
Advances in Clinical Medicine 临床医学进展, 2026, 16(1), 2812-2823 
Published Online January 2026 in Hans. https://www.hanspub.org/journal/acm 
https://doi.org/10.12677/acm.2026.161342  

文章引用: 魏鑫, 张超群, 蔡霞, 冷向锋. 轻量化 YOLO 模型在非标准体表肿瘤图像检测中的性能研究[J]. 临床医学进

展, 2026, 16(1): 2812-2823. DOI: 10.12677/acm.2026.161342 

 
 

轻量化YOLO模型在非标准体表肿瘤图像 
检测中的性能研究 
魏  鑫1，张超群2，蔡  霞1，冷向锋1* 
1青岛大学附属医院美容整形外科，山东 青岛 
2中国民航大学计算机科学与技术学院，天津 
 
收稿日期：2025年12月23日；录用日期：2026年1月18日；发布日期：2026年1月28日 

 
 

 
摘  要 

体表肿瘤作为整形外科学和皮肤病学的重要研究对象，其早期检测对改善患者预后至关重要。本研究提出

了一种基于非标准化体表肿瘤图像的智能诊断框架，结合YOLO系列目标检测模型(v7至v10)，针对十类常

见体表肿瘤实现高效筛查。数据集来源于青岛大学附属医院整形外科的非标准临床图像，涵盖多样化的光

照、设备和背景条件，模拟真实场景。实验结果表明，YOLOv10n在检测性能上表现最佳(F1分数0.912，
mAP@0.5 0.912，总推理时间4.3 ms)，YOLOv8n以0.952的卓越精度超越Faster R-CNN和EfficientDet等
传统模型。尽管数据分布不均和图像变异性对稀有类别(如蓝痣)检测构成挑战，YOLO框架仍展现出较强的

鲁棒性与实时性。本研究为非标准化场景下的体表肿瘤自动检测提供了技术支持，其轻量化设计适配智能

手机等低成本设备，有望推动远程筛查应用，改善体表肿瘤早期诊断效率与患者预后。 
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Abstract 
The early detection of superficial tumors is an important research object in plastic surgery and der-
matology, which is crucial for improving patient prognosis. In this study, we propose an intelligent di-
agnostic framework based on non-standardized superficial tumor images by YOLO series of target de-
tection models (v7 to v10) for ten types of common superficial tumors. The dataset was derived from 
non-standard clinical images from the Department of Plastic and Reconstructive Surgery of the Affili-
ated Hospital of Qingdao University, covering diverse lighting, equipment, and background conditions 
to simulate real-life scenarios. Experimental results indicated that YOLOv10n performs the best detec-
tion (F1-score 0.912, mAP@0.5 0.912, total inference time 4.3 ms). Additionally, YOLOv8n surpasses 
conventional models, including Faster R-CNN and EfficientDet, with exceptional accuracy (0.952). De-
spite the uneven distribution of the data and the image variability, which present challenges for rare 
category (blue mole) detection, the hybrid YOLO framework demonstrates robustness and real-time 
performance. This study provides technical support for automated superficial tumor detection in non-
standardized scenarios. Its lightweight design is suitable for low-cost devices, including smartphones, 
which can promote remote screening applications and improve the efficiency of early diagnosis of su-
perficial tumors and patient prognosis. 
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1. 引言 

体表肿瘤，无论在整形外科学还是皮肤病学中都占据了重要研究地位[1]，同时也是全球范围内的重

要公共健康问题[2]。根据世界卫生组织(WHO)统计，每年全球新增约 130 万例非黑色素瘤皮肤癌及 32.5
万例黑色素瘤病例，其中黑色素瘤每年导致约 6 万例死亡[3]。早期检测是改善患者预后的关键因素。例

如，黑色素瘤患者的五年生存率在早期检测时可达到 98%，而在晚期则急剧下降至 22% [4] [5]。 
体表肿瘤的传统检测方法主要包括皮肤镜检查、活检和组织学检查。皮肤镜检查作为一种非侵入性

