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摘  要 

精准判定乳腺癌人表皮生长因子受体2 (HER2)表达状态，对于实现患者个体化治疗、提升疗效及改善预

后具有重要意义。传统病理检测存在取样偏倚和侵入性等局限，需要新的方法无创、可重复的检测技术

预测HER2状态。近年来，基于磁共振成像的影像组学和深度学习方法能够自动提取高维影像特征，为无

创评估HER2状态提供新的途径。本文就基于MRI的乳腺癌HER2状态预测相关文献进行系统综述，从传

统影像特征、影像组学到深度学习方法三个层面进行分析，以期为该领域的研究现状评估与未来发展提

供参考。 
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Abstract 
Accurate determination of human epidermal growth factor receptor 2 (HER2) expression in breast 
cancer is essential for individualized treatment, enhanced therapeutic efficacy, and improved patient 
outcomes. However, conventional pathological assessment is constrained by sampling bias and its 
invasive nature, highlighting the need for novel noninvasive and reproducible techniques for pre-
dicting HER2 status. In recent years, radiomics and MRI-based deep learning approaches have ena-
bled automated extraction of high-dimensional imaging features, offering new avenues for nonin-
vasive HER2 evaluation. This review provides a systematic overview of MRI-based methods for pre-
dicting HER2 status in breast cancer, tracing the methodological evolution from conventional imag-
ing features to radiomics and deep learning approaches, and summarizing current research ad-
vances to guide future developments in this field. 
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1. 引言 

乳腺癌是女性中最常见的恶性肿瘤，其发病率与死亡率呈逐年上升趋势，严重威胁女性生命健康[1]。
当今，人表皮生长因子受体 2 (HER2)是乳腺癌诊疗的核心分子标志物之一，通过基因扩增、突变或阳性

机制介导乳腺癌发生发展[2]。精准判定乳腺癌 HER2 表达状态，对实现患者精准诊疗、提升疗效和改善

预后至关重要。 
传统临床检测根据免疫组化(IHC)及荧光原位杂交(FISH)结果，将 HER2 表达划分为阳性(IHC 为“3+”

或 IHC 为“2+”且 FISH 阳性)和阴性(IHC 为“0”、“1+”或 IHC 为“2+”且 FISH 阴性) [3]。然而，随

着对 HER2 生物学特性的深入研究，在 HER2 阴性人群中，约 60%的 HER2 阴性患者实际存在 HER2 低

表达(IHC 为“1+”或 IHC 为“2+”且 FISH 阴性) [4]。HER2 低表达患者群体间存在显著异质性，需依据

激素受体(HR)状态制定差异化治疗方案，HR 阳性患者在早期阶段通常对内分泌治疗具有良好疗效，但在

进展期发生耐药后病程易迅速恶化；而 HR 阴性患者由于缺乏明确的靶点，总体预后较差[5] [6]。既往由

于缺乏针对 HER2 低表达靶向药物，HER2 低表达一直被归入 HER2 阴性(包含 HER2 低表达与零表达)进
行治疗。近年来，新一代抗体偶联药物德曲妥珠单抗(T-DXd)出现，为 HER2 低表达患者提供了有效靶向

治疗，并有效延长患者无进展生存期[7]。随着 HER2 表达从二分类(阳性或阴性)向三分类(HER2 阳性、

HER2 低表达和 HER2 零表达)转变，HER2 状态评估已成为乳腺癌个体化治疗决策中的关键环节。尽管

病理检测仍是当前判定 HER2 状态的金标准，但其仍面临取样偏倚、侵入性检查以及难以实现动态评估

等局限性[8]。因此，探索无创、可重复评估的 HER2 状态的技术具有迫切临床需求。 
磁共振成像(MRI)作为一种多序列、多参数成像技术，具备优异的软组织分辨能力、无辐射及良好的

可重复性，可显示乳腺癌病灶的形态学特征、血流动力学表现与侵袭程度，为 HER2 状态评估提供丰富

影像信息[9]。MRI 提供的丰富影像数据为人工智能技术在乳腺癌诊断中的应用奠定了坚实基础。人工智
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能技术主要包括影像组学方法和深度学习方法[10]，可对乳腺影像进行自动化分析，实现图像特征的提取

