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Abstract

Diabetes is the most prevalent metabolic disorder worldwide, with its incidence increasing year on
year as living standards rise. This condition induces multiple systemic complications, though ambi-
guity persists in its conceptual definition. Of particular clinical significance is diabetic cardiomyo-
pathy (DCM), a frequent cardiovascular complication characterized by myocardial and peripheral
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vasculature impairment. Distinctively, DCM manifests as primary ventricular dysfunction in dia-
betic populations following exclusion of conventional cardiovascular pathologies such as ischemic
heart disease or hypertensive cardiomyopathy. Current research delineates several pathogenic
mechanisms underlying DCM, with inflammation-driven oxidative stress (0S) emerging as a critical
pathophysiological driver. OS triggers excessive reactive oxygen species (ROS) accumulation in car-
diomyocytes, initiating a self-perpetuating cycle of redox imbalance. ROS overproduction induces
mitochondrial dysfunction, exacerbates inflammatory cascades, promotes hypertrophic remodel-
ing and interstitial fibrosis, ultimately culminating in impaired cardiac contractility and diastolic
dysfunction. MicroRNAs (miRNAs), endogenously expressed small non-coding RNAs, have emerged
as critical epigenetic regulators in DCM pathogenesis. The purpose of this study is to elucidate the
potential mechanism by which microRNAs participate in inflammation-induced oxidative stress in
DCM.
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1. T4

W PRI Co VIR A2 i 70 HEBR Tt PR30 Fikoe 75 « s XL AR PR 9 5 3 4D 7% 2 I 5 5 O U 6 TR 2R O 15
LN, AETE T O LSS R AR RE 1] B PRO7E P o UL 1A 30 AR B 22 75 TR R 10, B O LA M A K
o JLIRDJTRA LA AR A . 90 ARV T RN UG R (OS) [2] 22 77 TG B A= B2 Je e 1 R0 Al
HERTS G AR A PRI R 2 BAE T, BAR Ot IR JURR B A FALH], (H S R 2
R AR PRI U ) E B R R . —

FRWFFLRE, /N RNA (microRNAs, miRNAs)AE 2 FluCo L5750 B 95 BRI AR A ok 3 58 B 1 1R
[3] [4]. miRNAs J&T—28IE%mA%/N RNAs, £ 22 MEHRMAL, XNy T )L PAETIraHR R E
W, b BRI ERSE, R EINRRRIER RGO LGSR R R3] [4]. &S Rk, TENREER A
SR IS 1200 F# miRNAs, Hid 60% K45 8 F 5 13 8 52 B miRNAs E#E[5]. Eak, ki
(UEFE 2 7R miRNA I $ $E L R 2, PR MRIGTE L 7 (bR T S AR i R p R $5 S AR 6]
OV LI 2 7R IA T miRNAs AMYUAE DCM 123 51 BRI, F 588G S S0P, R6E
KL O WA TR, i H E 2 BT RO A T B0 W R A 6]

AALRERFEIR N ROS 1A BUE HB I PL AL RENERREE ST, T3 ROS BB IEGI R AW T4
Gl R EDRES . KO REM SIANRG N RE[7]. £IEFERS FHFEEREHANSYS, HE
I v TR R 53 14 52 00 v 22 e b 0O ) 1 B 2 O 0, TS R AR DR 5 AT 51 S ROS I B AR, L llE
B ROS W& s E, BERIEARN, S-SR S ER S, Mo BEER, £ DCM KK &
R E] T BEER. 2 ROS FEAER LI AT S EUO S G, BAARRIAE SOV AR B EEE(LDH). L
P e 7] THG(CK-MB). WU & F1 (¢ Tn) 55 O WU b5 S0 T =i (8], TRIGAFF 58 G i PR S AL S R 17
Bl DCM H (1) 54tk

