0E 52 . Liu £5(2009)
PIZEREHTE R, CRP BIEAN 10 mg/L, AKI KESEHEHN 15% (95%Cl: 8%~23%) [20]. %% SN [ AL
M. Gomez (2014 FEH T RIEN T AKIL B “HERN” BRI WIUA I 285 g (s e . s if ) os 5 k%
-EEAMME RS, B TNF-a. IL-18. 1L-6 SE{2 R A 15 IXLLPH 7k — D us ML A B Ai i A e /N
B, PR TR IR T RS ECR MR IR . U R E R AR T R, SR
AR A[21]

P T 137 LR 7K P R0 R 0 A s S M RN HERA 1Y) AKT AR W, 2 Flopi B4 AE b & SR it 5 F 1
S RN B2 AKT. DU BT 2 AEYpbr S A e T AKT BRI BRI E C. A kn 4 i B i
FEFHOCRREIZEE . B0 7 1 HREWHRE SGED . RILE BKREAGTH M EH . H R
0 Y Ji Il A 5K i o i 2 R I (NGAL) &2 I 4R it 98 8 2 11 AKT FLIHAYI PR E42)[22] [23]. Bennett Z5(2008)
EOFEFAREE PRI R, KRG 2 /N ILE NGAL>150 1 g/L GEW T 48 /NN AKT k42, AUC
79 0.88, REMNT MMEF(AUC =0.52). NGAL [IRALET HAE B /NEW 5 2~6 /NSFEI AT Fh sy, AR
L) R FUE AN [24] B B350 5-1 (KIM-1)2 B /INE 3503 1) Rp 7 AR 5470 « Han 25(2008)HF 78 1 201 15
HAELR, RIUR KIM-1 > 2.5 ng/mL FJE#E AKI KA 23K 68.3%, AUC N 0.83. KIM-1 [FESETEE
AINET I R R RIS, AR LA B [25]. ISR C (Cys O)ASZAERE M. WIN&ER
Wi, VB ShRERFRARSEFR. £ AKI FR 5T, Zhang Z5(2012) KBIBEHIE C > 1.2 mg/L [ E#E AKI
RAZFEN 45.6%, wEmETIEFHET 123%. BIIE C MRALL T HAET R EE TR E TS, B
B R EZWANME26]

SO I IR TE A 58 BT AL AKT AR B4 KK 8 148 AKT (9 BRI e o ml g, (E R AE IR IR EAE
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XL YIbR EVIR AR Z W 3. Vanmassenhove <53 FIHT 84 4 L35 A1 R A bR SV 2 W AKT
VYECRRIGL, JCHIEAE AKT BRKR BRI [27]0 53— N EAERE, B2 A Pnbs 6 ORI AT REJFAN K it
BN & Bt o Marx SEIAY, i PRAR A 1 Bt 38 3o — 30 FH I3 PRI AE b S DR A 5 AKT RIS L 12
Wro CEFEEEMTUS, CURIX 7> AKL BRI e (28], AKT RARKIFE . BAH50N, HEAA
Iz R R AR B A B 2, O TR AKT BEATARHEAGIZ T, 7 LA ARSI . AKT ANFET I A ZE VAR 4
BCEVIAR SA G AT A EL[29] [30] . A& 2 A0F AR VAR S A I AE VAR S AL & RV TAlk JB o 1Y)
R AT BE 2 3 2 R A T B2 W AKT A B e

3.3. EF LARAREGREITEE

AKI FIfEl R #= e LLE, B # A T80E F 2508 RO 0 AKT TR 72404, FE&ENMmE, 5
S AN AT, TR AR VE 23 o AR 11 DRSS T30 2 43 06 20 e 68 1t KU R IR 2, 4R 51 R AR
ZTB, BRI, AR LR E BRI AKT KUK, AR APPSR G0t G ok, Ik SL T AR 7
BFEFR . T BB ThRELL R G IR, EHETAMAE. 49, FFeE, w7 RUIKE & i T 5

