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摘  要 

糖尿病在全球范围内是最常见的代谢性疾病，随着生活水平提高，患病率逐年增加，能引起诸多并发症，

但其定义尚不明确，其中糖尿病心肌病(DCM)是一种严重威胁人类健康的疾病，是糖尿病一种常见的并

发症，对心脏和外周血管均造成损伤，其特征是在排除其他心血管疾病，在糖尿病患者中发生心室功能

障碍。目前提出几种糖尿病性心肌病的发病机制中，炎症诱导的氧化应激(OS)仍然是发生糖尿病心肌病

的主要危险因素之一，它可引起活性氧(ROS)的增加。心肌细胞产生的ROS会对心脏产生不利影响，它不

仅能进一步产生ROS，造成恶性循环，而且也会导致线粒体损伤、炎症、心肌肥大和纤维化，最终导致

心功能障碍。微小RNA (microRNAs, miRNAs)是一种内源性非编码小RNAs，在DCM发病中起重要作用。

本文目的是阐明microRNAs在DCM中参与炎症诱导氧化应激的潜在作用机制。 
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Abstract 
Diabetes is the most prevalent metabolic disorder worldwide, with its incidence increasing year on 
year as living standards rise. This condition induces multiple systemic complications, though ambi-
guity persists in its conceptual definition. Of particular clinical significance is diabetic cardiomyo-
pathy (DCM), a frequent cardiovascular complication characterized by myocardial and peripheral 
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vasculature impairment. Distinctively, DCM manifests as primary ventricular dysfunction in dia-
betic populations following exclusion of conventional cardiovascular pathologies such as ischemic 
heart disease or hypertensive cardiomyopathy. Current research delineates several pathogenic 
mechanisms underlying DCM, with inflammation-driven oxidative stress (OS) emerging as a critical 
pathophysiological driver. OS triggers excessive reactive oxygen species (ROS) accumulation in car-
diomyocytes, initiating a self-perpetuating cycle of redox imbalance. ROS overproduction induces 
mitochondrial dysfunction, exacerbates inflammatory cascades, promotes hypertrophic remodel-
ing and interstitial fibrosis, ultimately culminating in impaired cardiac contractility and diastolic 
dysfunction. MicroRNAs (miRNAs), endogenously expressed small non-coding RNAs, have emerged 
as critical epigenetic regulators in DCM pathogenesis. The purpose of this study is to elucidate the 
potential mechanism by which microRNAs participate in inflammation-induced oxidative stress in 
DCM. 
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1. 介绍 

糖尿病心肌病是指在排除冠状动脉疾病、高血压和糖尿病患者的严重瓣膜疾病等心脏危险因素的情

况下，存在异常的心肌结构和性能[1]。糖尿病性心肌病的病理生理是多方面因素的，包括心肌细胞肥大、

心肌间质和血管周围纤维化、炎症、细胞凋亡和氧化应激(OS) [2]。其多方面病理生理学反映了其发病和

进展背后的细胞和分子机制的复杂相互作用，虽然已经提出上述几种病理生理机制，但氧化应激仍然是

发生糖尿病心肌病的主要危险因素之一。 
相关研究表明，微小 RNA (microRNAs, miRNAs)在多种心血管疾病的病理过程中发挥重要调节作用

[3] [4]。miRNAs 属于一类非编码小 RNAs，约 22 个核苷酸构成，这些小分子几乎存在于所有组织器官

中，进化上高度保守，主要功能是在转录后水平上抑制靶基因的表达[3] [4]。迄今为止，在人体基因组中

已发现超过 1200 种 miRNAs，超过 60%的编码蛋白质的基因受到 miRNAs 的调控[5]。近年来，越来越多

的证据显示 miRNA 通过抑制靶基因的表达，在细胞增殖、分化和凋亡等生物学过程中发挥重要作用[6]。
心肌组织中差异表达的 miRNAs 不仅在 DCM 中参与调控胰岛素抵抗、信号通路传导、氧化应激、炎症

反应、心肌细胞凋亡等机制，而且已经具有成为治疗或诊断靶点的潜力[6]。 
氧化应激是指体内 ROS 的生成速率超过抗氧化系统的清除能力，导致 ROS 积累并引发生物分子损

