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Abstract

Objective: This study aimed to construct radiomics models, deep learning models, and integrated
radiomics-deep learning models based on multiparametric MRI, and to evaluate the performance
of different models in predicting high-risk multiple myeloma. Methods: This study retrospectively
collected 140 patients in the Affiliated Hospital of Qingdao University from May 2014 and March
2025, including 258 vertebral lesions, all patients were pathologically confirmed multiple myeloma.
The lesions were randomly divided into training (n = 206) and validation (n = 52) sets at an 8:2
ratio. Based on conventional MRI sequence, including sagittal T1-weighted imaging(T1WI), T2-
weighted imaging (T2WI), and fat-suppressedT2-weighted imaging (FS-T2WI). The ROI was manu-
ally segmented on the largest lesion-involved vertebral body using ITK-SNAP software. Radiomics
features were manually extracted, while a 2.5D DenseNet169 deep learning model was employed
to automatically extract deep learning features. Separate radiomics and deep learning models were
constructed, followed by an integrated radiomics-deep learning model developed by combining se-
lected features through multivariate logistic regression. The predictive efficiency of the radiomics,
deep learning, and integrated models was evaluated using receiver operating characteristic curves
(ROC), area under the curve (AUC), sensitivity, specificity, and accuracy. Decision curve analysis
(DCA) was applied to compare the net benefits of the three models across different decision thresh-
olds. Results: A combined radiomics-deep learning model was constructed using four radiomic fea-
tures and one deep learning feature. The AUC values of the combined radiomics-deep learning
model (training set: 0.996; validation set: 0.893) were higher than those of the radiomics model and
the deep learning model. Decision curve analysis results demonstrated that the combined radi-
omics-deep learning model has better clinical applicability in predicting high-risk multiple myelo-
macon. Conclusion: The integrated radiomics-deep learning model demonstrated superior perfor-
mance in predicting high-risk multiple myeloma compared to the other two models, suggesting its
potential for guiding clinical treatment strategies.
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1. 5|18

% R B 598 (Multiple Myeloma, MM) & — M 40 M S PR M TE M0, HUARRAIE =2 7= A i 5 (1Y) P T o 4
PERREE A, 2005 MR ARG BPEIR 1 10% [1] [2]. I ARFRIVELFE o N B AR 3G 22 1M DA K bl i o 1
PRSI E R WEEE IS [3]. R, B MM KAITEUE T B R, RTbs e 2 R MR
(Standard-Risk Multiple Myeloma, SRMM)HI = & 2 & 1 & ##78 ((High-Risk Multiple Myeloma, HRMM)) &
T AT AE W 2 2 5 [4]-[6]
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HAT, MM &R 2 3 ZAKHE 40 Mg AL 2 R B AR R AR FR[6]. AHRBEFTHE t (4 14)s t(14;16). t(14;
20). del 17p. 1q21 Zetafhd el p53 FRALH € A MM (& fa i iilid 4% 2 (High risk cytogenetics abnormalities,
HRCAs)IRF, M E RN 5 A HRCAs I, € X “RETHE” B8R WARAAE = UL R,
WAy “=4T8 7 AR, XREHFWEEEEZ[7]). HRMM IR 320 s LRI ARG . =2 401
HAETEE. FEuE. RESMEARSE8]. HET, HiE HRMM & ] S 7154 N ah fu st 4% 2 A (4]

BT CT MRI BURSEELHE B2 e R 1) REFH RANOE 2 70t B RHE SR, 0B IR okl 82
FIH AT BEAZE T S e (s B . BEIE, R4 MM R AR Z MW, il MM 15 -
MM B 1 B A T8 1R 4 0 S or MM IR IROSEIRTIGINE2] [9] [10], FHA MW FTUER 1 sS4 20 4 Tt
HRCAs [ & Rl R a5 R AT AT [ 11] [12].

