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Abstract

The early detection of superficial tumors is an important research object in plastic surgery and der-
matology, which is crucial for improving patient prognosis. In this study, we propose an intelligent di-
agnostic framework based on non-standardized superficial tumor images by YOLO series of target de-
tection models (v7 to v10) for ten types of common superficial tumors. The dataset was derived from
non-standard clinical images from the Department of Plastic and Reconstructive Surgery of the Affili-
ated Hospital of Qingdao University, covering diverse lighting, equipment, and background conditions
to simulate real-life scenarios. Experimental results indicated that YOLOv10n performs the best detec-
tion (F1-score 0.912, mAP@0.5 0.912, total inference time 4.3 ms). Additionally, YOLOv8n surpasses
conventional models, including Faster R-CNN and EfficientDet, with exceptional accuracy (0.952). De-
spite the uneven distribution of the data and the image variability, which present challenges for rare
category (blue mole) detection, the hybrid YOLO framework demonstrates robustness and real-time
performance. This study provides technical support for automated superficial tumor detection in non-
standardized scenarios. Its lightweight design is suitable for low-cost devices, including smartphones,
which can promote remote screening applications and improve the efficiency of early diagnosis of su-
perficial tumors and patient prognosis.
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Table 1. Ten characteristics of superficial tumors
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Figure 1. Flowchart
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Table 2. Dataset details

= 2. HE\ENS
s ¥irds

K& PRl B4 PRl

RIS 6 6 1 1
S 438 1196 51 55

520k bR AR 10 10 2 2

BIRM e 40 40 5 5

FEJR 4 7L SR I 121 133 15 16

LI 93 107 11 11

W 31 31 4 4

(N fiob 24 43 3 8
ARRES 1196 1415 135 165

R R MR 11 11 2 2
PR 1939 2279 221 269

223 HHEEE
UM B BL R SRR (Y, JEh TP (REBRPE). FN (IBFITE). FP (BIBITE). TN (FLHITE) S5 %
IR G B ARE . R HARE. S RAS BRI (ERA 7 2 KR H RS
HERf 2R (Accuracy): WU HE AR S A B IE A PE
TP+TN
T TP+TN+FP+FN

DOI: 10.12677/acm.2026.161342 2816 Il PR 2 2 3t


https://doi.org/10.12677/acm.2026.161342

B F

FE B 2R (Precision): 7 S0 I 25 SR rp IE A B AR 16 EL A
TP
~ TP+FP
A ZE (Recall): R BEAUT I A S5 B H bR RE /T
R - TP
FP+FN
F1 /- %(F1 Score): ZR&GFEHR S DRI MIHAF9ME, HT-FlEpE&i.
. precision * recall
precision + recall

BRI E(MAP@O0.5): AURAE 1oU BRIy 0.5 I EEMFPSEIT-EIRERE, DLIPAG 2 AR I 1 RE .
MAP = ﬁzmzlAPM ®)

O]

®)

F1 Score = 4)

AEIR (Latency): i SRR () S 62 ms), €L HERER 4] (inference Time) R K () (NMS)
WAL, PV B
SO AR 0 SR AR RS (L RS 55 900 ERE, W RICAE SR S 6 T 4

2.24. SERBEVHLLER

SNISAE FTHE T VE AR, A 0% 2 1 YOLO VR &Y 5 1 HARK MR R HEAT 7 %F e, 04w
Faster R-CNN [20]. EfficientDet[21]. SSD [22]. RetinaNet [23]. ixX Lo R £F [B2 2 S AG ARG W 4504 B FH 32
4 AR BB B A (Faster R-CNN, RetinaNet) Fl LB B Al (EfficientDet, SSD)HISLAL 5k, HLALSLERTE
FH TRV FORE A 24t T AT, SR 2.3.3 W@ SCHIMERBAR R VT A% 25 BEL7E AAn v R LRI, = A%
SR FZ (MAP@0.5) FH S £ (Latency) .