的方法，能够帮助医生观察皮肤表面的病变特征，对于良性和恶性病变的区分具有一定的优势，但这种

方法依赖医生的经验，且在视觉辨识上存在主观性，可能导致误诊或漏诊[6]。活检主要是取样并进行组

织学分析，具有较高的准确性，是确诊的金标准[7]。其缺点在于该操作为侵入性，并且需要时间周期，

因此不适合大规模筛查[8]。传统检测方法在某些情况下能够提供准确诊断，但其在效率和普及性方面仍

存在明显不足。 
人工智能(AI)的普及，尤其是深度学习技术在医学图像分析中的应用得到了广泛关注[9]。与传统检

测方法相比，AI 能够显著提高检测效率，减少人为因素的影响，通过基于临床图像的深度学习系统为皮

肤肿瘤提供更加精准和高效的筛查方案[10]。深度学习模型通过自动化分析医学图像，在不依赖专业设备

的高成本维护和长时间培训的条件下，可以迅速从大量数据中提取有用信息[11]。代表性的卷积神经网络

(CNN)已经在皮肤病变的自动化识别上展现出了较高的准确性[12]。现有的深度学习模型虽然在标准化图

像上表现优异(如皮肤镜图像)，但在处理非标准化图像(如患者自拍或自然光照条件下的图像)时，往往会

出现显著的性能下降[13]。这一问题的解决至关重要，因为在实际应用中，大部分图像往往并非来自标准
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化的医疗影像设备，这对深度学习模型的普适性和鲁棒性提出了挑战。 
YOLO 作为一种高效且精确的目标检测算法，凭借其独特的优势，能够有效应对体表肿瘤非标准图

像中的各种挑战[14]。YOLO 具有优秀的实时性、应对形态不规则性和多尺度目标的能力、强大的背景抑

制能力，以及端到端的训练机制，使其能够在体表肿瘤的检测中表现出色[15]。通过将 YOLO 应用于体

表肿瘤的检测中，不仅能够为医生提供快速、准确的辅助诊断工具，也对患者进行体表肿瘤的早期自我

筛查和诊断具有重要的意义。 
目前大多数研究主要集中于标准化数据集，忽视了对非标准化图像的处理能力[16]。实际上非标准化

图像的处理才是实际应用中的主要挑战。基于此本研究提出了一种智能诊断框架，通过系统评估 YOLO
系列目标检测模型，选出综合性能最佳的变体，以实现对体表肿瘤的检测。与现有方法不同，该框架专

为处理非标准化图像而设计，特别是针对整形外科常见的十种体表肿瘤。表 1 总结了本研究涉及的十种

常见体表肿瘤的基本特征，包括恶性与否、主要形态、治疗方法和影像特征。这些特征直接影响检测与

分割的难度，为后续方法设计和实验评估提供了基础。研究所用数据集由青岛大学附属医院整形外科术

前采集的临床体表肿瘤图像组成，均已取得患者的知情同意。该数据集涵盖了不同设备、光照条件和背

景下的图像，模拟真实世界的拍摄环境。本研究的贡献在于探索深度学习在非标准化场景中的适用性，

为体表肿瘤的快速筛查提供技术支持。通过支持智能手机等低成本设备，该框架特别适用于远程应用场

景，使患者能够在没有复杂医疗基础设施的情况下，随时随地进行早期自筛查。 
 

Table 1. Ten characteristics of superficial tumors 
表 1. 十类体表肿瘤特征 

体表肿瘤 是否恶性 主要特征 常见治疗方式 照片特征(采集表现) 

