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Abstract

Neutrophils, as the body’s first line of defense, are rapidly mobilized to sites of immune response and
serve as a crucial component of nonspecific immunity. Neutrophils primarily exert their functions
through three pathways: phagocytosis, degranulation, and neutrophil extracellular traps (NETSs).
NETs, discovered in 2004, are large extracellular web-like structures composed of cytoplasmic and
granular proteins. During sepsis, massive NETs release helps combat infection but simultaneously
amplifies the inflammatory cascade, leading to aggravated tissue damage and worsening of the condi-
tion. Therefore, understanding the molecular mechanisms governing NET formation and inhibition is
essential for developing sepsis treatments. This article summarizes the latest list of miRNAs associ-
ated with NET formation, categorizes them based on their mechanisms of action, and clarifies their
functional principles. According to recent research, miR-155, miR-1696, miR-7, miR-223, miR-146a,
miR-142a-3p, miR-3146, miR-505, miR-4512, miR-15b-5p, miR-16-5p, miR-26b-5p, miR-125a-3p, and
miR-378a-3p regulate the formation and release of NETs in sepsis through various mechanisms, im-
pacting the extent of organ damage and patient survival.
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1. 4R

rh R A e N AR L S A, AEMLRIEIA T, TR MR A S I TR, B, TESORESATE,
HRHRL 20 B PR A i DR B R O T S N [1] e PRI AE MO, B Se BN ARIERR AL, AR Bh IR
PRGBS AT AMBH N NETs. S5l R0 A4 [2] A PRI i 71 175 46 I [NETS]7E H
PERLAH BT G R OCBRAE o Bl 0TS 00 R MR A 7 40 B AR TEC € 5T I R 40 B P Rk 2 1,
N NETSs. BREIER K& I 2R R FREEERE L, 520 NETs Bt B B30, 76 R 5000 AR RN, S5
HABREH— DR FR IR KA. BifEeG . 22885 Dekag) [3] [4]. NETs M4
HERGRRIZS R, (B NETs FIRZENLHEIAEE .

MIiRNA 2304, YA —Li SR/ N ESID RNA, {17 mRNA KV B RREL. 59100
FIAERE, o B DL MR MAERS NETSs )74 SR8 S AT 58 K30, miR-3164/PAD4 15 NETosis, 4%
AR SORE RIS S IE Y, microRNA-140-5p JE I CLANAHCE T 2 QLB IN E S kAR AEL[5] [6].
%5 NETosis 4> T2 miRNAs 5 14 F#, 775 miR-155. miR-1696. miR-7. miR-223. miR-146a. miR-
142a-3p. miR-3146. miR-505. miR-4512. miR-15b-5p. MiR-16-5p. miR-26b-5p. miR-125a-3p 1 miR-378a-
3p~ microRNA (miRNA). KB microRNA i1 NETS fIHLHI, BEAMRER MURE 19VA YT SR ABr (1 HE & .

2. MiRNA BI4ENER
KR miIRNA T 060 T AE9085 RNA [ 98 Fak 42 UL pre-mRNADE P& Frf, KB
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208 18~24 ML IR, (E¥RIEHNRIL T RIEDIRE . XL TR S ) RNA 5 R TTERE &K (RISC)
H[7]. X G ET miIRNA SEEEE R 1158 RNA (MRNA)1 3-0 dERHREIX 454, Sl R el %
fif mRNA. HRIEHFFCER, mIRNA FEVFZ AV s IEEEM, Wk E . oo, Riak A Q
W SEREMET, FNES5 THZHRMARE. KREB]-[10].

3. NETs

NETs i 2 7E 2004 45 R B, A2 HH Brinkman 13 [5] 550082 B30 (6 b R 40 i nT DU ik R s
PERLAN A B I BE(NE) . BE A BE(MPO). ZHLER (1 25 4RI R Z5 44 [11] . NETosis 452 SCAH
oL 6 RS 1 4 M AT T LR, DX R T AR B [12] [13]. NETosis A =FANFEEA, BN
NETosis: BRI MANAL A 1) Ca, $mE F1HE C Al NADPH FALEEI G, M5 805 A A R,
FEWE A BIERALE T, MPO JEAL, SEUGL RS AR, iEEaHEa s, SEh
PERIAH AL T [14]-[16]. fFiE3C NETosis: CRIFEEEMBEAZAL, I HORE IR IRe[17]. FIhRERI
A SRR TR T, BORS S BRI W Be G 4 (PADA)IE 5, A A Nk, et R 4 k.
DNA-E EE AV e i R g 4 A B NETs, RIEFLRAEFH[18]. &ALkt DNA 117
520 NETosis, 2 K EE 5 M S I3 AR R FE L T RE[19].

