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摘  要 

终末期肾病全球负担日益加重，血液透析患者预后异质性强，亟需精准预测模型以指导临床决策。本文

系统梳理了血液透析预后预测模型的研究进展，涵盖传统回归模型、机器学习与动态预测、新型生物标

志物及特化模型四大方向。研究发现，模型构建正从依赖传统指标向整合多维度数据与智能算法演进，

显著提升了预测性能。然而，当前研究仍面临血管通路“风险悖论”、模型可解释性不足、外部验证性

能衰减等争议与局限。未来应致力于融合因果推断与可解释AI技术，构建动态、可临床整合的下一代预

测系统，推动预后管理向个体化、精准化发展。 
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Abstract 
The global burden of end-stage renal disease is increasingly heavy, and the prognosis of hemodialysis 
patients is highly heterogeneous, creating an urgent need for accurate prediction models to guide clin-
ical decision-making. This article systematically reviews the research progress in prognostic pre-
diction models for hemodialysis, covering four main directions: traditional regression models, ma-
chine learning and dynamic prediction, novel biomarkers, and specialized models. The study finds 
that model development is evolving from reliance on traditional indicators towards the integration of 
multi-dimensional data and intelligent algorithms, which has significantly improved predictive per-
formance. However, current research still faces controversies and limitations, such as the “risk para-
dox” of vascular access, insufficient model interpretability, and performance decay in external valida-
tion. Future efforts should be dedicated to integrating causal inference and explainable AI technolo-
gies to build the next generation of dynamic, clinically integrated prediction systems, thereby advanc-
ing prognosis management towards individuation and precision. 
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1. 引言 

1.1. 研究背景与临床意义 

终末期肾病(end-stage renal disease, ESRD)的全球疾病负担持续增长，其发病率和死亡率在过去三十

年显著上升[1]。据流行病学研究，全球 ESRD 患者数量已突破 750 万，其中血液透析作为主要的肾脏替

代治疗方式，承载着超过 70%的治疗需求。然而，维持性血液透析(Maintenance Hemodialysis, MHD)患者

的生存率仍不容乐观，其年死亡率高达普通人群的 10 倍以上[2]。以中国为例，基于中国国家肾脏数据系

统(Chinese National Renal Data System, CNRDS)区域数据显示透析后 1~2 年为死亡高峰，同龄普通人群中

HD 患者的死亡率为 6.1~7.8 倍[3]，凸显临床风险管理的迫切性。这一现象与患者的高度异质性密切相关

——并发症、感染及营养状态血管通路类型、等因素交织作用，导致传统经验式预后评估的准确性不足。

随着精准医疗理念的深化，构建个体化死亡风险预测模型已成为优化临床决策、分配医疗资源及改善患

者生存质量的核心课题。 

1.2. 综述目的与范围 

本综述旨在系统梳理血液透析患者预后预测模型领域的研究现状，通过归纳整合现有文献，描绘出

该领域的方法学演进脉络与核心研究主题。当前，该领域已呈现出从依赖传统临床指标的统计模型，向

融入机器学习算法、探索新型生物标志物及聚焦特殊人群的特化模型发展的多元化格局[4] [5]。然而，这

种繁荣背后也隐藏着研究方法、结论与临床适用性上的显著分歧。因此，本综述不仅致力于呈现各研究

流派的典型特征与核心发现，更将深入辨析其间的争议与局限性。 
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具体而言，本综述将首先系统梳理血液透析预后预测模型的研究主题与方法学演进。通过对现有文

献的归纳[6]-[9]，我们将识别并界定出几个核心的研究流派，包括但不限于：基于传统临床指标与回归模

型的奠基性研究、利用机器学习与动态预测的方法学革新、探索新型生物标志物与机制导向的模型深化，

以及面向特殊人群与风险机制的特化模型构建。我们将追溯这些流派的发展轨迹，比较其在模型构建策

略、变量选择及预测性能上的异同。 
在此基础上，本综述将进一步辨析不同研究流派的核心发现、争议与局限性，并指明未来研究方向。

我们将重点剖析几个关键争议点：例如，关于血管通路预测价值的“悖论”，多数研究将其视为强保护

因子[5] [10]，而部分研究却显示出矛盾的结果[11]，这揭示了混淆偏倚对模型构建的深刻影响；再如，机

器学习模型与传统模型在性能与解释性上的权衡，虽有研究证明 XGBoost (Extreme Gradient Boosting)、
RNN (Recurrent Neural Network)等模型性能卓越[4] [12]，但其“黑箱”特性及外部验证时性能衰减的风险

