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Abstract

Breast cancer, as the malignant tumor with the highest incidence rate among women globally, its pre-
cise diagnosis and treatment are crucial for improving patient prognosis. The expression status of hu-
man epidermal growth factor receptor 2 (HER-2) is the core basis for selecting precise treatment op-
tions for breast cancer. Traditional detection relies on postoperative pathological biopsy, which has
limitations such as invasiveness, sampling error, and time lag. Multi-parametric magnetic resonance
imaging (mp-MRI), leveraging the advantages of multi-sequence imaging, can capture the microscopic
pathological characteristics of tumors. Imaging omics technology can convert visual imaging infor-
mation into high-throughput quantitative features. Combined with machine learning and deep learn-
ing algorithms, it enables noninvasive assessment of tumor biological characteristics, providing a new
approach for preoperative noninvasive prediction of HER-2 expression. This article systematically re-
views the research progress of mp-MRI radiomics in predicting HER-2 expression in breast cancer
from 2018 to 2024. It analyzes the research from the perspectives of technical process, sequence se-
lection, model performance, and clinical value. It points out the current issues in research, such as
limited sample size, insufficient feature reproducibility, and lagging clinical translation. Furthermore,
it proposes directions for future optimization, providing a reference for the clinical application and
further research of this technology.
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1. 531§

FLIRE & — PR T FUIR S b R BRI b R R P R , & A BR L mp A DL PR P R 2 — 1],
HAZ ORI 2 AU 23 (R 20 R A e i 9 HLRAA R 28, TR R B R A 2R, I ml e ad i
W R GE A% 28 5 R LA B AL (il o JHF - 5 58), 7 3 i B8 5 AR i e o SR FL I R B A BT
T RRCA ™ B VA R I 2 B o AR A 2021 AR H 5 DA 0 A E B e A SN LA SE v, et LR T
e i 1y 4 BRI A R 05 9 e R B [ 2], e R 3R R A ZR AL T A M kR F  2 [3]
Forp HER-2 BHPEFL I 5 2 15%~20%, ol ik 5 A HUa A R &# V1A K[4]. HER-2 L L
HARGAD. 2220 PG Z R L B9k, Hiik - 2599814 (Antibody-drug Conjugate, ADC)7E fif
VAT 7 T EUS T RAEERE , g nt HER-2 1) ADC 24547) B 35 #h 22 Bk B4 (Trastuzumab Emtansine, T-
DM1) J% 1 ih 22 Bk B35 (Trastuzumab Deruxtecan, T-DXd), 7EFLARE G B E KK B /1, i HER-2 it
IR BB ARSI M B A 52 23 [5]. DAL, ARFTHERA AT HER-2 FIBIRES, SilE “ARATHiHh
BIT - RJEAHENAIT” MR RERE L,

45 HER-2 KK F RS G RTINS RE A, AT RMR: @O W eitEElE, AAE
HFTZm sz g hi &, @ FRBEARGE “BFHmE" , MELUBUE SR Q) MR FERE
REL, kISR HAHBIEIT 5 B KB REE[6]. mp-MRI VE N FLIRIE R AT PRAG  E ik G AR, o]
BT T2 AU (T2-weighted imaging, T2WI). 325 5 b 14 58 4 34 9% Bl 4% (Dynamic Contrast-Enhanced
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Magnetic Resonance Imaging, DCE-MRI). FR#UIIA U (Diffusion-Weighted Imaging, DWI). M Hk 5%k
(Apparent Diffusion Coefficient, ADC) 4§ ¥ 51| 53 ) [ B it feg 2L 2K iy MLIREEVE 7K 4314 Bl 5 s BRARFAIE
MR A @ BT 2 H . RIS @A, ez WIR G R A EE S, Sl “2B - R
PR REAE Q) G BRBLG o EAMR B S BRI AR AE R 252 B i h B S B Rtk gt e, HLRets B 3)
PEAGCARIRZRHE, SIRAEGNLES 22 ST TR HRRE R PR, 3 — D32 T T 2 i PR RE[ 7] -
I, FRZE mp-MRI SLE 4150 HER-2 FRIA I TIIANE, A2 A H AR 117 I O PP Ao ¥ A 11 B 7 1

AICE A mp-MRI G H T HER-2 Fak i AR A XA R mp-MRI 741 (FHFE 5T
BRGBAPERE 2 s PRSI IR B AR . B4R A sk D IS AR T M), TR “HoR -
R - N - R SRR .