伤的病理状态。其核心是氧化与抗氧化系统的失衡[7]。在正常生理状态下需要适量活性氧的参与，但在

长期高血糖环境的影响中多种抗氧化酶的活性降低甚至失活，清除能力减弱从而引起 ROS 的蓄积，心脏

中 ROS 的含量增高，蓄积在体内，导致产生氧化应激的含量增高，便会产生恶性循环，在 DCM 的发展

中起到了重要作用。当 ROS 产生过多时可导致心肌组织的损伤，具体表现结果为乳酸脱氢酶(LDH)、肌

酸激酶同工酶(CK-MB)、肌钙蛋白(cTn)等心肌损伤标志物的升高[8]，因此研究如何降低氧化应激成为了

预防 DCM 中的关键。 
ROS 的产生有线粒体、NAD(P)H 氧化酶、内质网(ER)、过氧化物酶体、黄嘌呤氧化酶、一氧化氮合

酶(NOS) [9]等多种来源。其中，线粒体在细胞生物能量学、生物合成和细胞凋亡中发挥重要作用[10]，是
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能量产生的重要场所，它通过氧化磷酸化生成 ATP 时，线粒体电子传递链中部分电子会直接与氧气结合

生成超氧阴离子( 2O− )，此过程是产生 ROS 最主要的来源。尽管 ROS 的来源众多，但最终都会导致心肌

细胞氧化损伤和舒张功能障碍。在 DCM 的动物模型中，心肌细胞中 ROS 的水平会影响心脏的基本功能

障碍。相关研究表明，通过高脂饮食(HFD)和注射链脲佐菌素(STZ)的方法对 C57 BL/6 小鼠建立 2 型糖尿

病的模型，发现 ROS 的过度产生能够促进心室结构重塑，导致传导缺陷[11]。由于 ROS 水平增高会产生

氧化应激并损伤细胞，因此在 DCM 的发展中发挥着重要作用。 

2. miRNAs 在糖尿病心肌病参与氧化应激的病理生理机制 

近年来越来越多研究表明，氧化应激是糖尿病发病过程中的重要病理生理过程之一，糖尿病患者

体内 ROS 增加，可引起各种糖尿病并发症，其中 DCM 是严重威胁人类健康的并发症之一。ROS 的蓄

积不仅会损伤细胞的核酸、蛋白质、脂质等基本生物分子，而且也会影响抗氧化酶的活性，因此需要寻

找一个有效的方法来降低 ROS 的含量从而减少氧化应激的产生。多项研究表明多种差异表达的

miRNAs 参与了 DCM 的发病机制，如 miR-92a-2-5p，miR-144，miR-503 和 miR-340-5p 等因子均在心

肌组织中表达，参与氧化应激过程损伤心肌组织。因此，研究 miRNAs 在 DCM 中参与氧化应激的病理

生理机制引起了我们极大的兴趣，下面我们将从 miRNAs 作用于相关因子从而改善 DCM 氧化应激损

伤方面来进行论述。 

2.1. DCM 中参与氧化应激的经典信号通路 

DCM 是糖尿病引发的特异性心肌病变，氧化应激失衡是其核心病理生理机制之一，而多条经典信号

通路的异常调控在该过程中发挥关键作用。最新研究表明参与 DCM 氧化应激调控的核心信号通路主要

包括丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)介导通路、核因子–红细胞相关因子 2 
(nuclear factor erythroid 2-related factor 2, Nrf2)介导抗氧化通路、磷脂酰肌醇 3-激酶/蛋白激酶 B (phospha-
tidylinositol 3-kinase/protein kinase B, PI3K/Akt)介导通路及 Sirtuin (Sirt)家族介导通路，且这些通路均通过