为其临床转化蒙上阴影[13] [14]。此外，诸如特定风险因子的“方向性矛盾”(如血脂的“反向流行病学”)
以及模型普遍存在的校准不足问题也都是本综述将要批判性审视的核心议题[15] [16]。 

最终，通过上述系统性的梳理与辨析，本综述期望能超越对单一模型性能的简单罗列，深刻揭示当

前研究在方法论严谨性、临床解释性与生物学机制融合方面的普遍缺陷，从而为未来研究指明向着可解

释、动态化、具因果推断能力且易于临床整合的下一代预测模型发展的清晰路径。 

2. 血液透析预后预测模型的核心研究主题 

2.1. 传统临床指标与回归模型研究 

在血液透析患者预后预测模型的发展历程中，基于传统临床指标与回归模型的研究构成了该领域的

重要基础。这类研究以开发临床实用、易于解释的风险评估工具为核心目标，其方法论成熟，结论具有

高度共识，为后续研究奠定了坚实的理论基础和方法学框架。 
在研究焦点方面，此类研究致力于利用易获取的临床与人口学变量构建简易、可解释的风险评分工

具。Wongmahisorn 等(2019)的研究仅纳入年龄、糖尿病史和中心静脉导管置入史三项基础指标，便成功

开发出预测动静脉内瘘 5 年通畅率的简易评分系统[6]。类似地，Okada 等(2024)为老年血液透析患者构建

的首年死亡风险预测模型，完全基于年龄、体重指数、合并症等常规临床指标，体现了极强的临床适用

性[7]。 
在方法学层面，此类研究主要采用 Cox 比例风险模型和 Logistic 回归作为核心建模方法，并常通过

列线图实现结果可视化。Zhang 等(2022)利用 Logistic 回归开发的 5 年心血管事件预测模型，通过将回归

系数转化为简易评分系统，显著提升了临床可用性[17]。Yang 等(2023)则运用 Cox 模型构建长期死亡风

险预测工具，并通过双列线图实现个体化风险评估，为临床决策提供了直观参考[15]。 
经过大量研究的反复验证，该领域已确立了一组高度一致的核心预测因子。年龄、营养状况(血清白

蛋白)、炎症状态(C 反应蛋白)和血管通路类型(Arteriovenous Fistula, AVF)被普遍证实为最强的预后预测

指标。Okada 等(2024)的模型中，高龄、低白蛋白和缺乏 AVF 被赋予最高权重，而 Sheng 等(2020)的机器

学习研究也验证了这些传统指标的稳健预测价值[5] [7]。 
然而，此类研究存在明显的方法论的局限性。传统回归模型的线性假设可能无法充分捕捉预测因子

与结局之间的复杂关系，而普遍采用的单中心回顾性设计容易引入选择偏倚。近年研究中出现的 AVF“风

险悖论”正反映了此类研究在控制混杂因素方面的不足[11]。这些局限性提示我们，在应用这些模型时需

要保持审慎态度，并通过更严谨的研究设计进一步验证其效能。 
未来研究应当致力于通过多中心前瞻性设计，在保持模型简易性和可解释性的同时，进一步提升其

预测准确性和临床适用性。 
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2.2. 机器学习与动态预测模型 

随着数据科学的快速发展，血液透析预后预测领域出现了重要的方法学革新，形成了以机器学习和

动态预测为核心的新研究范式。这一研究方向突破了传统模型的局限，通过运用先进算法处理复杂的临

床数据特征，显著提升了预测性能，并推动风险评估从静态向动态发展。 
在研究焦点方面，新一代预测模型致力于处理高维特征和时序数据。Rankin 等(2022)的研究展示了

XGBoost 算法处理 188 项临床特征的能力，成功构建了 90 天死亡风险预测模型(C-statistic = 0.826) [4]。
与此同时，Noh 等(2024)创新性地将循环神经网络与自编码器结合，有效整合了透析充分性等指标的时序