Mehran KK VESr T 2004 SFE4EHEH, BB R HTE R AR BN AR A NIGIT 2 S5 H3 1) AKT RS L&
B EBARIRTT #3K, %M 2016 P REITIK 5 2LAMBEGAIE, I 3 SR AE B 52 e R 2 ik 5 1) St e AR 3)
k&7 A AiE 8 30 U A 51 R I B I R B P [31] [32] KA BA B L Bon F A AKT (I E R, AKI
AR MBI TF AR 25%F 0o T8 EZ KT AR 50% A2 [33]. B4k, LIETREFGEBKF RS AKI
KRR, TEEM 2%3) 50%, BEHRBEEN 1%3) 6% [34][35]: Kk, NitRE2 ORI S
SEJUAS AKT RS VR 3 IS B H AN 2 N0 o 5 PF 73 248 EuroSCORE 45T+ 1999 4F & [ERIH £
OFE, 2010 4EAIAERS . LT AL I 4> B 15 (ACEF) B4t 5 T W B8 e () B (3610 % 350 XU (i 411
BRI 2, STS)VFArT 2008 -4 FH 3 [ 1 &1 R} Tt 2 15 40000 P i B 1) s 1204 F T iPAd e A
AREGOHEFARKRE, LA R CORE B TR 37] [38]. fE—TAMBEAEF T H, 196 4 &%
B T OB EAR, B T AR STS AT ACEF 1435 STS ' 35 143 /£ U 2 HAFN 3 3 AKT Jy T %
#Eff . Ak, BRI ACEF PP TERTE AKIL Tl R I 5 STS 5 %235 - 43 AH{BL ) AUROC(ACEF
A1 STS $F4r AUROC %3514 0.758 F1 0.797), {H ACEF ¥F/MXALFE =AM 2. 0. LA 4>
$; Rk, ACEF VPt RIS AE T 78 o 76 55 — T L S et IR 50 ik 57 B R A - AR AKT AR XU A 7Y
(W75, EuroSCORE II. STS 343 Al ACEF V4376 Flill 3 #] AKI J5Hi#R P& Y; Ak, ACEF 34>
TEFN SA-AKI J7 HRBLH A N 251 /7, AUROC 24 0.781 [39].

B 7 A IR A S RS, AR e RT I AL, RO ARAT R 5 R 2R A R O AKT RAE R
Wi, Mathioudakis 255136 [H H X R S, BASBE ML, FEFMRHE S K AKL L 50%
(JLZEL: 1.515 95%CI1.37~1.66), {EXT 2 AKI FHCfE [ R R THIMARE G, BAFBKRE AKL R
W2 18] R BEATARTEAE[40]. 2013 4E, —TEVE T 28k AKI B4 FK meta 2R E, #4E KDIGO Fr
HER) AKT A R A S o 22 5o KRR TH b B XS AN [ R e B A R A B, AKT B K05
N5 A6 A LU BE 51(29.6% 0 24.5%), RS JLRICH EL 5 R (31.5%5%F 14.7%), 76 05 P4 I 8l 4% WP AH Lk
T R(23.7%R 16.7%X%) 14.7%). 1T 7518 LLrg 5 PLAGE K1) AKT & FF 35 51(27.0%%) 22.6%), th4h, 1%
W9 R TE BT i S H 1 GDP >10%5<5%E K, AKL R AR R (25.2%5%F 14.5%) [41].

% 8 B PR AIRATIG 0 AKT RAEZR 52 mg, — et 50 N 57 CL AR o ] 5 fek B (R It 70 30 12 56
WE THATTEOEESY, DLSZEL s TP RS . — M0l T2 ADVANCIS $F45, JH T Fmi B e R 5 ke s 42 32 4 iz
TR KA NG T (PCT) & ) AKT. ADVANCIS P08 \ANIRR S B (RS« BRI PEIRLAE A
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REAE AKL. Tl & CKD. IABP ff FHFICUEIER D), PEoJEEIM 0 3 225 th4h, ADVANCIS ¥
53 =6 SAERTAL T Z RIS IE INAROC[42] 0 BR 17 RHAAT IR 5 R 3 AT XU TS B RMAE IR 2 4, B98N RS
W BT A Dbr EIIN— L IAR AKT TPE 5> R G, AR T B 290 VP08 T AR bs S5 B3 16 RS
B2 AIAHRAE . Zhou %58 N JR NGAL MR AGT fE NI R ZR, AL S PE I AR EE 0 32 38 AKT T
PE4r[43].