表皮痣 否 线状或斑块状、棕色或黑色、

表面粗糙 
观察、手术切除、 

激光治疗 
棕色或黑色条状或斑块， 

边界较清晰 

复合痣 否 隆起、棕色或黑色、对称性好 观察、手术切除 对称性棕黑小结节， 
表面光滑或略粗糙 

复鳞上皮 
乳头状瘤 否 疣状突起、表面角化、灰褐色 冷冻疗法、手术切除 灰褐色疣状隆起， 

表面粗糙有角质层 

基底细胞癌 是 珍珠样边缘、溃疡、中央凹陷 手术切除、冷冻疗法 表面光滑或破溃的小结节， 
边缘清晰可见 

基底细胞 
乳头状瘤 否 柔软突起、棕色或肉色、 

常有蒂 冷冻疗法、刮除术 肉色或棕色小突起， 
有时带蒂，边界分明 

交界痣 否 平坦、棕色或黑色、 
边界清晰 观察、手术切除 平坦的棕黑斑点， 

边界规则，色泽均匀 

蓝痣 否 蓝色或蓝灰色、 
圆形或椭圆、深层皮下 观察、手术切除 深蓝色小结节， 

表面光滑，边界清晰 

鳞状细胞癌 是 鳞状表面、角化、易出血 手术切除、放疗 粗糙红斑或结痂， 
常伴出血或角质堆积 

皮内痣 否 隆起、肉色或浅棕色、 
毛发可能伴生 观察、手术切除 隆起的浅棕或肉色结节， 

有时可见毛发 

皮脂腺痣 否 黄褐色、蜡状表面、 
斑块状或隆起 观察、手术切除(预防恶变) 黄褐色斑块或隆起， 

表面蜡状，边界不规则 
 

结合性能最佳的 YOLO 模型的实时检测能力，构建一个端到端解决方案，可应用于多种类型体表肿

瘤的检测。具体贡献包括：(1) 检测模型的优化与适配：系统评估和优化 YOLO 系列模型，选出最优变

体，经优化后实现对非标准化采集图像中十种常见体表肿瘤的精准检测，并具备移动端实时筛查能力；

(2) 适应实际应用场景：验证框架在多样化、不受控采集条件下的强鲁棒性，设计轻量化架构以适用于资

源有限条件下的远程医疗和自筛查环境，为推进体表肿瘤筛查工具的实际应用提供可能。 
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2. 方法 

本研究提出了一种基于目标检测的方法，用于解决非标准体表肿瘤图像分析中的问题。该方法利用

YOLO 系列(v7 至 v10)的检测效率，并通过与主流目标检测模型的对比验证其优越性。研究流程分为三个

主要步骤：1. 评估并筛选适用于体表肿瘤检测的 YOLO 模型；2. 通过实验评估模型性能并与主流检测

方法进行比较。图 1 为基本流程图，后续小节详细阐述各步骤的实现过程。 
 

 
Figure 1. Flowchart 
图 1. 流程图 

2.1. YOLO 模型选择标准 

本研究选用 YOLO 官方发布的轻量化模型，包括 YOLOv7-tiny [14]、YOLOv8n [17]、YOLOv9-t [18]
和 YOLOv10n [19]，未对其架构进行改动，以充分利用各版本的设计优势进行体表肿瘤的检测。 

YOLOv7-tiny：采用 E-ELAN 主干网络增强特征提取，结合 CSP-FPN 优化多尺度特征融合，解耦头

设计分离分类与回归任务。其轻量化结构适于资源受限环境，多尺度检测能力契合非标准图像中肿瘤尺

寸的变化。 
YOLOv8n：引入 C2f 模块降低计算复杂度，锚框无关策略搭配分布式焦点损失(DFL)提升训练稳定

性，纳米级设计适用于体表肿瘤类别分布不均的场景。 
YOLOv9-t：通过 GELAN 和可编程梯度信息(PGI)机制减少信息损失，轻量化版本仍能保留深层特征

传递能力，适合捕捉非标准图像的细节特征。 
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YOLOv10n：融入动态标签分配及空间–通道解耦下采样，大核深度卷积(LKDC)扩展感受野，纳米