变化特征，将首年死亡率预测的 AUC (Area Under Curve)提升至 0.8357，标志着预测方法从静态评估向动

态监测的重要转变[12]。 
在方法论层面，该领域呈现出多样化的技术路线。以 XGBoost 和随机森林为代表的树模型在处理结

构化数据方面表现优异，研究表明，通过比较 11 种算法证实了 XGBoost 的优越性能(AUC 0.85) [5]。此

外，对于更复杂的时序数据，深度学习模型展现出独特优势，可利用 LSTM 自编码器分析连续透析数据，

为实时风险监测提供了新的技术路径[18]。 
大量研究证实了机器学习模型的性能优势。临床研究发现随机森林在预测 2 年死亡风险时(AUC 0.72)

显著优于逻辑回归(AUC 0.69)，且随着预测时间延长，其捕捉非线性关系的能力更加突出[19]。相关研究

进一步验证了这一结论，随机森林模型在 1 年死亡率预测中达到 0.806 的 AUC 值[20]。 
然而，该方向仍面临重要挑战。机器学习模型的“黑箱”特性严重影响了临床可解释性，而外部验

证中的性能衰减问题更令人担忧。Park 等(2025)的 KSGN (Korean Society of Geriatric Nephrology)评分在

验证队列中 AUC 从 0.707 降至 0.513，Wu 等(2024)的模型 5 年 C-index 从 0.846 降至 0.741，这些现象暴

露出模型可能过度拟合训练数据的问题[13] [14]。 
综上所述，机器学习与动态预测代表了血液透析预后预测领域的重要进展，但其临床转化仍需要在

可解释性和泛化能力方面取得突破。未来研究应当致力于在保持预测性能的同时，开发更具透明度和稳

健性的模型，以促进其在临床实践中的广泛应用。 

2.3. 新型生物标志物与机制导向模型 

在血液透析预后预测研究中，一个重要分支正致力于超越传统临床指标，通过探索新型生物标志物

来深化模型的病理生理学基础。这一方向不再满足于统计关联的发现，而是力求从更深层次揭示预后相

关的生物学机制，推动预测模型向机制导向转变。 
该领域的研究焦点已显著超越常规指标，转向从影像学、心功能及复合指数中挖掘新型预测因子。

一项研究通过 CT 影像学分析发现椎旁肌密度(Paraspinous Muscle Density, PSMD)这一肌肉质量指标具有

重要预测价值[8]。另有研究指出，通过波强度分析验证了心脏收缩功能指标 S-D 比值(SDR)的预后意义，

为无创心功能评估提供了新视角[21]。 
目前涌现的新型标志物主要涵盖三个层面：在机体构成方面，PSMD 反映了肌肉质量状态；在器官

功能层面，SDR 提供了超越传统指标的心功能评估方法；在系统状态层面，研究者开发了多种复合指标。

在多项研究探索中，出现了整合炎症–营养–免疫状态的复合指标，如 CALLY 指数；相比之下，也有研

究专注于反映特定病理生理机制的单一生物标志物，例如表征细胞应激水平的生长分化因子 15 (GDF15) 
[22] [23]。 

这些新型标志物的核心价值在于能为传统模型提供独立的预后增量信息。研究证实，在基线模型中

加入 PSMD 可显著提升预测效能(NRI = 0.516)，其性能优于传统营养指标[8]。这表明新型指标能够捕捉

传统模型忽略的重要生物学维度。 

https://doi.org/10.12677/acm.2026.161139


刘浩东 等 
 

 

DOI: 10.12677/acm.2026.161139 1068 临床医学进展 
 

然而，该研究方向面临显著的临床转化挑战。检测成本与普及性是首要障碍，CT 测量 PSMD、动态

监测 SDR 等方法在基层医疗机构难以推广[22]。其次，许多新型指标特别是复合指数的生物学机制与最

佳截断值尚未明确，如 CALLY 指数中“CRP × 10”的构造缺乏充分生物学解释。 
未来研究需要在降低成本、标准化测量、阐明机制及多中心验证等方面取得突破，才能推动这些有