ROS W= 2Rtk . NAD(P)H AL PWRIN(ER). i EIBEAR . BEPES LY. — SRS
BE(NOS) [9]55 Z FloRi . Horh, ZRRIATEA AN RER S EWE A T R EE ZAEA[10], &
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RER A BRI FT, Cl AL BRI L R ATP B, ZRRiiR i T s T S E R AL S
ERGEA N T(0,), MIIFERZ 4 ROS i FEFIKRIE. K& ROS MRIFEAZ, (HR&H IO
AR ABG IR IK DI RERRERS . 75 DCM [sh i, OULANEH ROS [7KF-252mm O I 1) JE A T g
PRl . AHOCHT FLR B, alid & AR I & (HED) A S 8 IR A4 B 28 (STZ) 5 164 C57 BL/6 /N RN 2 AUBE IR
PR, R ROS HI ErF- AR et O =g E S, FEESFEME[11]. BT ROS KP4
FALRE AN, /e DCM KR JE b Rk 15 5 EEAEH .

2. miRNAs ZFERERFOALES 5 LN A RIEE IR

VTSRS 2 W SR B, AU RO B PR R I R b (W B LR B AR B R —, B IR R
RPN ROS 8400, AT 5] A5 FlbE R - RRE, o DCM & ™ F @ i Nt B 9F RIEZ —. ROS K&
AL S BUG A M RXIR . SR A5 BRI AR o1, 1 RS g ma s el s 1, RS
H— MBI TTVERFEAL ROS & 8 AT 9k 2D S8 A6 R 7 A2 o 22 TRURIE 5 36 W 22 ol 22 RS 1Y)
miRNAs 25 7 DCM KR FHLH], 41 miR-92a-2-5p, miR-144, miR-503 H1 miR-340-5p & KT %76 0
MALR R FRIE, 2580 REE R ONAL. Fik, 5 miRNAs 7£ DCM H 2 5 A0 R ) 97 3
AEHLH 51 T ERATR I 48, FIRATE N miRNAs {F T A0 55K 7 i 3% DCM S A6 S 5
13 75 TR FEAT IR o
2.1. DCM & 58BN ZRIESIBE

DCM =& 0% FRIm 51 K e e O U AR, S8 SR AT e HAZ O BAE BRI 2 —, T2 k4GS
T 1) S RS A O R R PSR . ORI AR 2S5 DCM. U RO AR 5 S id g 2
L F5 22 24 )R 1540 B (I (mitogen-activated protein kinase, MAPK) /) il B . #Z KT - L4 AH <K 1 2
(nuclear factor erythroid 2-related factor 2, Nrf2) /M S Hi A IBES . BENEIEILEE 3-8/ 1055 B (phospha-
tidylinositol 3-kinase/protein kinase B, PI3K/Akt)/1 518 #% & Sirtuin (Sirt) R/ Sl %, HIX L858 #E 5i8d
/N RNA (microRNAs, miRNAs)Xf i R B Al KFE#E 22 5 DCM IR AE R FE. BRI J 3
miRNA-FE f 45 0 2% (1) ], O DCM A N 0R 7 At 1 B 22 i 7 AE T T .

2.1.1. MAPK /T BHEXESERE

2 A A (MAPK) B RS NG S/ Rk mr —, WITESAN T, fEE 588 RIE
FHHREBER . ROS i FEFR R ATEH MAPK 4%, ATk Co LA B T 3060 o JUE 45 K4 N Ty i 7= A AN )
I, S DCM K RA, BA&TIEO IFEE[12][13]. LB/ 77 RN 2 (MKNK 2)/2& MAPK #4211
JEA, miR-92a-2-5p fEH T- MKNK 2 #FESE2#rl fi[14]. B, Z5H MKNK 2 7] PAFj IR & i3
MIREE, LRI TR ATP RSN, kiSRRI M e A IR 55 15]. Yu S8 AR, i
Fik miR-92a-2-5p AT HNHLC LA R MKNK 2 (31K, MIfiFE p38-MAPK {5 SR ik, kit &
B 5 0 UL B A R 53 9]«