TR FE 2 S REHR DLUR JZ A 28 X 28 AR JEA L8 5 ) o o 2.5D AR A T4% 48 2D BRUAT 3D A
RUPR P 5 2] 2 (M IR A 46 A3 M i, JEIE Z A 2D V) dl-&RIa Bl 3D 285 B . 2D AL ALY
2D YIRVE NS, 2R 3D BUE IS 18145 R 2D IR Z 8] R AH G ME[13] . 17 3D RS AR Bt LR 4
Ko MREAREAE 5 MBS E 0 &, I H 3D A S 402 2D B LA, AR - B s T 2D
R 14]. 2.5D MBI P& A B —Fhfr, BERTLAMREE 2D BT REREMRILS, X —eRERE
3D BB EE S

EARB U, ATEE KIEET 2 S48 MRI KR % S REF R AR AR R A L IR
S SRR DA K AR 2 R FE 5 S BRGS0 TN v 6 22 i TR PR A (R ABE Y (1412 T R R kAT T A

2. MN57E
2.1. ARMR

AHIF ST BB AR T T35 58 K IR EE B N 2014 4E 5 H 2 2025 4F 3 HARBEHZH 140 4 2 K
PR RER BT 258 ANANFEIEAL(EIME . A AN EAE ) HEAR MR A& G KR S 2. s 61
HRMM £ J% 79 #i] SRMM B . K ARAETF BRI BEERE EFAC I Z Rk, Bor 85 E s
FEH. KRR, HTE BRE AR AL MRI IR BUGS SIE R BB F 0 %, 4218 8:2 1
Lo, BEHLRI S MRS = 206) MK IESE(n = 52).

AR FH HRMM 825 1 5E = (1) FISH Al 22 /DA77 DL — Fh g0 BEAL 2R : t(45 14) t(14; 16)-
t (14;20) del 17p. 1q21 Jetafky HEaY ps3 RAT; (2) FIEHESMNH AR (Extramedullary Disease, EMD).

2.2. PYNFFHE

(1) BFATENE A MRI K

(2) HF AT MRI K2 RT A AT FAR SR IT 51 R T 75

(3) BEZIRHEM L NEZ RIEE T,

(4) BFHEAT FISH K, R4 AT EER FISH AL 45 2R
2.3. HERRARE

(1) B HEE BR8N HA JR & M A g

(2) L N TEE ) i R R [X 38 (Region of Interest, ROI);

() BgFmEZE, LEAT .

2.4. MRI E{&F£EL
AW A B (n = 140)503%5%2 7 A HEH L MRI K2, A3ESOIRA TIWIL T2WI F1 FS-T2WI =
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MRS, AT MRI H#ACETE: fEE Siemens Magnetom Skyra 3.0T FAILIRAXAIEE Siemens
Prism3.0T BEFLIRAY, FHFHSE WL 1 Fron. 58 S AE (S (Digital imaging and communications in
medicine, DICOM) B4 ¥ F T 32 B2 (G 4 224 E . TEIRBE 22 SIHHIESR IR, BT G 8 5 HR PNG
.

Table 1. Scanning parameters of vertebrae MRI examination sequences

= 1. BHE MRIREZFFABER

JERAL TIWI FERAL T2WI FARAL FS-T2WI
FHAE ok JEAE FME iiogyid JEAE FE i JE
H I8 (ms) 420~650 600~800 400~800 2800~3400 3000~3500 2500~3500 2600~3400 3000~3500 3000~4000

&S5

[F %I ] (ms)  10~20  8~10  10~30  80~100  80~150  100~120 ~ 80~100  40~100  50~110
MEF(mm?) 260 x 260320 x 320 300 x 300 320 x 320 260 x 260 300 x 300 260 x 260 320 x 320 300 x 300
FEFE 224 x 320269 x 384240 x 320 224 x320 269 x 384 288 x 384 224 x 320 269 x 384 384 x 384
JZ & (mm) 4 4 4 4 4 4 4 4 4
JZEi(mm) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

2.5. =4 ROI S EI R #1IG A FFHER

TERBUAR A SRR 2 /T, R “u+30” TR IEARE&EMA#MSH SR EGES, o EIEH®
FERATARHEAG AL B o SR “NAITK” fin B2 1 R AR IE EGCR AR IR o b T A AN 35 ) Ve 51 k2 1)
SRS, DR S R R ERELL . B4 i B 8 4EAI 1S B LA RGUAR S W& 50 (0 5UH )
< Jififf FH ITK-SNAP S F(hAS 3.8.0, http://www.itksnap.org) 2] ilfi 55 48 ROT. $EHUR G 4 24 FFE7E Onekey Al
T- & (https://github.com/OnekeyAl-Platform/onekey) 347 . FFHE 45 MRI % L H#i22 K195 48 ROI $2 B 214
HERHE AT A S 3REL T 1197 A€ SR U SRFIE o 3% B8 528 RFIE 645 2K B A B R AiE(n = 182)
IR S A FEBERFAE(n = 312)s — Y RFIE(n=234) Z4EFIRKFIE (n = 14) K WFFE K HE BERFAE (n = 208)
IR BE RN DX 3R FEARFAIE (n = 208) QI AK FE 72 RE B ARFAIE (n = 65) /N AR R RYFAIE (n = 744).