潜力的生物标志物从研究发现走向临床实践，最终实现预测模型从统计驱动向机制驱动的本质转变。 

2.4. 特殊人群与风险机制的特化模型 

随着精准医疗理念的深入，血液透析预后预测研究呈现出显著的精细化趋势，形成了面向特殊人群

与特定病理机制的特化模型构建方向。该领域的研究重点从开发普适性预测工具，转向为具有独特临床

特征或病理生理机制的亚组患者构建专用模型，旨在实现风险管理的精准化和个体化。 
该领域的研究焦点集中于针对特定临床亚组或独特病理状态开发专用预测模型。研究者认识到，通

用模型可能无法准确捕捉特殊人群的独特风险特征。例如，Xian 等(2025)专门针对 HIV (Human Immuno-
deficiency Virus)/AIDS (Acquired Immunodeficiency Syndrome)合并维持性血液透析患者开发预测模型，创

新性地整合了 HIV 特异性指标(如病毒载量)与透析通用指标[9]。另一方面，Tian 等(2025)从病理机制出

发，提出营养不良–炎症–液体超负荷综合征(Malnutrition-Inflammation-Fluid Overload Complex Syndrome, 
MIFCS)概念，并构建了能捕捉三者协同效应的预后模型，发现同时存在这三项异常的患者死亡风险高达

单因素患者的 8.9 倍[24]。 
在方法学上，此类研究采用了更具针对性的建模策略以应对特殊人群的复杂临床特征。为处理竞争

风险事件，有一项研究在预测心力衰竭住院与全因死亡的复合终点时采用了 Fine-Gray 竞争风险模型[25]。
同时，亚组分析成为识别特异性风险因子的关键手段，另有研究专注于中青年血液透析患者开发预测模

型，发现了该人群独特的风险因子谱，包括血小板/白蛋白比值和血清镁水平等[26]。 
这些特化模型的核心价值在于能够揭示通用模型无法提供的深层临床洞察。研究表明，营养不良、

炎症和液体超负荷的“三联征”具有显著的协同效应，强烈提示需要采取综合干预策略[24]。同样，另有

研究发现，在 HIV 感染者中，病毒载量是远超常规因子的最强预测因子，为该人群的靶向治疗提供了关

键依据[9]。 
然而，特化模型的开发面临显著的方法学挑战。由于聚焦于特定亚组，研究样本量通常有限，如 Xian

等(2025)和 Sun 等(2025)的研究分别仅纳入 166 例和 127 例患者[9] [26]。小样本量不仅限制统计效能，还

显著增加过拟合风险，并影响模型的泛化能力。此外，在探索亚组特异性风险因子时，多重比较问题可

能增加假阳性发现的风险。 
未来研究需要通过多中心协作扩大样本量，并采用更严格的统计验证流程，在保持模型“特异性”

优势的同时，确保其稳健性与临床适用性。如何在模型特异性与普适性之间寻求最佳平衡，将是该领域

持续探索的重要课题。 
对特殊人群与风险机制的特化探索，展现了预测模型为实现个体化医疗所做出的努力。然而，无论

模型的构建对象是普通人群还是特定亚组，其最终的科学价值与临床生命力，都取决于其方法学的严谨

性与结果的可解释性。正是在这一点上，当前整个研究领域陷入了几项关键的争议之中。这些争议超越

了单一模型或特定流派的局限，揭示了在观察性数据中构建预测模型时普遍存在的因果推断困境与性能

–效用张力。 

3. 核心争议与方法学局限 

随着血液透析预后预测模型研究的深入与发展，该领域在取得显著成果的同时，也暴露出若干核心
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争议与方法论挑战，这些问题的解决对模型的临床转化与广泛应用至关重要。 