2.1.2. Nrf2 TSR ENESER

%R F-- 2040 M AH G R F- 2 (N 2) 2 —Fh g Moot S0 A0 SO 82 H G 15 B8, AR AL Jd i i
TEPUSACIE ORI 1 11 MR BRI 1) 3R RS FAL RO B R G, B S 4l 52 2 P d e ids . — TR 5
B microRNA A 7E 55 IRV B 22 (STZ) 155 3 BN JR 73 /) B 22 5 ROS T ORI O LA M R T B 5[ 16 £
DCM #RH, T AR I 7 AR T 3G 5 Nref2 (199846 17]. i miR-144 @ik B HH0 1A Nef 2 $1H] &
BEE S RO ROS AL AT . BHE IR, 75 STZ F S HRERM /N AF, 24 miR-144 7R,
RO RE RGO N E AL A T, A G O AT RE[16]. AN AT 208 ) —AN [l U & VL AR miR-
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144 1F STZ 7 SRR R R Z 0 B ARNLE], (E2'E3E7R F I miR-144 BEMEFRKTE DCM &4 E AL 3%
17K, AERH 7 miR-144 £ DCM )38 /1. 4h, Miao 25 AUERH 7 DCM 1T A 55 577 (CPDT)il i
1 miR-503 /EHAZIEF - L4 MAH R+ 2/40 840 [ B Te A (Nef 2/ARE)E 51 S 428> DCM K
AR (18]

2.1.3. PBK T SHEXESEE

WG EELEE 3-1 M (Phosphatidylinositol 3-Kinase, PI3K) & —Fot @t A K55, HB5 7 L MnHEA
MR, FEAEE B (Protein Kinase B, PKB/Akt)/& T8 Rz —, CAIT S HABN 4> TRk T
PI3K/Akt {55 B EE[19]. 1%M5 5 IHE S RS AMIG I 705 ARE ITR A £ iz Oleg 2 —, i
R 7L B PI3K/Akt 15 5 I8 % o] LA 98 A B3 B SRS =42, B a] L] PIBK/Akt 15
SR R IEPT A BHTE AR AR AR 2 R T R AT BEZELE DCM 3R RE[9] [20]. Yang 25 A GBI 4 PI3K/Akt
5 R R AR ST PR /N BB, R ELISA A1 ROS %% R4 T T miR-203 X DM /MR MDA
F1TROS AT, 45K %R IE miR-203 #[5) PIK3CA #l] PI3K/Akt 155 il #4950 O LR AL S8
KBRS S B O LR 4E1b [ 217

2.14. Sirt fr SHESIEEEBTLE ROS #if5

Sirtuin ZF A Sirtl-Sirt7, HA Sirtuinl (Sirt])ZHF TR L K, JGH RO ML BRI 7T A 5
BB RO e IR A R (NADYK I PE L CERE[ 7] Sirt 1 AN AT DLKERIE T A0 A% it B
A AR TR 7 B0 SR AL, T LICKS SR I 20 i 53 FH 2 b A R R S 1 B I OB [22] . Sirt 1| /E N —F
PRAF R, AT RULE G IS 508 AN At i ORAPVE L, AE STZ W53 HURE IR /N B, Sirt 1 ERIE TR
W, H W07 Ac-SOD2 B LK M 2. BEAL =4 SOD2 # i, Mg SOD /=4, Sitik, il
Sirt 1 (3R, AIRAH RS FIRSRIN, ATk 20 5 5o s SR B8 77(23]. B miR-22 AfDLE#ES Sirt 1
(1) 3 AERIBE E T HI(3-UTR)SS &, AT L1 Sirt 1 K85 DCM H ROS [7=4:[7]. AT FRIA miR-22
MR B Sirt 1 RIRISEAEL[24]. T35 — U 7R W T I miR-34a GEA RO & Sirt 1 FRIEKF
Jei HG 7 577410 ROS SO LA I T2[25] .