4. BREBIMIEREY NETs B2—HRWTIS]

JRFMAEHF NETs frderhne, B A MRS SEEAS S, AH B KR IRAR 0 R
B, TERRYLHAN], NETSs KISEFRHILH B FF AL, W3 . PR R P LU IvE M, NETSs 4 st 7 i
fif, WSV 2RAEMML S, mHED S oL PR E ARG, ARG HPTRE & B K [20] [21].
AR, NETSs 32 n] 38 ik i B R Ak e 48R I Mo 4R, Bl NETS (13 FEER i, AL AR 2 i A
S R G, AR AR KNG R, S S0 S e I A AR T R, N % A
HIRERRAG[22] . AFFTREA NET BB, S/~ haistba s n, NS0 b s g & N B 40 i 15t
=, INE A S NI v [ 23]

5. MiRNA fERBIMAEF T NETs BIEIE

miR-155 @it i #% PADA A5 8 N BRI 1 132 T 52 NETs JE R [24]. miR-155 Ji i B #2255 5]
AR S BB - MR TR AVR B RR, fERER B REETEN, FltEdm. 5
P TR AL L5 [25] 0 SRT, A8 A R4 i AR ] miR-155 A2 HOOH R BE M & AR L E f 1038 7E AR
SO, NAEASRIW Tt — B St . 3 E SR TE KT (1) miR-146a 0] bk 4 i oo 1R A
BALEE 2, ME SRS, Mffedt NETs IR, NETSs #7645 77 miR-505 ] LA{EiE NETs
fIIE A% . miR-378a-3p Al miR-15b-5p, ‘B A1+ PI3K/AKt i&1%, 25 HWEA NETosis . ttAk, HL-
60 4fiiZ: miR-378a-3p Ml miR-15b-5p BAVMMFIR /5, B b 3-BER VLB MO M B 2 1 (PDK1)ER
KEEEAM M E RN NETs FERAE 71[26]. miR-1696 3 ot 4111 1] 23 bk H- Ak it 4204k ¥ 8 T 8 [MAPKS] A1
PIK3A/AKE il , 875 NETs [, miR-16-5p [FZRIAATR4M, MM RAFL (Raf-1 JF@ LR, 2%
FRI75 R R VL) I PIK3RY (MR ULEE-3 ARG IR T AL 1), RAFL 5 MAPK/Z L AME 5 VA 35 F i/ NADPH
AALEE 2 (MEK/ERK/NOX2)il 2%, i PIK3R1 5 PI3K/AKYMTOR JEMAHIE, SHEHWEM>, HiEh
NETosis A4z B AHIE[27] [28]. miR-223 BT WS 257 N 40 A N R 1L-18 436G 1 U A i, #0ik] NETs (1)
TR SR EE RIFFe R, s R4 T miR-3146 (1) 058 % L& KB NETs [29]. 7E/M R
SIS P EEE R, miR-3146 5 HUFITATT (MIRNAS HIS SUFF1, 5 5 PEH0 1 750) #0003 1 2R st A3t
PE NET MJER30]. AT, FEXLERFir, SKIGHRAA N RIFEAALM 7. ik, @30Tk
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NERERPERA, Bilin: KBESREOH: FAANZRTHRS YR gEM, 7558 B N R R
BT miRNA EEIERT, AU/ BRABRY . R A U5 A MAn 4 0 B I 4 A% A 2 G 2 e /) B e
[, #57 AJEYE NETosis B2, SRIGHE miRNA )42 NETosis [31].

6. BEMRE

JH& B MLRE R L1 52 4% BTG R W 07 SRR TT 07 28, 00 I TR e AR R AR B b AR st 1 S B i
AR IR, NETs SIEERERI TS G HH I KR, Hd NETs ] MPO-DNA & & 5 M EEE 7 71 48
BT (SOFA) 2 IEM 5%, FERAKT MAERT NETs B E R EE, ¥ LRI F LI, 76 e
FHEH DNA BRI 2067, v AR L3R e R /N BRAEAE 2R, ek B B 28 D) RE RS AS 1Y) R
Ao N, BEAIATT TE M I A 55 2 R A URE FR 3 O T, JLh NETs $E [ 25016 )7 N E 2,
MIRNA 43T 1% ThRE fe H R IE TS (1 % e AE I PR Ok B 2. miRNA {ENAkEEEE NETosis 1 %A
BN, FANS5RE. A, ErSRagi.

{H/Z miRNA el k5 i i 4% NETosis, i1 PAD4. ROS. 4 A MINLHIMATE S, S BEEpse S
B8 UE AR A5 5 @ i 10E o 72 IR EE MURE TF miRNA 3545145 NETosis FIZAL U R4S T RGH6A . 41
AN HETT mIRNA B Pk 4 i B B A 4% NETs iUl et 028 K OS2 R 1Rl A& i . B
AR 7 SEIR R A5 T/ RO BT, A8 R4 miIRNA 1#% NETs s2it/b 2 /. MiRNA fE
NMEERIE NETs SCHEVRTER 7, M 4kSRb T a3 R A MRIE, 1BEE S, #—Diais
HUIL, ST L B R A LS 5
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