2. mp-MRI GEFTW HER-2 RIZHARRIEN A

2 BHEIIR MG A 5 5 e PRt sk i S L SN LU BE,  AMINEh A1 58 7 41 S B AL A% v 4 1 %)
R R R D BRIRAS . B HFHARIERE TRESRENFE, BdmEEITE, NAHER
Ji e DX 3 R SR B A T & LA AR, X SRR R B gAY T R SO TR SR DL RN
A EE A, K2 E R R ANRTEEEIRN . 2 SR AR L5 A5 AR 1P 2L
HER-2 FRiIZRAS, RITFRIAER ST U — N E B, HTEREEE B RES
TALEE . iR RHESREL. RHESRE . BB SI0UE 5 NI, S IR IARAE LR B B R T
MIEETSINEIE Aed (]

3. [ mp-MRI FFIEE HER-2 FIETH R M E S 7

mp-MRI %% 5 %71 52 W () iR 6 BRAFAE AN [R), Hoxt HER-2 RIS RN sTsk A AE 2 5, DA E 2
2% DCE-MRI. DWI. ADC. T2WI X ZFHBEEFF.

3.1 B—FSIHFRME

3.1.1. DCE-MRI %l

DCE-MRI 383 225 W oy B 7RI 7E e o REvE S e, R L MRe I AR it T HER-2 BHPEFL
i N HER-2 {5 5@ BRI, 1 o e AE KR (VEGF) Rk T, S8/ 25 BE R N . 3@ iE M1 58 [9].
5T DCE-MRI HISAAR A AAFAE S, MR SN 1% S (I BRI 4 Kirans, S5 4 kep) 5 SUORHIE
(UK B S AR AR R AR DG PE L 49) 2 Tl HER-2 (1 ¢ B FR A [10] -

2024 4F YIN L 25[11]%F 118 FLAE 3% (1) DCE-MRI 3 3E1T 2047, WA 5) 251458 MRI (DCE-MRI)
o5 SEHOBUR 2 2R AE, SR AR A (LR) AR AL X 4> HER2 (KRI85 HER2 BTE B EIRLRE,
B R TIR IS, ISR AT A 1) Hh 28 R T AL (AUC)H 73724 0.875 F1 0.845, 21 T I R A
(AUC 1737 0.691 1 0.672). 2025 4F Haodong G %5 [12]1#1 % Hh.0o i 75 33— B 1IE 5L, DCE-MRI [#) Ktrans
FHORRFIERT HER-2 BHAME 8 iy R il e e 5 iy, HAEA A& I B S M R 47 (1ICC = 0.78). (HHAETEAR
JE, Wkt R BURF CIEE A, B A LR N R (0 HE A R E R PR AN B8 R [13] .

3.1.2. DWI 5 ADC F3l

DWI I8 I A K o34 H0S 31y, S W8 200 fo 25 25 -5 40 5 5 2 44, HER-2 BH 2 8 151 240 B 38 e 1R
MR, KT B E R, ADC (EHEAK[14]. T DWI [IRAG 42245400, ADC B —Fs
L5 —Hr SCHAFAER HER-2 FA AN (L2 2 [15]. 2024 £F Jing Zhou ZE[16]HIRT FL4E 4 & 2 X 3K
(M98 P9 30 1 8 BB SOEARHE, DWIVADC B — ZURHAIE (A e/ ME - ¥9MH) 5 I 8O F-E(GLCM. GLRLM
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)RR, AUC FIHEF2 0.80 DL b, REWEE. Frm T 75%; 2020 4 Leithner D %5[15]
(R 5T E— 2545 e, 7EXT DWI/ADC BGSEEURHE T, BB /0N (wavelet) R FAiE G815 5 4 Hi ff £ i e ol e
SRR SF . SOUERA—M G RHE (I E . sMESR) ML, I/ NEREIE S AT 10 HER-2 B
AR AUC B R AETH(CRai—BRFIE AUC = 0.70, JIAN/MNEFRFIES AUC $TF 547 0.85), FF7EZ HL
TEHR R R AR (I . DWI AR ASE TR TR LG, & T A s Thee A 4 8, (Ex iR
LRI IR S A RE 1S, TRE S BUR A TE[17]