2.6. RAGEFFHEREARMARNEXRY

AT 5T A d I 2 N K 2H 1A]#H < 2 B (Inter-class and intra-class correlation coefficients, ICCs)%} ROI %%
FH B AT VY . BARSCIINE N B R B 15 AR WA L8 1 BRI R A — 44 TR 2%
TR R IT(8 s B2 B 2250 56 il 4 RO A i), R A = 2 iEl (1) ROT 45 AT HR G 0, LAVEAS
HIAAE R R HA 15 FRARISW AL 1) BHIRTBUN BHE MAE R R& IS (8] 1 AN )5 BE A, K55 PIRgs
RAATERG 708, DLVPAGZH AR OC R 8 P44 TSR BB A 35150 MM R 3 a6 40 AN AN « ICCs ¥ >0.75
PIRFIERE AN /2 — B R BRHIE, FFREAN NS 8t 7R, HEBR ICCs < 0.75 MIRAAR 4 =L

2.7. RAGEFHERE

B, WATMA Z-50 8034k, (E R FRAEEAE bl . FHEE RS RS LU T ISP ER: (1)
i H§ Mann-Whitney U f& 38 0R B P < 0.05 $F1E; (2) #E4T Pearson #HIC4 7. JHIL AL B HEBRAH < R %
T 0.9 FIERHE; (3) RA&EKMFK - /N A (minimum redundancy - maximum relevance, mRMR)#7ii%
100 MG SRR (4) FIH SIS 4 E$E 51 (least absolute shrinkage selection operator, LASSO)
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PO EA GEit 2 BRI R R AL 22 R AR HEAL S AFAE GRTIEAE OnekeyAl 1 & 1 5CHL.
2.8. REF SRR IEMALE

I ROI ANZ T B T A KRR 2] ROT S KA, AT RANEEUR 2, R4E ROI Xk 5Hi4
FHREFF AN R 5 AMEEK, SR RGBT HAES ROL I EHR X I, B3 0 #0895 (1 BGT I3 — Ak 31 (e
H 0~255 JEFEIH) 8 ALEIE), ] unsharp mask $5 RBEATEIALIE 58 DL K 90 FENRET £ et e 1 e 2k Ak
G I % LL PNG %2R TE, B A 3R I0 1k 224 x 224, LGN L 4N KN, SEBLA 3D BE2%
21530 2D V) v BUE Rtk E R b 2 . BEJS, F AR TIWIL T2WI HiL FS-T2WI 541 Ef) 3 /> 2D
B R 1) B BB — B il i— N S, AE9 NumPy B A7k, i‘zﬂﬁ*f /£ OnekeyAl & LSEHL
TEHCB IR, AAE =ANPHI R #E T 2D U1 83— 2.5D 3, iX4E 2.5D HdEk A TR E
SRR I 5 5 50

29. RBEFEREF SRR

TEARRFEH, AR T W AU 7% (Extremely Randomized Trees, ExtraTrees) K47 £ & M8
A EHE W fER 7 2 . ExtraTrees HE A W) IGHE S8 E W F . n_estimators =4, max_depth=2, min_sam-
ples_split=2, random state =0, FFHIAMEH T 5 758 XIUERMA AR A FHEA I S5

XFTIRBE S IR, FRATTIEHE DenseNet169 HEAYHESE . 2.5D DenseNet169 A& A/NEE 7 16.
ZH0E IS BT 0 55 T B & BRI 28 (Adamax) AT BT . TEAWT A, A8 U K eR AT 4G
F2)#050.0001, BARLEALE AN E R 16, EAIRECH 300. 2.5D DenseNet169 58 ]Il R A5G IELE
OnekeyAl V& L 5E k.

AR 2R FE 5 S BR A R B TR 0 J5 AR A 2 SR 2 S FREA 2, ExtraTrees 1ME RIS
BRI 48K, BRABAYIG6 S HOR € R B A F R S 4.