2.2. DCM T RESREBX S FIEAT IR L EEEEER

BeL-2 FIEFE SR TR, HRE T EAMPUATEOMWR, LFESS5HRMAEFRMET, H
BeL-2 FIGRMAEL KA B AR5 S5 AR T DR th R VR [26] [27]. HorhBEREAH A s 1 (Mcl-1)72
BeL-2 FEMEER R 2 —, R—MPHTEA, CANEZ MR S ERIA, mHBE LI RS
HEER, RIRIT IR A[28] [29]. Mcl-1 TE4ERFE RIS IR O LA LA AT 2, — T 5
FW, AR LA BRr S PR R Mel-1 (/B A FL R 5 R 0 IV Rt Mel-1 fg 3 Bepadt sk A0 UL
FIZET[30]e SAh—TF AR, 1 miR-340-5 p @i 2 Mecl-1 05 28Rk Th B B i AL AL N 3, R
2., JEid TUD #AR4] miR-340-5p BefE ] ROS MI7=4:, X NBEATERME T — MENIEYT T TREE 55 108
BER31].

Rho JHHROCK)E AKX L5 RhoA/ROCK, RhoA &—Fi/h GTP G54 HEH, BHIELZMESHS
#4%, ROCK [ 5 U & 22 Z IR/ 75 B BR A '& /N RhoA 1) R s N4 R ¥ & AF FH [32] [33]- RhoA/ROCK
WEIEOME RABHPEZMSE, EAMSERTHNEIE. M/MUE AT R P WA ,
M HIES 58T [34]. WFFEERM, 78 HG BRI, 0] RhoA/ROCK 3 i ] B Lo LA
L B REBORTE T, IR R A T EFERS[35]. Wang 25 AWT LR, 76 HG %S0/ B0 L4,
N miR-185-5p #i% RhoA/ROCK JH s, 2k NN & A A LN bR AR T[36].
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2.3. BREZEMESIEREX

R RAE TR AR AL AR AR, T 2 4L LA HAR T R AR KM 2%, 3L A2 5 DCM 1)
FALBIBUR AT R . B, MAPK RS 5 Nrf2 il A7 £ A8 HIME K &, PI3K/Akt 3@ rl il GSK-38
2 Nrf2 (3& P, 1 Sirtl 5 Bel-2 FGEB I LR AR T RE % 2 5 80 RO 8, 18 6 1) 38 SO ]
fie /2 DCM Ji BEML & 2 M IR IH . (EA3IE R 2, BT B R IYI8 0 miRNA-FE SRR v i 3 R I
F, miR-92a-2-5p/MKNK2. miR-144/Nrf2. miR-203/PIK3CA. miR-22/Sirtl. miR-340-5p/Mcl-1 } miR-
185-5p/RhoA 5% 05, 25 DCM RIS RAIT ML T EAM 717, 45 b, DCM A6 B0 2 L5
5 % S miRINA-E 55 00 2 1) e8] B, SR T X 22 9 s B Ak RO B, S MG R T TR 1 T EE B3
TEE S 500 7 B . AR TR — D TR M@ B () (022 ELML . B L I 4% 40 1 IO 290 S B0 1) 259 ) A
R, 29 DCM BB 6 A5 IR St (1 B0 5 S R ALl
3. Wig

KEHFUESE 7 miRNAs 38 i S0 RO 20 444517 55 [ Mg 42 7 DCM R AR K e vkl 5 8 24
H o XS IR IES SN RNA 20 F 2 55 E MR, BT T3 KR IE 168 16 DCM AR 7 TH AT
HITZ R, HAEHT 28 0S MK T2 5 DCM KIRImHLE] . £ HG % S AN & STZ i
SN R, @ R EC R I miRNAs IRIAKFE, 25014085 MAPK /- SE & 155 Nrf2 Al Sirt 1
N FHIPUEAAE 5. PI3K Al RhoA At SR A KAS 5 FIHGE Mcl-1 A M08 1245 5 A #i i U140
KA A R e RAR AT . DCM AR LIS A4 X 2 1, BHTEEXT OS 7 DCM H & Ji L i
AN, R 2 B T AR R B X TF R B BB 2540, JCAH D4 T MEAR EA A DCM H OS IRI7KF. [RITE
DCM H', miRNAs FJEIT I /TR R, RFEE RN —ANBT T ST, Bk, BEEST4&
YA, miRNAs A B IE AR R IO B R IZ2 W 51697 SEd
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