3.1.3. T2WI &%)

T2WI FZ R MR A SR & B SRR YE A, HER-2 [ 1 L M e g 168 5 £ Bl iR SR 58 K P,
T2WI L 2B & {5 53R AE[18]. thah, 415 HER-2 PHIE B IR AL IR, T2 (55 EA @G
5 5) 5 IR IR BE  JE L K i DA R B vy R 2H R 25 43 AR D%, 2 HER-2 BH 4 2L s 1) — AN S 35 KR AE[19] [20]

3.2. ZEHEHANTMMSE

PRI RAGIT S, REEFR P WILR 2 S8R BTG 00, X v REFR 1) 1 REIE 1) 42
PR E B ERE, 228G EEARSHIREAE LGS, TEERA AN HER-2
TMPERE, R MATF AR ER G M. 2024 EIATH21) KR XL ER, EWNl HER-2 FRiXRAEHERER,
1A% H DCE-MRI B4 f# Ff DWI FIREASIA4E AUC 2 51Z1°4 0.754 5 0.775; 1fiKs DCE-MRI 5 DWI 45
G la, BN AUC #2712 0.843, B3 & TAE— 854 1R A FiRMEE— LA T2WI 771,
B AUC Al —2D4 0, HIHER R EWRA R S[22].

2 HEA AR AR BUAERFAE B4 : DCE-MRI SR A= B, DWI S AR I35, T2WI e 4 21
W, =FEEA N A s AR HER-2 BH 4 8T (9 BRARAE[22] -

3.3. REFIJRBNTMMRE

TGN H AN LTS AE (IS . FAR), ME DU AR P A, R RB S B, iR 2
SRR A MR UG AR PR HURRE, 8 1 N TR THREAE I = AP A R PR A, 980D IR IR A 2
T R ZE (23] IR SITEFLYE HER-2 RIETM F, #2034 R RE H shi2 98 5215 b B & 24 kF
fiE, WAL TTERRIR, SCIERSAE. SRS ET . B RFEARERAE b, TR 52 TR (G A
22 M %% CNN. Transformer) il i A WHEATLAL, FRAGEILE IS, ARG AR S RER AN
REPRFFELLF T B, VZALBE I TAEGHLAR AT . 2022 4 Xu Z Z5[24]42 25T DenseNet HI7R 5
S IR RAE HER-2 RS T b i) 2RI, /s B 2 SRR AE I SR A AN BHIE SR 1) AUC 43734 0.87 55 0.84,
B3 T ARG 2B (AUC ~ 0.78/0.74) M R B (AUC ~ 0.55/0.51), &I T VA 2 > 7 HER-2 T
M A SRR R RE

4. ImPR R IR S LR bR
4.1, e SR
mp-MRI FAL 415 Tl HER-2 F3A (1 AR 8 E ZEARILAE L F 5%

4.1.1. RETFB@EIr A RES

X T R M U R, R AR BE YT P48 MR AR IRmTFARVIGR%E. HER-2 BHMEEE
B2 91 HER-2 ¥E[ L& 4097, 1 HER-2 Bt &8 5 V697 BURAVE[25] . 2020 4F Bitencourt AGV 45[26]
FIWF 7 Eon, 3T mp-MRI (135 DCE-MRI. DWI 5 T2WI) A4 40 21 HER-2 kRS S ¥ Ba T
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(9 B 58 4 22 i (DCR), - T (767 W L (~68%) 555 B A 1) HER-2. FFH 24 5 25 1A SEZ o i [ 3 S I 2% 22
5, RFETCEIAT FREER I B E . mp-MRI SR A T R (T SE 3677 s Ak A .