RECKANE T EFIT 5 RGORAEFEA R BRIE R, HR K2 HHgE A8 K e 2 5 al AKI
TORIASEAY, Ll an RO 3 b 28 Y TR 2 S5 B TEAE FHIE S 2 TR AR AKT L%, oV skt SRk,
MH, —SS9P0 /G045 TRZHEE, WK GRS AE A EY, ZEEENERK L
AR T4, BTEREARKED, —SER A AIIEST 58 RGMIS)H R T XL
RYGE, X LIRS VTG T BT 6698 B 20 20 B B8 i ok B2 G, TR . BRI A A
ZIMTES AN K Z A 225, 3 MIS RS T D123 1 24 mT A 2 {46 P 24 b 5000 2 1 5000 R VP A1
AKIT RS ATE B A IB T 1 75 SRR T e .

4. ETHRFEIEEENT AKI FiEE

BEE MIS Bk, R4t E 3 T ER R G (c-alerts) BB 1T, T8RS, HHE
AT BT R ) T E SR A PR, ATIOI & 5 A7 E IO I R ) AKI [44]. Park SR T —/MA H
HEFHEA G M) AKL B RS, 98 WS VU K NIRRT = 2 20 1.5 580 0.3 mg/dL B, I
PREEAETT DA B RHEE AR R E S B R A . TR, 7EBIN e-alert R, B AERHEA 13
LR R IR 2T ¥ OR, 6.13; 95%CI, 4.80~7.82), /™ EH AKI F{F &% FFIK(H% OR, 0.75; 95%
CI, 0.64~0.89); {HAET:REA ZHFHMHEE HR, 1.07; 95%CI, 0.68~1.68)[45]. %I {E ICU
FHHERH T e-alert £GE, 4 e-alert RGuIHI% MLIE NLUEFHHE HARYE KDIGO FifE e SURHI 2 AT G2 AKI
PRI, IRREE AR s ” 4R REFTEZI L, AKle-alert REIMUBENE . R 208850 HE
HAPES> BN 99.8%. 97.7%- 97.5%K1 98.1%, e-alert 417 AKI 2 Wi 55 R AE ERHS I B0 5 T F e-
alert 20, PIAHLEENT B IHREMKEZ SO0 T I B 28 7 TH & 35 22 5 [46]. 2017 4, — IR GLFRTFH
4518, e-alerts RGEAFFAIET R (L EL[OR], 1.05; 95% CI, 0.84~1.31)WABHKIENTIGIT MR AR
(OR, 1.20;5 95% CI, 0.91~1.57) [47] [48]. 1% meta ZHTHHALE I FTA 7S TU 78 # A F 13 WLETF 28 (AR
N e-alerts [Ffil R R 2, WInTBATIA, (fiE WU AR b BEAS & B 54 I BB A 2 R AR B . B T Il
TEWIEHES AKL ARSI RBRIESS, e-alerts RGUIEF TR HELR 1T T RE 1A B AR e L 28 J LT 7K S5
By WUEFAKCT/NEAS AL 5 B SRS AR AL T B35 1) CKD BB I G EhiR: IR E LIS e-alerts J5 A B
PRALE RIS FEME— DY, N T IEUE e-alerts J5 P2 HEFRUE G FIEIE FIG PRI 2R, S5 T4 H06 . Fohh
IFE R A N AKI $R LR 8 A FIESE, JATT SRS B SCRRIEM . fEfa B A+, 175 KDIGO fi
FAVEAN UL R R B L G B EEVE 25 M I v LR K A I ) 2 L KRS R KR, AKT R
AERTEEEES R K. Y e-alert RAGPHALS, MPEERL, MNEFRBEEAR, #7 AKL I
PRSWT, e Ia T ARG 58, TR S HERHE AR d I, T AR 7 BEBe R34 AKT A1 AKI #<
FET R UL B AR BE R B [49] [50]. MLEs Sk FR R E R A FERELWE . 3K A EMR ik FE Al
SERRITHRAE(E, FEEATY R THLER MM B, A5 &MPLESY I 5k — N, Rl
JE R 45

WLA8 27 > S A5 L K R 50 a A 38 0 RIS =R BE 70, 7E AKT TRk R B HE R 2 A 38 . R4
R IEBRAN R RAREE, AP AR Gb A% 2 2] R AR FE 5 o S KK [51] [52].