3.1. 血管通路(AVF)的“风险悖论”：混淆偏倚与因果推断困境 

尽管绝大多数研究将自体动静脉内瘘(AVF)确立为改善预后的强保护性因素，但观察性研究中存在

的严重混淆偏倚可能导致其与死亡风险出现统计学上的反常关联，形成了所谓的“风险悖论”。这一矛

盾深刻揭示了基于观察性数据构建预测模型在因果推断上的固有局限性。Ouyang 等(2021)的研究是该悖

论的典型代表，其开发的预测模型中，AVF 的使用竟与死亡风险升高显著相关(HR = 1.825) [11]。这一有

悖于临床共识与病理生理机制的发现，极有可能反映了适应症混淆——即病情最危重的患者因无法等待

AVF 成熟而被迫使用临时导管，导致在统计模型中“AVF”与“重症”形成虚假关联。此争议警示我们，

预测模型中的统计关联未必等同于因果关系，在解读如血管通路类型等易受临床决策偏倚影响的变量时，

需要保持高度谨慎并进行充分的敏感性分析。 

3.2. 模型性能与临床解释性的权衡 

在追求更高预测精度的进程中，机器学习模型与传统模型之间形成了显著的性能–解释性张力，其

“黑箱”特性及潜在的校准问题成为阻碍临床采纳的主要障碍。研究表明，随机森林、XGBoost 等复杂

算法在区分度上确实常优于传统逻辑回归[19]。然而，这种性能优势的代价是模型决策过程的不透明性，

使得临床医生难以理解和信任其预测结果。更为关键的是，优异的区分度并不等同于准确的绝对风险预

测。相关研究的外部验证研究清晰地展示了这一风险：即使模型的区分度尚可接受(C-statistic = 0.72)，其

预测风险也可能系统性地高估实际死亡率(18 个月时高估 12.9%) [16]。另有研究进一步指出，复杂模型在

长期预测中的性能可能随时间衰减，这些因素共同削弱了机器学习模型在指导个体化临床决策时的可靠

性[27]。 
在追求更高预测精度的进程中，机器学习模型与传统模型之间形成了显著的性能–解释性张力，其

“黑箱”特性及普遍存在的校准问题成为阻碍临床采纳的主要障碍。研究表明，随机森林、XGBoost 等

复杂算法在区分度上确实常优于传统逻辑回归[19]。然而，这种性能优势的代价是模型决策过程的不透明

性，使得临床医生难以理解和信任其预测结果。 
更为关键的是，优异的区分度并不等同于准确的绝对风险预测，而校准度(calibration)正是衡量预测

概率与实际观察概率一致性的核心指标。现有研究对校准度的评估方法尚不统一，常用手段包括 Hosmer-
Lemeshow 检验(H-L 检验)和绘制校准曲线(calibration plot)。H-L 检验提供统计学上的拟合优度判断，而

校准曲线则直观展示预测风险与实际风险在各个十分位或概率区间的匹配程度。 
当前研究普遍揭示出机器学习模型在校准方面的挑战。尽管部分研究在开发队列中报告了良好的校

准表现，但其在校准上的脆弱性在外部队列验证中尤为突出。例如，一项外部验证研究清晰地展示了这

一风险：即使模型的区分度尚可接受(C-statistic = 0.72)，其预测风险也可能系统性地高估实际死亡率(18
个月时高估 12.9%) [16]。另有研究进一步指出，复杂模型在长期预测中的性能可能随时间衰减，这些因

素共同削弱了机器学习模型在指导个体化临床决策时的可靠性[27]。 

3.3. 特定风险因子的“方向性矛盾” 

血液透析人群中普遍存在的“反向流行病学”现象及部分药物效应的矛盾发现，对预测模型的生物

学合理性与外部普适性构成了严峻挑战。传统的心血管风险因素在该特殊人群中出现了关联方向的逆转，

成为最引人瞩目的争议点。例如，Yang 等(2023)发现低甘油三酯水平与较低的死亡风险相关，而低血清

尿酸在 Zhang 等(2022)的研究中却被确定为风险因素[15] [17]。这些看似矛盾的关联可能反映了终末期肾

病特有的疾病消耗状态与预后之间的复杂关系，但严重挑战了模型的直观临床解释。同样，药物效应的
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解读也充满陷阱，研究报道，ACEi (Angiotensin Converting Enzyme Inhibitor)/ARB (Angiotensin Receptor 
Blocker)使用与死亡风险升高的反常关联(HR = 1.741)，很可能源于处方偏倚——即临床医生更倾向于给