4.1.2. FBRRYETMS

HER-2 F 1A 7E 8 P30 AT REATTE S5 01 (Ll 23 DX Sl B 350890 BA ), A S0 2 e A 3 LA A Tl 2
1M mp-MRI SEAG 20 7 P i 4 MR AR AR AE SR I, S e B 4 e B 14 [27] . 2022 4F XU A S5 [28] B Fi &
L, T EARE A AN S R B, U0 B R AR AN 3 5, RVR e T . 1
FHIEAE HER-2 PRI B35 Thm, RUIRHMER & R (i) 5 HER-2 Rik %R 2 1EM K, NIRRT
FIE BRI S %,

4.1.3. FF MRI HREF S FEFL AR AT DN

Pt HER-2 $E[a)ify7 id fEh, HER-2 RIS T RER A ZNE B, mp-MRI A5 5 0] S s 5
A4k Adoui Z5[29]8 I 1 CHT 4L 7 (Initial Neoadjuvant Chemotherapy, NAC) BT J& K41 MRI B4 4
F2 H AT P 2 AR 22 [0 2% (CININ) RS Y 9, i 0% A >4 f 11 7 At 58 0 252 5 4 R A T 5 BB 5 4 G Mt S
HEAT 4325 o 8 I K AN TR RS B0t e 7L e NAC I 5Pk 1) MR MR A ST BRT 35 TR AH G PR AT 40 AT
TR NAC J5 AR R Ffar FI TG AR A7 2045 o PR FE 2% ) nl BUTIN MR B SEAS 25 A 2 LA TR0 (4
NAC &, SEEA5M, %S EHEM MRI BT R E SRR AE 028, T8 1 % UG Tk B
AR o

4.2. SEREHRER
RAE AT FLIATHEE, mp-MRI SR A 2 i R AL h AT T W B ik -

421 HXESZHOUBIEFE

ZHHE TN O /MNEARBEAR . <150 ), Hik= B2 F0IAE, S EUERZ 10 EE 71 55[30]. 2025
- Wong C [31150FFidE i, 2 AT FLARE HER-2 TRINWF ALK 2 52 IR TREA R /N B EANH 5K 0
AR, RAES] = DL BRI, B SO RER & IS EOE 7 TR S BRI R 22

4.2.2. ¥HEES M SHREX R

ZZH MRI [P HIREFRZ F—hnilE, AFZRE & SREGAAEERE, XG4 22
TEF SRR A R . 2023 4F Teng X Z5[32]%) HER-2 THINAT 5% (1 HREF 55 5 MEEATI0E, R I HURy
TEAEARFI & E]) ICC > 0.7, HFsh4rE5 Aah(E A 3h) 0 BRI 2 7 R 80K[33], ™ E A R n] 52
. HATERZ 40— 1 mp-MRI AR AL AR AL IRAR, M 21 PR S (R AZ O30
4.23. IsFKIEZESRAE)E

WAL AR, ArEEvERT iRk, HEL BN IR IR IR IR PR 2 . BLR B AR T R PR
PR, BEITERZ el i PR RE 5 45 B IR AR [34] . BbAh, R4 T B =198 MRI %%
K 2B T A = &, IR TFE S ZONEARN SR, ZETFHUIMERL ., BURTT
T, BRZEFNRAR A AL WA R S LA . B S = I B S B AR AL A 5 8
5. KK ME
5.1. BARREK

IBSI (Image Biomarker Standardisation Initiative) [35]%5 [ FrfE i IE %% 7100 B R4 . AL B AERAE
PREUR L AR AL :
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© BEEREZM: 1BSI BR EHEHE SR ERENME, HUIFZRVITT CT MZE. FHs, MRIH
TRITE 50824, JEHEH CT )28 <3mm. MRIFEFS b (G5 X AL OIS — 14
PRREE TS0, D T B A S R R R IR AL