级结构提升细粒度检测能力，适用于背景噪声中的小目标肿瘤检测。 

2.2. 实验设置 

2.2.1. 硬件配置 
实验使用 NVIDIA GeForce RTX 4060 GPU (8 GB 显存，支持 FP16/INT8 混合精度训练)和 Intel Core 

i7-13700H CPU (14 核，最高频率 4.9 GHz)，充分利用 GPU 的并行计算能力和 CPU 的多核架构以支持训

练和预处理任务。 

2.2.2. 数据来源与预处理 
数据集来源于 2023 年 12 月至 2024 年 12 月期间，于青岛大学附属医院美容整形外科住院患者非标

准临床体表肿瘤图像，所有患者均已签署知情同意书。收集的数据集涵盖十种体表肿瘤类型：表皮痣、

复合痣、复鳞上皮乳头状瘤、基底细胞癌、基底细胞乳头状瘤、交界痣、蓝痣、鳞状细胞癌、皮内痣和皮

脂腺痣。纳入实验的样本均经过组织病理学证实。所有图像使用智能手机或相机拍摄，保留非标准条件

下的光照、背景差异及部分模糊图像。并由整形外科主任医师级别专家使用半自动标注工具(ISAT)为图

像标注边界框和分类标签。检测框标签仅用于标注显示，不具备医学意义。病理诊断医学名词与标签的

对应关系为表皮痣(BPZ)、复合痣(FHZ)、复鳞上皮乳头状瘤(FLSPRT)、基底细胞癌(JDXBA)、基底细胞

乳头状瘤(JDXBRTZL)、交界痣(JJZ)、蓝痣(LZ)、鳞状细胞癌(LZXBA)、皮内痣(PNZ)、皮脂腺痣(PZXZ)。
同时由于数据集的分布不平衡，除表皮痣按 6:1 进行划分，其余九种体表肿瘤按 9:1 划分。且一张图像上

往往不止一个标注框及分类标签，故图像数与实例标注数不是完全对应的。数据划分及分布详见表 2。 
 

Table 2. Dataset details 
表 2. 数据集划分 

 
训练集 验证集 

图像 标注 图像 标注 
表皮痣 6 6 1 1 
复合痣 438 1196 51 55 

复鳞上皮乳头状瘤 10 10 2 2 
基底细胞癌 40 40 5 5 

基底细胞乳头状瘤 121 133 15 16 
交界痣 93 107 11 11 
蓝痣 31 31 4 4 

鳞状细胞癌 24 43 3 8 
皮内痣 1196 1415 135 165 
皮脂腺痣 11 11 2 2 
总数 1939 2279 221 269 

2.2.3. 性能度量 
模型性能通过以下关键指标评估，其中 TP (真阳性)、FN (假阴性)、FP (假阳性)、TN (真阴性)分别表

示正确检测的目标数、漏检目标数、错误检测数和正确否定的非目标数： 
准确率(Accuracy)：反映模型整体分类的正确性。 

 
TP TNA

TP TN FP FN
+

=
+ + +

  (1) 
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精确率(Precision)：衡量检测结果中正确目标的比例。 

 TPP
TP FP

=
+

  (2) 

召回率(Recall)：表示模型检测所有实际目标的能力。 

 
TPR

FP FN
=

+
  (3) 

F1 分数(F1 Score)：综合精确率与召回率的调和平均值，用于平衡两者表现。 

 precision recallF1 Score = 2
precision recall

∗
∗

+
  (4) 

平均精度均值(mAP@0.5)：代表在 IoU 阈值为 0.5 时每个种类的平均精度，以评估多类别检测性能。 

 1

1mAP APM
MMM =

= ∑  (5) 