与定量评估，高效完成肿瘤检测、分割及良恶性分类等关键任务，从而为临床个性化诊疗提供稳定、可

靠的辅助决策[11]。基于此，本文围绕基于 MRI 的乳腺癌 HER2 状态预测相关研究，按照技术发展脉络，

从传统影像特征、影像组学到深度学习方法三个层面进行系统综述，以期为该领域的研究现状评估与后

续发展提供参考。 

2. 传统 MRI 影像特征与 HER2 状态关系 

乳腺癌患者常规 MRI 检查中，动态对比增强磁共振成像(DCE-MRI)能够获取时间–信号强度曲线，

并计算增强峰值(PE)、平均增强值(ME)和达峰时间(TTP)等多种衍生半定量参数，用于评估肿瘤血流动力

学特性。基于这些参数，病灶的强化模式和分布特征可以进行半定量或定量表征，从而可用于评估肿瘤

的生物学特性，并辅助分析其潜在侵袭性和分子特征。弥散加权成像(DWI)则反映肿瘤的细胞密度及组织

微结构，其中表观弥散系数(ADC)作为 DWI 的核心量化指标，可描述水分子在组织内的扩散受限程度。

多项研究已基于病灶强化模式、DCE-MRI 半定量参数及 ADC 值探讨其与 HER2 表达状态的关系，为非

侵入性预测 HER2 状态提供了依据。 
Park [12]等的研究表明，即使在 HER2 阳性群体内部，不同评分患者的 MRI 特征也存在差异：HER2

表达为“3+”组更多表现为非肿块样强化，并且其病理完全缓解率显著高于 HER2 表达为“2+”且原位

杂交阳性组。Wang [13]等报道 HER2 阳性肿瘤更常呈现“速升–流出”型曲线，且其 PE 与 ME 更高。

Moradi [14]等的研究证实了 HER2 阳性乳腺癌的瘤周 ADC 值更高，且更常伴有瘤周水肿。此外，Yuan 
[15]等的研究同样发现 ADC 值与 HER2 正相关，但指出单纯影像参数构建的贝叶斯模型错误诊断率较高，

不能有效预测 HER2 表达状态。Liu [16]等在此基础上推进，将 MRI 参数与临床病理特征相结合，在加入

Ki-67 表达后，构建了两个诊断模型，模型在训练集与验证集中的 AUC 均超过 0.8，能够有效区分 HER2
阳性与零/低表达状态，以及 HER2 零表达与低表达状态。 

随着影像技术的发展，超快速 DCE-MRI 与合成 MRI 等新技术在乳腺癌诊断中得到应用。Guo [17]
等使用基于差异化笛卡尔采样(DISCO)技术的超快速 DCE-MRI 获得定量参数，研究发现容积转移常数

(Ktrans)、回流速率常数(kep)以及血浆容积分数(vp)在 HER2 阳性与阴性组间均存在显著差异。Zhan [18]
等则证实，合成 MRI 参数中的增强后质子密度(PDe)是区分 HER2 零表达与阳性的最佳指标；当 PDe 与

ADC 值联用时，能进一步提升对 HER2 零表达与低表达的鉴别效能。 
上述研究证实，乳腺癌的多种 MRI 特征与 HER2 表达状态存在内在联系。然而，基于传统影像特征

的分析主观性较强，单一参数的预测效能有限，仍需结合多方面数据分析，以提高对乳腺癌 HER2 表达

评估的准确性。 

3. 影像组学在 HER2 状态预测中的应用 

影像组学通过深度挖掘不同 MR 序列中蕴含的高维特征，将影像数据转化为可量化的“虚拟活检”

信息，从而为 HER2 状态的无创、动态预测提供了全新的解决方案。 

3.1. 影像组学预测模型 

Chen [19]等的研究回顾性纳入 233 例侵袭性乳腺癌患者，从 DCE 第二期图像中提取放射组学特征并

通过六种不同的机器学习建模，其中自编码器模型性能最优，在验证集中区分 HER2 阴性与阳性乳腺癌

的受试者工作特征曲线下面积(AUC)高达 0.994，准确率达 0.976。在针对不同 MR 序列比较方面，Liu [20]
等从涡轮反转恢复幅度序列(TIRM)、DCE 第二期、DCE 第四期、DWI 及 ADC 五个序列中提取特征，发
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现 DCE 第二期的单序列模型在识别 HER2 阳性时表现最佳(AUC = 0.88)，而多参数模型在区分 HER2 低