微小 RNA (microRNAs, miRNAs)对下游关键靶点的精准调控参与 DCM 的发生发展。上述通路及其

miRNA-靶点调控网络的阐明，为 DCM 的抗氧化应激治疗提供了重要的潜在干预靶点。 

2.1.1. MAPK 介导相关信号通路 
丝裂原活化蛋白激酶(MAPK)途径是经典的信号转导途径之一，调节着各个方面，在信号通路中发挥

着重要作用。ROS 的过度积累可激活 MAPK 途径，从而促进心肌细胞凋亡并对心脏结构和功能产生不利

影响，导致 DCM 的发生，最终引起心力衰竭[12] [13]。丝氨酸/苏氨酸激酶 2 (MKNK 2)是 MAPK 途径的

底物，miR-92a-2-5p 作用于 MKNK 2 被证实是新靶点[14]。研究发现，禁用 MKNK 2 可以防止饮食诱导

的肥胖，其原因可能与 ATP 消耗增加，线粒体氧化代谢和其他能量利用过程有关[15]。Yu 等人表明，过

表达 miR-92a-2-5p 可抑制心肌细胞中 MKNK 2 的表达，从而降低 p38-MAPK 信号磷酸化，进而改善高

糖诱导的心肌细胞氧化应激损伤[9]。 

2.1.2. Nrf2 介导的抗氧化信号通路 
核因子-红细胞相关因子 2 (Nrf 2)是一种细胞对氧化应激反应的中心调节因子，其作用机制是通过激

活抗氧化基因和调控 II 相解毒酶的表达来激活氧化应激防御系统，避免细胞受多种氧化损伤。一项研究

表明 microRNA 可在链脲佐菌素(STZ)诱导的糖尿病小鼠中参与 ROS 形成和心肌细胞凋亡的调节[16]。在
DCM 模型中，由于氧化剂的过量产生而增强 Nrf2 的活化[17]。下调 miR-144 通过直接靶向 Nrf 2 抑制高

糖诱导的心肌细胞 ROS 生成和凋亡。更重要的是，在 STZ 诱导的糖尿病小鼠中，当用 miR-144 治疗时，

发现能降低心肌氧化应激和细胞凋亡，有效改善心脏功能[16]。不可忽略的一个问题是它无法解释 miR-
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144 在 STZ 诱导的模型中更深层的具体机制，但是它提示下调 miR-144 能够降低在 DCM 发生氧化应激

的水平，证明了 miR-144 在 DCM 中的潜力。此外，Miao 等人证明了 DCM 中 II 相酶诱导剂(CPDT)通过

上调 miR-503 作用核因子–红细胞相关因子 2/抗氧化反应元件(Nrf 2/ARE)信号传导途径减少 DCM 的发

生发展[18]。 

2.1.3. PI3K 介导相关信号通路 
磷脂酰肌醇 3-激酶(Phosphatidylinositol 3-Kinase, PI3K)是一种关键促生长信号，其参与了多种病理生

理过程，蛋白激酶 B (Protein Kinase B, PKB/Akt)是主要下游效应物之一，它们与其他效应分子构成了

PI3K/Akt 信号通路[19]。该信号通路是调控细胞增殖、存活、代谢、迁移和血管生成的核心通路之一，先

前研究表明 PI3K/Akt 信号通路可以抑制炎症反应并且介导氧化应激的产生，因此可以抑制 PI3K/Akt 信
号通路、发挥抗炎或抗氧化作用的相关因子都可能延缓 DCM 的进展[9] [20]。Yang 等人通过注射 PI3K/Akt
信号通路激活剂建立糖尿病小鼠模型，利用 ELISA 和 ROS 荧光探针研究了 miR-203 对 DM 小鼠 MDA
和 ROS 水平的影响，结果表明过表达 miR-203 靶向 PIK3CA 抑制 PI3K/Akt 信号通路减少心肌氧化应激

及糖尿病诱导的心肌纤维化[21]。 

2.1.4. Sirt 介导的信号通路防止 ROS 损伤 
Sirtuin 家族中包含 Sirt1-Sirt7，其中 Sirtuin1 (Sirt1)是研究最多的，尤其是心血管疾病研究的潜在靶

点，它是一种烟酰胺腺苷二核苷酸(NAD)依赖性脱乙酰酶[7]。Sirt 1 不仅可以将来源于细胞核中的组蛋白

和转录调节因子脱乙酰化，也可以将来源细胞质和线粒体中的特异性蛋白脱乙酰化[22]。Sirt 1 作为一种

保护因子，它可以在心血管疾病和其他疾病中起保护作用，在 STZ 诱导的糖尿病小鼠中，Sirt 1 的表达下

调，其下游分子 Ac-SOD2 降低以及脱乙酰化产物 SOD2 增加，从而增加 SOD 的产生，与此相反，上调

Sirt 1 的表达，可以逆转上述表现，从而达到增强抗氧化应激的能力[23]。上调 miR-22 可以直接与 Sirt 1
的 3′非翻译重复序列(3′-UTR)结合，从而上调 Sirt 1 来减轻 DCM 中 ROS 的产生[7]。此外过表达 miR-22
也可通过上调 Sirt 1 来减弱氧化应激[24]。另外一项研究表明下调 miR-34a 能有效增高 Sirt 1 的表达水平

来抑制 HG 诱导产生的 ROS 及心肌细胞的凋亡[25]。 

2.2. DCM 中介导信号通路相关分子作为下游效应物发挥着重要作用 

BcL-2 家族主要与凋亡功能相关，由促凋亡蛋白和抗凋亡蛋白构成，共同参与细胞的存活和死亡，但

BcL-2 家族也在线粒体生理学调节等非凋亡功能中发挥作用[26] [27]。其中髓样细胞白血病 1 (Mcl-1)是
BcL-2 家族的重要成员之一，是一种抗凋亡蛋白，它不仅在多种癌症中高度表达，而且也在心肌中发挥着