2.10. FEMRBIMERETM

TENNGAERMR S, AR 23 TAERFE #h 28 (Operating characteristics curve, ROC). HHZE
[Hi#(area under the curve, AUC). REUE . K557 B AHERR VP R G AL 2R L R 22 ST RN 5 @Qﬂ%
TR P2 ST AT B T 24 RE , I ZREE AN A SE ¥ & 15 [X [8] (Confidence intervals, CI)JN 95%. K L3k
2 7 HT(Decision curve analysis, DCA)PEAL = A [ BYSRAF (UG PR . TAETRAZ LI 1.

2.11. BitEFES

ARG K R it 844 (https://www.r-project.org; 4.1.2 BiAS)FT SPSS i ff(v25.0, IBM)5E
Bo RUE PAH <0.05 NAGTHY R L. fEH R Gt AT 526038 TAERME i (ROC) & il F i+ B Hh 28R
MAR(AUC), ST AFEEAL Y 8] AUC 2 53 38T DeLong #96E47 Ludst o AW 50— 548 A R B4
AN 2 Fior.

Table 2. The R packages utilized in this analysis
F2LREMHNAHRE

IR R

Zl#H LAERHIE I 26 (ROC) pROC
A 2 RS 1 b 2 Hmsic, lattice, survival, Formula, ggplot2, rms

R LI HT(DCA) rmda

DOI: 10.12677/acm.2026.161321 2615 I IR 2= =23t e


https://doi.org/10.12677/acm.2026.161321
https://www.r-project.org/

KGR 4

Shape. GLDM. GLCM
First-orderstatistics
GLRLM, GLSZM
NGTDM, Wavelet

FHIERENS it

Figure 1. Workflow for building the radiomics, deep learning, and integrated Radiomics-Deep learning models

1. RBRAFEE, REFIFERRZEEFREF IRARELETIERE

3. 58
3.1. ISR ERBER

KIFFILAN T 140 2B 258 NAFERBAIHEA MRT BUE KRS S . HAfHE 61 4 HRMM
(%5 26 1, 2354, FREVEHE: 44~78 B, TIYEES: 61 D)EFE K& 79 I SRMM HE (5 42 4], 37
Bil, SERVEHL: 34~84 %, PIIERL: 62 &), KITE BE M A IALI MR JORALEME 53 BIAE A 5k
MR FERT G, 4R 8:2 ML IR A R I E 4R
3.2. HEAFER, REFIEINZGEFREF IKSIREWE

SR AH SRR 200 F /N X ST i Ak B 5T 7 122 (LAS S O) FL 7%k 21 AN FL AR ZH 2445 1E , {1 ] ExtraTrees
FEAR R e 2 WS SR A A . A 90 A 2.5Ddensenet] 69 TR B 2 S RERURESR, T =5 /G 22 Rk
HHER, 1F OnekeyAl “F- & b 58 GZ AR I SR RBRAIE o A8 ] 25 0020 B J7 12 (PCA YK SR BRI JBE 2 )
TERRLEZ 256 o K2R ied B2 b PR S Fe &m0t HU B 21 NS BEAASIE S 256 NIRFE 2 SV BT 8 4
B AR E IR vk, BATHIE | ANREE S SJRFEAN 4 DR S FE, 1 ExtraTrees %Y
W RAAG A R P 2 ST B A T

DOI: 10.12677/acm.2026.161321 2616 I IR 2= =23t e


https://doi.org/10.12677/acm.2026.161321

KGR A

3.3. FRIFRMAR B REELER

AT IE TSR R AR S5 R B 27 SRR & TSR A 2 IR T 2 SIS A . Rl 2R 2o, §%
QL 22 IR B SR BRI ZR A AR A R A IRt . (] 2)

Calibration Plot — Training Set Calibration Plot - Validation Set
2 -~ Perfect A 2 -~ Perfect
o RM i - RM
DL —A— DL
—— DLRM —4— DLRM
© «
c 7 © {
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L o© L o [
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I fra f
il O
o [
Fa 2 /
2 < 2 < | {
o o o o |
o © \
\
N N
o o 1
3 o | Y
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T T T T T T T T T T T T
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Predicted Probability Predicted Probability
(@) (b)

Figure 2. Calibration curves of the radiomics model, deep learning model, and integrated radiomics-deep learning model in
the training set (a) and validation set (b)