延迟(Latency)：定义为单帧推理时间(单位 ms)，包括推理时间(Inference Time)和非极大值抑制(NMS)
时间之和，用于评估模型实时性。 

这些指标共同衡量模型在非标准图像上的检测精度与实时性能，确保其在实际应用中的可靠性。 

2.2.4. 与主流模型的比较 
为验证所提方法的优越性，本研究将选定的 YOLO 混合模型与主流目标检测模型进行了对比，包括

Faster R-CNN [20]、EfficientDet [21]、SSD [22]、RetinaNet [23]。这些模型在医学影像检测领域应用广泛，

分别代表两阶段检测(Faster R-CNN, RetinaNet)和单阶段检测(EfficientDet, SSD)的典型方法。比较实验在

相同数据集和硬件条件下进行，采用 2.3.3 中定义的性能指标评估各模型在非标准图像上的表现，重点考

察检测精度(mAP@0.5)和实时性(Latency)。 

3. 结果 

本研究在非标准皮肤肿瘤图像数据集上评估了 YOLO 混合模型的性能，聚焦轻量化 YOLO 模型

(YOLOv7-tiny、YOLOv8n、YOLOv9-t 和 YOLOv10n)的检测能力，涉及十类体表肿瘤：表皮痣、复合痣、

复鳞上皮乳头状瘤、基底细胞癌、基底细胞乳头状瘤、交界痣、蓝痣、鳞状细胞癌、皮内痣和皮脂腺痣。

以下结果分为整体性能、效率分析、类别检测性能、可视化结果和与主流模型的比较。 

3.1. 整体模型性能 

Table 3. YOLO model performance comparison 
表 3. YOLO 模型性能对比 

YOLO 精确率(%) 召回率(%) F1 分数(%) mAP@0.5 

YOLOv7-tiny 0.94 0.663 0.792 0.792 

YOLOv8n 0.952 0.828 0.903 0.903 

YOLOv9-t 0.933 0.788 0.892 0.892 

YOLOv10n 0.828 0.823 0.912 0.912 
 

如表 3，展示了各 YOLO 模型在验证集上的性能，包括精确率(P)、召回率(R)、F1 分数和 mAP@0.5。
YOLOv10n 在综合性能上表现最佳，其 F1 分数(0.912)和 mAP@0.5 (0.912)均为最高，精确率(0.828)与召

回率(0.823)实现了良好平衡。YOLOv8n 的精确率(0.952)突出，能够有效降低误检率。YOLOv9-t 的性能
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均衡，F1 分数(0.892)和 mAP@0.5 (0.892)表现稳定。而 YOLOv7-tiny 尽管精确率较高(0.94)，但召回率较

低(0.663)，导致 F1 分数(0.792)和 mAP@0.5 (0.792)在四者中最低，反映其检测全面性不足。 

3.2. 效率分析 

如表 4，总结了各 YOLO 模型在验证集上的推理速度(单位：毫秒，ms)。YOLOv10n 以总时间 4.3 ms (推
理时间 4.1 ms，NMS 时间 0.2 ms)展现最佳实时性，优于 YOLOv8n (总时间 5.9 ms，推理 5.4 ms，NMS 0.5 
ms)、YOLOv9-t (6.5 ms)和 YOLOv7-tiny (5.8 ms)。这一结果表明 YOLOv10n 的优化架构显著提升了计算效率。 

 
Table 4. YOLO model speed comparison 
表 4. YOLO 模型速度对比 

模型版本 推理时间(ms) NMS 时间(ms) 总时间(ms) 

YOLOv7-tiny 4.4 1.4 5.8 

YOLOv8n 5.4 0.5 5.9 

YOLOv9-t 5.4 1.1 6.5 

YOLOv10n 4.1 0.2 4.3 

3.3. 各类别检测性能 

 
Figure 2. Detection performance of ten types of superficial tumors in each YOLO model. Detection indices for (a) YOLOv7-
tiny, (b) YOLOv8n, (c) YOLOv9-t, and (d) YOLOv10n 
图 2. 十类体表肿瘤在 YOLO 系列的检测性能。(a)、(b)、(c)、(d)分别代表 YOLOv7-tiny、YOLOv8n、YOLOv9-t、
YOLOv10n 的检测指标 
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图 2 通过柱状图展示了各 YOLO 模型在十类体表肿瘤上的检测性能，包括精确率、召回率、mAP@0.5
和 F1分数。在样本充足的类别(如皮内痣和复合痣)中，YOLOv8n的精确率和召回率均超过 0.90，mAP@0.5 
接近 0.95，YOLOv10n 的 mAP@0.5 约为 0.92，召回率约 0.90。而在样本稀少的类别(如蓝痣和表皮痣)中，