重要作用，是治疗的潜在靶点[28] [29]。Mcl-1 在维持线粒体稳态和保护心肌组织中必不可少，一项研究

表明，在心肌细胞特异性敲除 Mcl-1 的小鼠，待其成年后发现心脏消融 Mcl-1 能导致快速扩张型心肌病

和死亡[30]。另外一项研究表明，上调 miR-340-5 p 通过靶向 Mcl-1 加重线粒体功能障碍和氧化应激，反

之，通过 TUD 载体抑制 miR-340-5p 能够抑制 ROS 的产生，这为我们提供了一个作为治疗干预靶点的新

思路[31]。 
Rho 激酶(ROCK)蛋白家族包括 RhoA/ROCK，RhoA 是一种小 GTP 结合蛋白，控制着多种信号转导

途径，ROCK 的本质则是丝氨酸/苏氨酸激酶，它作为 RhoA 的下游效应物发挥着作用[32] [33]。RhoA/ROCK
通路在心血管系统疾病中有多种参与，它不仅参与调节内皮迁移、血小板活化、血栓形成及平滑肌收缩，

而且还参与氧化应激及凋亡[34]。研究表明，在 HG 模型中，选择性抑制 RhoA/ROCK 通路可降低心肌细

胞的氧化应激和凋亡，并减轻线粒体功能障碍[35]。Wang 等人研究表明，在 HG 诱导的小鼠心肌细胞中，

下调 miR-185-5p 激活 RhoA/ROCK 通路，促进心肌细胞发生氧化应激、线粒体损伤和凋亡[36]。 

https://doi.org/10.12677/acm.2026.161142


王思铭 等 
 

 

DOI: 10.12677/acm.2026.161142 1095 临床医学进展 
 

2.3. 通路间交互网络与临床意义 

上述相关信号通路并非孤立存在，而是通过多维度交互作用形成复杂的调控网络，共同参与 DCM 的

氧化应激失衡过程。例如，MAPK 通路与 Nrf2 通路存在交互激活关系，PI3K/Akt 通路可通过 GSK-3β调
控 Nrf2 的活性，而 Sirt1 与 Bcl-2 家族均通过线粒体功能调控参与氧化应激防御，这些通路的交叉对话可

能是 DCM 病理机制复杂性的重要原因。值得注意的是，所有通路均通过 miRNA-靶点的精准调控发挥作

用，miR-92a-2-5p/MKNK2、miR-144/Nrf2、miR-203/PIK3CA、miR-22/Sirt1、miR-340-5p/Mcl-1 及 miR-
185-5p/RhoA 等核心调控轴，为 DCM 的靶向治疗提供了明确方向。综上，DCM 氧化应激调控的经典信

号通路及其 miRNA-靶点网络的阐明，不仅深化了对疾病病理机制的理解，更为临床干预提供了重要的潜

在靶点与治疗思路。未来研究需进一步聚焦通路间的交互机制、新型调控分子的挖掘及靶向药物的转化

应用，为 DCM 的防治提供更坚实的理论与实践基础。 

3. 讨论 

大量研究证实了 miRNAs 通过氧化应激和线粒体损伤等反应途径在 DCM 的发生发展中起着重要作

用。这些内源性非编码小 RNA 分子参与转录后的调节，它们调节基因表达的能力对 DCM 的不同方面有

着广泛的影响，其作用于多种 OS 相关因子参与 DCM 的发病机制。在 HG 诱导的心肌细胞模型及 STZ 诱

导的小鼠模型中，通过上调或下调 miRNAs 的表达水平，分别抑制 MAPK 介导促炎信号、Nrf 2 和 Sirt 1
介导的抗氧化信号、PI3K 和 RhoA 介导的促生长信号和激活 Mcl-1 介导的抗凋亡信号从而抑制心肌细胞

发生氧化应激及线粒体损伤。DCM 的发病机制是复杂及多因素的，目前针对 OS 在 DCM 中发病机制尚

不清晰，大多数研究都是针对开发降血糖药物，也无相关特异性标志物检测 DCM 中 OS 的水平。因此在

DCM 中，miRNAs 的治疗潜力越来越明显，表明它作为一个治疗干预靶点的可行性，因此，随着分子生

物学的不断进展，miRNAs 有望在未来被早期纳入常规临床诊断与治疗实践中。 
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