RGN ARSI SE, BENLRMRRILECN R . 75— & 671 FlLOMEFAREZHWTI A+, BEYAR
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FRBERIAE SA-AKT Tl K43 T 0.839 HI AUC ., 4ERBI(RF + XGBoost)] AUC #f— - TH 2 0.843
[53]. XGBoost Hi%EAEZ T It Ros L R rERE, TEARMIMEI R bk 5% B B AR 5 AKT il
AUC i5#) 0.87, FEMGERIEHBH AKI T tF AUC N 0.817, BEL TG RSE[54] [55]. CEFAENL
FNYR R S5 55 AR VE R AR B, (R BT I mT AR, CENG R AT — e (A

TRFES: ) BOEAE AKT O A R H 2632, e ol S A1 B 4 42 I 26 (RININ) 72 A 22 B 1] 5 51 45030 07 T
BAPFFR S . — T 15,564 5155 HHF 7R, RNN HERLEORIANEAR G AKT T 375 T 0.893
) AUC i, fE5&KFE MIGKREITME XL, RNN 80T EIHB(AUC 0.901 vs 0.745, p <
0.001) [56]. EFFIZEMIL(CNN)IE ICU B 48 /M AKL P -F LRI R 47, AUC 1A% 0.86 [57].
DeepAKI %5 7K FE AT fRRE M 28 R A, dE— D B 1 IR FE 5 SIS R )G PR sz FH [ 58]

AT AN S LN EBER A — SEGMNESTUNARRE, SV IR R0 &/
T AKT RS PPAs,  XF Rk 48 /NI AR AL RS AKT BT AUC R 0.82, X 2 2R a5 /™ 5 AKI f T
AUC 1% 0.95, 1E 89%I115 {51 - RELE Il ARG DU H 500 AKT & AE[59] 0 XA Sk RURS: 74k 5E 0 Al R - 481
TP AL T 5 B (RS R 5 .

EEAMIF R G, SEEABRMENLI %] AKTD F e 5 5 R, o 7 3L A XS B . Google
DeepMind 1A A& (1) AKT Pl %S B 7 5% [ 38 A1 45 N 3855 30 B0 400 A R BLAL 7, AH R = 30 57 1) AR 3 56
HE[60]. ff 22 FF K[ AKIpredictor 7E i B 1 I PREGUE A 3R B0 R 4F, 55 B2 U 03000 14 B8 AH 224 (E AR o i o A
[61].

2016 4, Thottakkara [P\ KF S e A AL FVE TR ERAE AKL, FN 1 AUC {HI£TF R 0.744 [62].
2017 4£, Cheng % N\KH FEHL AR (Random Forest, RF)i#47 AKI Fiill, AUC f&} 0.765 [63]. 2018 4E,
Lee 1 B\E FIAHS FE B TH By Tl 0 I TR J5 AKL, AUC {8 B32TF, 15 0.78 [64]. [F4E, Mohamadlou %5
[651d ] RF AR FI AKI, B 7051 AUC 16(0.84), Sikfratogit. REalEEoEr 2, Koyner H
PATE 2018 4F @ik of P 3G s AL V5 Tl 2 A 45495 , 78 24h YT AKT 1) AUC {E°4 0.90, 48 /NP AUC
EN 0.87, G F TS e A T AR [66]. SR, FB-0F 7 A A HE L, IX7E— e FERE BRI T
LT (P05 3 P AP BT, RO AR 75 2 A ¥ L [v)

AR, ML ) IETE ICU B3 AKI Tl AU fs T W33 g . Chiofolo %5(2019) [67]% 5K H
RF SLyEMJEE T IES AKT KSR A7, H ROC IA %] 0.88, {HiZWF 7R T ICU B # B . Zhang £
(2019) [68]MIFIFH XGBoost BN/ PR AKIT 83 B4 &8 I SPEEAT BN, B T AUROC fHERIAL 7
(0.860). FKIHZ(2019) [69°KF LightGBM HiL T ICU B # AKI KU, AR FIHER R =k 0.89, bt
WAE(2020) [ 7013 F A Wbs EVRHE , 18 FH U S0 B0V T FE I AKT, DR EFEIA 3 86.0%. He %5(2019)
(71738 LL e 5 P RINLES 2 2] i A T AR A, 45 BB R 2L (1) AUROC {E/ T 0.720 £ 0.764 2
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