基础风险更高的患者处方这些药物[28]。这些“矛盾”警示我们，预测模型若不能妥善处理混杂和选择偏

倚，其输出的“风险因子”可能严重误导临床决策。 
这些争议共同指向了该研究领域面临的根本性方法论挑战：如何在不牺牲临床可解释性的前提下提

升预测性能，以及如何在观察性研究中建立更有说服力的因果推断框架。 未来研究需要在模型透明度、

校准精度和因果推理方面取得突破性进展，才能使预测模型真正成为临床医生信赖的决策支持工具。 

4. 研究空白与未来方向 

基于对当前研究的系统梳理，本领域在方法学、动态预测与临床功能上仍存在关键局限。这些空白

指明了未来研究的核心路径，即推动模型向更具因果解释力、动态连续且直接支持临床决策的方向演进。 

4.1. 从静态关联到动态因果：模型方法学的根本性革新 

当前模型普遍“重区分、轻校准”，且严重缺乏因果推断视角。多数研究过度依赖区分度指标(如 AUC)，
忽视了预测风险与实际风险的一致性(校准度)。近年相关研究的外部验证表明，即使模型区分度尚可，仍

可能系统性地高估或低估死亡风险，直接导致临床决策失误[16]。更深层的问题在于，现有模型完全建立

在统计相关性之上，无法回答“若提升患者血清白蛋白，其死亡风险将如何变化”这类对干预决策至关

重要的反事实问题。 
因此，未来模型开发的核心突破点在于引入因果推断框架与可解释性人工智能。单纯追求预测性能

的时代已经过去，下一代模型必须致力于揭示变量与结局之间的可信关联。可解释性 AI 技术(如 SHapley 
Additive explanation (SHAP)、Local Interpretable Model-agnostic Explanations (LIME))能打开机器学习模型

的“黑箱”，为临床医生提供直观的决策依据。同时，积极探索因果机器学习方法(如双重稳健估计、工

具变量法)，将有助于开发出具备部分因果解释能力的模型，从而更可靠地识别干预靶点，实现从“预测

风险”到“指导干预”的跨越。 
这些方法通过量化每个预测特征对特定患者预测结果的贡献度，实现透明化解释。例如，一项研究

基于国际 MONDO 数据库构建的血液透析患者 3 年死亡风险预测模型中，SHAP 分析被系统用于解释

XGBoost 模型的预测逻辑[29]。该研究不仅展示了特征的整体重要性排序(如年龄、白蛋白、血细胞比容

HCT 等)，更通过 SHAP 依赖图揭示了关键临床指标之间的复杂交互作用。具体而言，对于一个被模型判

定为高风险的患者，SHAP 值可以量化显示：较低的血清白蛋白水平与较低的血细胞比容(HCT)共同作用，

对该患者的高风险预测贡献了最大的正向权重。部分依赖图进一步直观显示，同时存在“低白蛋白”与

“低 HCT”的个体(对应图中左上深红色区域)具有最高的死亡风险。这提示临床医生，该患者的风险驱

动因素可能根植于营养不良–炎症–贫血的协同病理生理轴，而不仅仅是单一指标的异常。 
这种解释方式直接架起了模型输出与临床干预之间的桥梁。医生不再面对一个抽象的高风险分数，

而是获得了明确的、可干预的靶点线索：需要优先评估并干预该患者的营养状态(如饮食支持、纠正低白

蛋白)和贫血管理(如检查铁储备、优化促红素治疗)。因此，可解释性技术通过将算法预测“翻译”为熟

悉的临床语言和病理机制，显著增强了医生对模型的信任，并支持制定更具针对性的个体化管理方案，

从而实现从“预测风险”到“指导干预”的闭环。 

4.2. 从单点快照到连续轨迹：动态预测系统的构建 

绝大多数现有模型是基于基线数据的“静态快照”，无法捕捉患者临床状态随时间的动态演变。尽

管有研究尝试整合时序数据，但如何有效提取并利用如营养指标下降趋势、体液负荷波动模式等纵向轨
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迹特征，仍是当前的一大空白[12] [18]。此外，研究对象多集中于稳定透析患者，而对“是否开始透析”

及“透析后前 90 天”这一最高危过渡期的预测支持极为薄弱，无法满足这一关键决策节点的临床需求

[30]。 
针对上述局限，未来研究的技术必然趋势是构建融合多模态时序数据的动态预测系统。这要求方法

学从传统的 Cox 模型转向联合模型、Landmarking 分析或深度学习时序模型(如 Long Short-Term Memory 
(LSTM)、Transformer)，以综合利用纵向电子病历、连续生命体征甚至可穿戴设备数据，实现对风险的实