3. R

AHIF FEAE A bR v B R bR S B 4 R4 T YOLO JRAMAIMERE, BERENL YOLO Fif
(YOLOV7-tiny. YOLOv8n. YOLOVO-t 1 YOLOVIOn) A fE 11, ¥ K IR FK MR FE. EA%E.
% R FLSORIR . R . BR AL SORIR L AS TV MR BRRANME . R PR i
PR 45 50 MR MRS . SR HT R IIMERE . ATAAL 25 SREAN 5 3 B ) L A o

3.1 BFEAERE

Table 3. YOLO model performance comparison
2 3. YOLO 1284 gExttt

YOLO K2R (%) T 18] 28 (%) F1 5 %(%) mAP@0.5
YOLOV7-tiny 0.94 0.663 0.792 0.792
YOLOV8n 0.952 0.828 0.903 0.903
YOLOVY-t 0.933 0.788 0.892 0.892
YOLOV10n 0.828 0.823 0.912 0.912
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YOLOV10n 7E4E &1k e R I AE, H F1 70%0(0.912)F1 mAP@0.5 (0.912)¥) Ak iEi, K5Hi#%(0.828) 5 H
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YOLOv8n 5.4 05 5.9
YOLOV9-t 5.4 11 6.5
YOLOv10n 4.1 0.2 4.3
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Figure 2. Detection performance of ten types of superficial tumors in each YOLO model. Detection indices for (a) YOLOv7-
tiny, (b) YOLOvV8n, (c) YOLOV9-t, and (d) YOLOv10n

2. TRIERMBE YOLO RFIBIFEMIEEE. (@) (b). (€). (d)DHEFR YOLOV7-tiny, YOLOv8n, YOLOVO-t,
YOLOV10n B4R

DOI: 10.12677/acm.2026.161342 2818 Il PR 2 2 3t


https://doi.org/10.12677/acm.2026.161342

M &

K 2 il FRRE 2R 7% YOLO RREAEE - RAR L s E kit ae, B4R . H [H1 % . mAP@0.5
L 200 AEREAR 78 2 B2 09 (A B2 PR 42 45 9R5) L YO L O8N FrIHRG f 28 A1 74 ] 13885 0.90, mAP@0.5
$Z3i 0.95, YOLOV10n ff] mMAP@0.5 £y 0.92, A [H1282) 0.90. Ifi 7EAF A M /D> 124 31) (U 85 6 A2 B )
BRI R WAL, I YOLOV7-tiny 7E SR 41 i L) mAP@0.5 £ 0.50, 74 [713%1X 0.40, YOLOv10n
1% 0.60 LA b BRI SENEREN S, BINEREEAR DR, YOLOVT-ting 7 [FIZ4E 0,
YOLOvSn A1 YOLOV10n ) mAP@0.5 £14 0.70.

3.4. ATPILER

E@H:Ezﬂ)ﬂﬂ'@

JUDXBA 0.93

RN £ 3 £

FHE RN FL TR IR

BERAH H

B TE

B R Rk

YOLOV7-tiny YOLOv8n YOLOV9-t YOLOvV10n

Figure 3. Inferential detection results of superficial tumors in each YOLO
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Table 5. Mainstream model performance comparison
F 5. ERERMREXTLE

Y i A Fitfi 2 (P) HHE(R) F1 % mAP@0.5
Faster R-CNN 0.5766 0.8266 0.6815 0.8151
EfficientDet 0.8669 0.5095 0.62 0.5871
SSD 0.9854 0.4854 0.58 0.6858
RetinaNet 0.9189 0.5079 0.61 0.5872
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7E YOLO 5B 5 iR H An kGl 5% %Y (Faster R-CNN, EfficientDet, SSD, RetinaNet) () b, 455
*W] YOLO EMAEZAMERefabr BT IR LML G . Faster R-CNN HIRSHiZ 4 0.5766, f11n1%H
0.8266, R H A BIF5m, (HBARIETHER FEE R B, 7RG RN o] 58 5 5O 05 2k — 25
K #5. EfficientDet FIAEHIZ N 0.8669, M A 0.5095, FEffiREim, HAREAL, SIS
PEN R 25 Zy IR A . SSD [ASHZE A 0.9854, BRI ST YOLO H41, {HH [HIZA{ N 0.4854, iXffif3 SSD
7E/N HARFIRG AT R AR R I e R B 2% . RetinaNet FREHIR N 0.9189, #[B[% N 0.5079, mAP@0.5 N
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YOLOV1On. [Alff, EHGMHSIASE(Un RS P A B R 5 22 ) 3 I 1 B PR i o 82 o AR il o
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