E 2. REEFRKRE, REFIRURPGAFREF JRKSEBANZE()FIIEE (L) LHRIERZ

ROC Curve Comparison - Training Set ROC Curve Comparison — Validation Set
o | /_/ e
© ] -
o o SE— AN
© | © |
o o
i G
|
= = —
o o
o N
o o
— RM: AUC =0.823 (95% CI: 0.766-0.879) — RM: AUC =0.795 (95% CI: 0.679-0.910)
—— DL: AUC =0.990 (95% CI: 0.981-0.998) DL: AUC = 0.756 (95% Cl: 0.605-0.907)
2 —— DLRM: AUC = 0.996 (95% CI: 0.992—1.000) 24 —— DLRM: AUC = 0.893 (95% CI: 0.787-0.999)
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 0.8 1.0
1 - Specificity 1 - Specificity
(a) (b)

Figure 3. ROC curves for the radiomics model, deep learning model, and integrated radiomics-deep learning model in the
training set (a) and validation set (b)

3. EEFRE, REFIRBRPGEAFRESF IR SEBANIZE()FIIES () LA ROC #iZ
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5 ROAG2H RN IR FE 5 o) PO B 2 LU, S AR ZH S IR B 2 S B G AL AE T HRMM 7 TR I R 4, B
Hi AUC, N 0.893 (95% CI: 0.787~0.999). & 3 Eon T YIZREEAIMIREE 1) = FRE 2 ) ROC HhZE .

RS Ao B (B 4) R, E— NS HEKBEMREEN, SERHFIRE ISR LT
TR R T SR 2 A BN R B 2 SRS, ] DIy BB e i e K I PR A &

Decision Curve Analysis — Training Set Decision Curve Analysis - Validation Set
o _ Qi
- o — DL
DLRM
— RM
@ ] 24 All
—— None
. @ o |
s o :.:—,) o
8 &
- 4 -
2 51 2 S
o o~
o o 7|
o J o J 1
o o
I T T T T 1 I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Threshold Probability Threshold Probability
I T T T T 1 T T T T T 1
1:100 14 2:3 32 41 100:1 1:100 1:4 2:3 3:2 4:1 100:1
Cost:Benefit Ratio Cost:Benefit Ratio
(@) (b)

Figure legend. The y-axis represents net benefit, and the x-axis represents threshold probability. The “All” curve indicates the
net benefit when all patients are assumed to be positive, while the “None” curve indicates the net benefit when all patients are
assumed to be negative. The combined diagnostic model (green line) demonstrated the largest area under the curve and pro-
vided a higher overall net benefit in predicting HRMM compared to the radiomics model (red line) and the deep learning model
(purple line).

BIVE. y il et x ZoRBEM AR “AN” RN ER I B NIRRT 9 IaE, “None” 2R i
BOTH BE BBV B i as . BRE IS WL (SR 2e) B SRR R IHIAR,  PUSSAR 2 2/ R (2 )RR T 2 ST
TICHR L) ETN HRMM J7 T A 5 s s A i it -

Figure 4. Decision curve analysis for the radiomics model, deep learning model, and integrated radiomics-deep learning model
in the training set (a) and validation set (b)

E 4. REFERE, REFIRERZEAFREF KSR ENSE @) FIEIESE (b) LRIERR R 4%
4. Wig

TEIX I A BRI AL, AT R FFIRAIE T 3T 2 240 MRI RS ARA A 8 IR IS 2 ST BRI SR 4
PR IE S )AL TR HRMM . AT AR AL REREAT YA, RIS B 5218 4H 2 A AR
TREESE IR LY, S2AR A 25 R B 2 S A B AL IO 2% BE B U (AUC: MIR4E, 0.893), [FIRT DCA 2k i
N HH R PR3 B P R e PRI R S A, T DA A I PR S s R S (1A RS

MM TE MK R Go PR JE 58 A0, BT EERRIE[11]. MM BERAE—2I077 8 VR (&K
IR FE M FE KA T s SE R RIE 50% [15]. HIVH IR ARIUEHE 7k, HRMM B X RVd 697 &
TR E, THEFERETHAMMMAIGTT TR, LERIRE R R AT AR a8 RAE[8]. A, Mk
SR BH X T 75 & A i 40 P #% 4 (Autologous Stem Cell Transplantation, ASCT)[] SRMM K H
KRd 75 Z& (R AR KRN B frie/Hh ZE KA ) B VRA (B Ve K/ TS B e /b 6K ) 77 R BTG B 22 57, (E%
T HRMM HE#, KH ASCT & KRd 77 R (R AMK/ RIS i/ ZE K ) rT A8 £ 1R K3 A A7 45 = 19 2
R IE[16]. X TAFFE ASCT (1) HRMM B2, TEB FHH5Z D-VRA (1X 5 Z G4/ B 1Kok
TR FEE i/ M FE KA ) T G0t S R AR A IR B R R G [17]-[19] 0 BRIE, L% MM S G I 43 [ 84T
HERAPEAl, Ok E 38 ARG BRI RYA T SRR 2, Ao B BUE R AR NP1, KB
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A