召回率普遍较低，例如 YOLOv7-tiny 在鳞状细胞癌上的 mAP@0.5 约为 0.50，召回率仅 0.40，YOLOv10n
仍保持 0.60 以上。数据分布不均导致性能波动，例如蓝痣样本较少时，YOLOv7-tiny 召回率接近 0，
YOLOv8n 和 YOLOv10n 的 mAP@0.5 约为 0.70。 

3.4. 可视化结果 

 
Figure 3. Inferential detection results of superficial tumors in each YOLO 
图 3. 体表肿瘤在各 YOLO 中的推理检测结果 
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图 3 展示了各 YOLO 模型在十类体表肿瘤中随机抽取的一张图像上的检测结果，仅显示检测框(未
包含 SAM 分割结果)。YOLOv8n 和 YOLOv10n 在皮内痣和复合痣上的检测框边界清晰、定位准确，而

YOLOv7-tiny 在鳞状细胞癌和蓝痣上存在较多漏检，反映其对稀有类别的泛化能力较弱。 

3.5. 与主流模型的比较 

表 5 展示了在主流目标检测模型上的性能。Faster R-CNN 的召回率(0.8266)接近 YOLOv10n (0.823)，
但精确率(0.5766)远低于 YOLOv8n (0.952)。EfficientDet 的精确率(0.8669)较高，但召回率(0.5095)不足，

mAP@0.5 (0.5871)在对比中最低。SSD 的精确率(0.9854)超越所有 YOLO 模型，但召回率(0.4854)较低。

RetinaNet 的 mAP@0.5 (0.5872)也远不及 YOLOv10n (0.912)。结果表明，YOLO 系列在综合性能上优于主

流模型。 
 

Table 5. Mainstream model performance comparison 
表 5. 主流模型性能对比 

模型版本 精确率(P) 召回率(R) F1 分数 mAP@0.5 

Faster R-CNN 0.5766 0.8266 0.6815 0.8151 

EfficientDet 0.8669 0.5095 0.62 0.5871 

SSD 0.9854 0.4854 0.58 0.6858 

RetinaNet 0.9189 0.5079 0.61 0.5872 

4. 讨论 

4.1. 结果解释 

本研究对轻量化 YOLO 模型(YOLOv7-tiny、YOLOv8n、YOLOv9-t 和 YOLOv10n)在非标准体表肿瘤

图像数据集上的表现进行了系统评估。实验结果表明 YOLOv8n 在精确率上表现突出(0.952)，有效降低了

误检率，特别是在临床诊断中具有显著价值，能够减少不必要的误诊和患者焦虑。然而，尽管 YOLOv8n
具有较高的精确率，但其召回率(0.828)低于 YOLOv10n，可能会导致某些病例的漏检，尤其是在难以辨

识的小型或边界模糊的肿瘤中。YOLOv7-tiny 虽然在精确率方面表现较好(0.94)，但召回率(0.663)显著低

于其他模型，这表明其在检测全面性上的不足，尤其在稀有类别如蓝痣和表皮痣上，召回率和 mAP@0.5
的表现较差，说明其对不常见病变的泛化能力较弱。因此，YOLOv7-tiny 更适合应用于目标检测较为单

一且背景较为简单的场景。 
轻量化 YOLO 模型各有优势，未来可根据不同的临床需求选择最合适的模型。YOLOv10n 在全面筛

查、早期诊断方面表现最佳，而 YOLOv8n 则适合对精度要求较高、误诊风险较小的场景。 

4.2. 与现有研究的比较 

在 YOLO 系列模型与主流目标检测模型(Faster R-CNN, EfficientDet, SSD, RetinaNet)的比较中，结果

表明 YOLO 模型在多个性能指标上均优于这些传统模型。Faster R-CNN 的精确率为 0.5766，召回率为

0.8266，尽管其召回率较高，但较低的精确率导致较高的假阳性，在临床应用中可能导致不必要的进一步

检查。EfficientDet 的精确率为 0.8669，召回率为 0.5095，精确率较高，但召回率不足，导致其在检测恶

性肿瘤时容易漏检。SSD 的精确率为 0.9854，明显高于 YOLO 系列，但召回率仅为 0.4854，这使得 SSD
在小目标和稀有病变的检测中表现较差。RetinaNet 的精确率为 0.9189，召回率为 0.5079，mAP@0.5 为