@ BEIEWAEEEE: #XA— 4, FRAESFESEETCIERI M, 1BSI A 1 ERAE — 7 Sl — B
RIFRAERRE, SR R 5 EOSHRIX 7 A R 7 iR R A, I B L S MR e dibn i . JF Had
T R AR SE NS 8 B RUER AR I BORIAIE, il vk 1 IR AL B R A R LA 7] AL

© FHERIUZH: XA R SIEPEH2Z R, 1BSI BN 2 A F FRHEN e S5, Fead %
HIBNME £ L 2 MBI ERAER S E . RN AL TH, WSS PyRadiomics 45323 T H 545
REBEMo

AL 1BS HfARTESE, EORME R G B AR, HE s b SCBARAE AR AL T 58 35
HE IR PAEAEZE QRN FIRAAE, AR A2 T OB TR R AL IR A 1 St

5.2. RBUMAK: BAMRESTTREM

@ fbA ZHESEHE mp-MRI + A, mp-MRI + PET-CT), B4&4EE 50 TARBHFE, #—
PTG EE o 0, PET-CT [f) SUV {E R S BRI I AE VG 1, 5 HER-2 RIAAEEAH K ME[36]; @ 7l
N fERE N TR BE(XANTAR, f1 SHAP (SHapley Additive ExPlanations){i. LIME (Local Interpretable
Model-agnostic Explanations), i #% 77 ] B 7= 5 M AR Y 1 358 110 S B AR DX el (an e 120 5 (1) S A ARFAE
ADC FEIIILAE T X)), 1G58 2= oo B 45 SR 5 AR BE[37]

5.3. IEFREEH MR WA EISoR

O HERARN TR, WIS AR RIS B JRMmEaE) . SR SbniE(n AUC>
0.85 I FI{FNIRTT RS H) i A% il 2R (WIAAR B & AN R); @ FARBRR A, AR R
BAEHEAE, EETIRR PACS R4t SEHL “SCBIRI - REfe it - 45 Rt 7 10— (R ik,
WD X BARN A, FFEREAR IR T A, HESIEOR N U R . BURE i BOIR R i) AR o 4tk
MG, SEREHEILE RS IS

5.4. BERME: TRSUEES

mp-MRI SR 2 T HER-2 RIA TSR WERN FLARAMEL. M ARl AP B 2 TRERHI IR
FEOME: © TR B TR ARG SRS TR AZ ] @ W RHR AU HE R HER-2 W BR 45 RAT v ehniE,
FESL AR - R R O FLRAMRHS MR R IR R TR (IR AT o3 J7 R, 5%
Wi, @ AR E TR ST R SR 5 AT K

6. HESRE

mp-MRI SR H AR TGO TN FL I HER-2 RIAMAIHH AR, J14 24 K e C iU B &2 e,
FERORTREMAL . Z PRGN IR SRR ET IR R T HE SR @2 mp-MRI 5%
RUPERRFAE, 9 ARHTC G0 AL HER-2 RIBIREIR AL 1 AUFrEoR AR, EARATHHBG TR M
TSR BRAE PP T RO A7 5 b R B E R A

SR, AZBARIE G = K0kl —2HARSZPLRIEAE, BRZREIRIR, — RN
RS RAEL R, BIZE R AT E; = RIGREZ RS AR, BASEARHE . RKFFEE 2+
O PMERESARHEMRRE . FIN XAl BORIET R AT RERENE . T 8 ATHE PR I R 6 S8 UE IR PR R 2, R AN
SRS A RHIME, HESIBOR SR ST I AR S 24, mp-MRI SR AL A7 B SO FLIRE HER-2
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FIEARFIVEA ) B AN FE, CHNFRZES . R v B S R A s 22 4. AR IT
T . Aok, mp-MRI 524 4 240 v] G4 i 22 HoAh PR 431 %8 /45 (W0 EGFR. PD-L) TN, s v g
SRR EIRBAZ DA A . RS2 LU O RS HEEETT H A o
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