时更新与早期预警。此类系统将从根本上改变预后预测的范式，使其从一次性的风险评估，转变为贯穿

诊疗全过程的连续监控与管理工具。 

4.3. 从通用预警到精准决策支持：模型临床功能的拓展 

预测模型的终极价值在于改善患者结局，然而当前模型的功能仍停留在风险预警阶段。其“黑箱”

特性让临床医生难以理解和信任，而通用模型在面对特殊人群时也往往表现不佳。模型的潜力远未被完

全发掘，尚未与个性化的治疗干预形成有效闭环。 
未来的发展方向是让模型功能从单纯的预警向个性化干预推荐与效果模拟拓展。下一代模型应深度

嵌入临床决策支持系统，能够基于个体的风险预测结果，推荐具体的干预措施(如最佳干体重设定方案、

营养支持策略)，并模拟不同干预选择可能带来的风险变化轨迹。这将使预测模型真正成为临床医生在“风

险评估–决策支持–效果预估”全流程中的智能伙伴，最终实现对终末期肾病患者精准化管理的关键飞

跃[31]。 

4.4. 从技术验证到临床转化：监管与伦理框架的构建 

实现预测模型真正的临床转化，必须跨越严峻的非技术性障碍，其核心在于应对监管审批与伦理问

题的双重挑战。 
在监管层面，用于预后预测的 AI 模型通常被界定为医疗器械软件，其开发、验证与部署需符合美国

FDA、中国 NMPA 等监管机构的严格要求。未来研究不能仅停留在方法学创新，而必须前瞻性地设计符

合监管科学的验证路径，包括多中心前瞻性临床试验和上市后性能监测体系，这是模型从“研究原型”

转化为“临床可用工具”的法律与技术前提。 
在伦理与社会责任层面，三大问题待系统解决：首先是算法公平性，需确保模型在不同性别、年龄、

种族及医疗资源可及性群体中性能一致，避免因数据偏见加剧健康不平等；其次是临床责任归属，当预

测出现偏差或影响决策时，需明确开发者、临床使用者及机构之间的权责界限；最后是数据隐私与安全，

必须在合规框架下实现患者数据的有效利用与严格保护。 
因此，未来研究应确立“责任性创新”的理念，在技术开发早期即同步构建技术–监管–伦理协同

的治理框架。唯有通过这种系统性努力，下一代预测模型才能安全、公平、可信地整合进临床工作流，

最终实现从预测性能到患者实际获益的根本转化。 

5. 结论 

本综述系统梳理了血液透析患者预后预测模型的研究现状，揭示了该领域清晰的演进脉络与发展方

向。现有研究呈现出从传统统计模型向智能机器学习、从通用预测工具向精准特化模型发展的明显趋势，

形成了传统临床模型、机器学习与动态预测、新型生物标志物探索及特殊人群模型四大研究主题并存的

格局。这一演进过程不仅体现了研究方法论的持续革新，更反映了临床实践对风险分层精细化和决策支

持个性化的迫切需求。 
然而，当前研究仍面临诸多挑战。血管通路的“风险悖论”揭示了观察性研究中难以避免的混淆偏
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倚；机器学习模型的“黑箱”特性与其在外部验证中的性能衰减，凸显了模型可解释性与泛化能力之间

的张力；而“反向流行病学”等现象则对预测因子的生物学合理性提出了质疑。这些争议共同指向了一

个核心问题：如何在提升预测性能的同时，确保模型的临床可靠性、可解释性与实用性。 
未来研究的突破性进展将有赖于方法学严谨性、临床解释性与生物学机制三个维度的深度融合。 这

意味着：在方法学上，需超越对区分度的单一追求，重视模型校准与因果推断；在临床应用中，需通过

可解释 AI 技术增强模型透明度，建立临床医生的信任；在理论基础上，需深入探索预测因子背后的病理

生理机制，使模型构建于更坚实的生物学原理之上。唯有通过这种跨学科的整合，血液透析预后预测模

型才能实现从优秀的科研工具向临床决策核心组件的根本性转变，最终为改善患者预后提供切实有效的

支持。 
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