0.5872，虽然在小目标检测上具有优势，但其整体性能仍低于 YOLO 系列。基于 YOLO 系列模型在精度、
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召回率和实时性上均优于以上主流模型，特别是 YOLOv10n，表现出最好的综合性能，因此适合用于皮

肤肿瘤的全面筛查和恶性肿瘤的早期诊断。 

4.3. 影响因素分析 

YOLO 系列模型的性能受到数据分布不均和非标准图像的影响。数据集中的稀有类别(如蓝痣和表皮

痣)样本较少，导致这些类别的召回率较低。YOLOv7-tiny 在稀有类别上的召回率显著低于 YOLOv8n 和

YOLOv10n。同时，图像的拍摄环境(如光照变化、拍摄角度和背景差异)增加了模型的识别难度。特别是

在边界模糊的病变类型(如交界痣、基底细胞癌)中，这些因素导致模型容易出现漏检。这一问题在基于标

准数据集进行的研究中较为少见，但在实际临床应用中，非标准图像的普遍性使得模型的鲁棒性和稳定

性成为关键挑战，尤其是在处理光照变化、拍摄角度差异和背景噪声等因素时，这些都会影响模型的检

测准确性和可靠性。 

4.4. 局限性 

本研究存在以下局限性：(1) 本研究仅评估了 YOLO 模型的检测性能，而未结合分割模块(如 SAM)
的效果，限制了我们对混合模型(如 YOLO-SAM)的整体性能理解。未来研究应结合检测与分割模块，全

面评估端到端的检测；(2) 尽管我们的数据集包含了多种体表肿瘤，但对于蓝痣和表皮痣等类别，样本数

量较少，导致模型在这些类别上的泛化能力较弱，未能覆盖所有临床场景，尤其在真实环境下，模型可

能会遇到更多稀有病变样本，影响其实际应用；(3) 非标准图像的不可控因素(如拍摄角度)可能降低模型

在真实环境中的稳定性。 

4.5. 未来方向 

为克服这些局限性，未来研究可采取以下措施：(1) 可以将 YOLO 与分割技术结合，评估端到端的

检测与分割性能，这将有助于提高模型在复杂病变(如边界模糊的肿瘤)上的表现。(2) 通过数据增强(如生

成对抗网络生成蓝痣、表皮痣样本或加权损失函数提升稀有类别检测能力。(3) 在更大规模、更多样化的

临床数据集上验证模型，模拟真实诊断环境。此外，优化模型以适配低功耗设备将有助于其在便携式诊

断中的应用。 

4.6. 医学意义 

本研究验证了 YOLOv10n 和 YOLOv8n 在体表肿瘤检测中的高效性，其精度与速度的平衡为自动化

筛查提供了可行方案，尤其对基底细胞癌和鳞状细胞癌等恶性病变的早期识别具有潜力。通过分析十类

体表肿瘤的检测性能，本研究为辅助医疗诊断提供了数据支持，未来改进后可望提升体表肿瘤诊断的准

确性和效率，改善患者预后。 

5. 结论 

本研究验证了轻量化 YOLO 模型在非标准体表肿瘤图像检测中的有效性。结果显示，YOLOv10n 的

F1 分数为 0.912，mAP@0.5 达到 0.912，而 YOLOv8n 的精确率高达 0.952，能够覆盖十类体表肿瘤。研

究表明，YOLOv10n 适用于全面的病变筛查，而 YOLOv8n 则在高精度诊断中表现尤为突出，特别是在

检测基底细胞癌和鳞状细胞癌等恶性肿瘤时表现出色。尽管稀有类别(如蓝痣)和图像变异性带来一定挑

战，但 YOLO 系列模型框架为体表肿瘤检测提供了坚实的技术基础。未来通过集成分割功能和扩展数据

集，模型的精度和临床应用性有望进一步提高，从而推动体表肿瘤自动检测技术的发展，并为改善患者

预后提供支持。 
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