H A% MM 40 383 22 A6 000 (14 7 v 8 B 06 6 SR AV 44 A8 72 (Fluorescence in situ hybridization, FISH)EK,
B — A7 4 AR (Next-generation sequencing, NGS) 73 #1[20] [21]. FISH ARG AE & R . K5 74 A Fa e
PERCA MM 4 35 4% 2 55 5 A R S AR tfE[ 1] NGS BAR AR “ AR P HAR ", SAEG I — ik 2 AEM
—% DNA FEBOAIE, NGS HZ0 AR “IEBEamfF” R IEATIR " , Homd s s sk
PR RN T REAEAR, B Ak /At T AR N T 0 B WA SR ZE . SR MM A
A v P S ) S v, B R A 20 A AN, T FISH 8% NGS A6 25 2 75 2@ i 5 S8 W sk B 8 v A J 3R A5,
DRI AT RE DRI AR AN AL e o 8 v A6 o o 3 3850 ) SR Il b AR B PR 45 2R (22 H. FISH 1 NGS &8
BIRNBNERE T, RSt iR EE NG, RN, BRI R K[ 12]. th4h, FISH f
NGS F & 75 Z LS =3RBSRI HUAME L TR . T s Rox B BR 1%, a5 F
R —Fh AR N PRI 7 2 HE R A MM BB G 72

MM T2 B K HE[23]. BRI (Magnetic resonance imaging, MRI//E N LG & 51, HA BRI
R ZH S0 LU RS, T LATE He 0 BA e B o A O TP 00 e g v S0 0 e RO 90 IO 6% R R g 2 2% 2
SR B HER ARG 552 B S britk g 7 3 [24] [25]. AHE MR HHU A5 Sl Fir g 5 4 S5 ot 1k 1y
HE R AEARRAE, X B S 4 S BRI CVE R IR ) o (HT AR, SAR A 5 SR 2 S A BAR
FAR AT B TR, AR S IR VAL o BRI 0 —Fh B, Re % B SR 2 A8 b SR EUR 23 AT PR AE LA
WU A BE R SRR RRE, X SRRRAE AT B85 T (112 28 P K Tl IS A5 9R[26]-[28]. TEARIEFLH, FRATTIESE
T AR TG TAF B MRI W HUFFN(FORAL TIWLL FREAE T2WI FIFRAE FS-T2WI)JK Tl HRMM,
G 1A AI RS B A0 B A 6T B TR RS A 7 AR B AR o FRATTH A BRI SAAR A 2B 2 ] T 2.5D dense-
net169 frVAR 2 SIAULE T HRMM J5 T RBL R AT, SR T RUFIE W 3gE .

R Gl A BB B A AN R (34, 38 m] LS 22 RS 50808 1) ()4 2 FL@ 5 P [F) [29]. A T —
PR I RRE, BATEIS B A SR R S IR T 2 SV RRAE, A T SR A R A S A A,
MHERLE AUC 7 0.893 (95% CI: 0.787~0.999), =N 88.50%. TEMIAGEF, FRATMIRARH FHIRE 5]
A S W B AR SR T P — SR SR I T S A 2 e DA S e IRIVEE R B, BB B8 I PR VR T SR B A T 42
B RUE B DA DB .
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SR [ 17 ¥ A B P A P 3 A5 (i o i) 802 o DA 5 A FUIRE AR o 55—, ZSAIF 78 H ROT 1972 i 4408 s 3 Ak
PRI F LEAE, XA —EMEWRNER . fEAERS T, FRATR k> 3= W 22 12 E 20 73 %)
FEAA A ENEIATIRE . B, BRI AREEVN, SCRAS M MR P TR, RiE—P
PERRAAR L IR 5 2 S A B T HRMM (1928068, RSB 2 OBy 7 58, 9 RFEAR IR, )
ST [ AR AIEEE

5. &t
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