表达与零表达中 AUC 达 0.83，其中 DCE 序列特征贡献最大。Ramtohul [21]等结合 T2WI 和 DCE-MRI 序
列构建放射组学标签，在外部测试集中区分 HER2 低表达/阳性与 HER2 零表达的 AUC 为 0.80。也有研

究[22]比较了 T2WI 与 DCE 序列，发现联合序列(T2WI + DCE)模型在识别 HER2 低表达时表现最优，验

证集 AUC 为 0.84，多序列融合策略被广泛验证有效。类似的，Peng [23]等结合了 T2WI、DWI、ADC 及

延迟期 DCE 序列构建组学模型，在区分 HER2 零表达与 HER2 低表达/阳性方面表现良好，在训练集、

内部验证集和外部验证集中的 AUC 分别为 0.89、0.86 和 0.78。进一步结合病理特征后模型 AUC 提升至

0.80~0.87。一项研究[24]针对浸润性导管癌患者，使用 T2WI、T1WI 与 DCE 序列构建融合模型，在多种

机器学习算法中，随机森林模型在区分 HER2 阳性与阴性(AUC = 0.777)以及 HER2 低表达与零表达(AUC 
= 0.731)中表现最佳。 

综上，现有研究在序列选择与建模方法上具有多样化，动态增强序列常被证实具有较高预测价值。

但不同序列的选择与扫描设备参数差异引入了潜在的偏倚。未来需进一步统一特征提取标准，并探索最

优序列组合，以提升模型的泛化性能与临床适用性。 

3.2. 瘤周影像组学的探索 

肿瘤周围微环境可在一定程度上反映肿瘤的生物学行为与异质性。近年来，越来越多的研究尝试利

用影像组学技术评估瘤周区域特征，以无创方式揭示其病理状态。 
Li [25]等从瘤内及瘤周 3 mm 区域内提取影像组学特征，并结合临床病理指标构建预测 HER2 表达

状态的模型。结果显示，PR 阴性、毛刺征及边缘不均匀是 HER2 状态的独立预测因子。联合模型在训练

集、测试集及外部验证集中的 AUC 分别达到 0.923、0.915 和 0.837，性能显著优于单一模型。Zhou [26]
等进一步扩展了瘤周区域的研究范围，将瘤周区域细分为 2、4、6、8 mm 等多个范围，并从 DCE、T2WI
及 DWI 序列中提取组学特征，采用支持向量机构建预测模型。结果显示，4 mm 瘤周区域在 DCE、T2WI
及 DWI 序列中表现最佳，AUC 分别为 0.716、0.706 和 0.719。将瘤内区域与 4 mm 瘤周区域特征融合可

将 AUC 提升至 0.752；而多序列组合模型(DCE + T2WI + DWI，4 mm 瘤周区域)性能最优，AUC 达 0.795。 
尽管上述研究证实了瘤周影像特征在风险评估中的重要性，但关于最佳瘤周区域的定义尚未统一。

不同研究在 ROI 划定范围以及特征提取策略上存在显著差异，影响了模型的可比性与重复性。因此，未

来应致力于推动瘤周影像组学研究的流程标准化与方法学统一，以增强其临床适用性及推广价值。 

3.3. 多模态联合模型 

融合多源信息的多模态建模已成为影像组学发展的主要趋势。相较于单一模态模型，多模态方法整

合了来自医学影像、临床特征及病理信息等多维度信息，能够更全面、系统地刻画肿瘤的生物学特征。 
Zhan [27]等开发了一种整合多参数 MRI 影像组学特征与临床变量(包括雌激素受体与孕激素受体状

态)的列线图，用于无创区分 HER2 表达状态，尤其在区分 HER2 低表达患者方面显示出良好的判别能力。

该研究回顾性纳入 364 例患者，提取 DCE 与 T2WI 序列的影像组学特征并构建模型，在训练集、内部及

外部验证集中均表现出稳定性能(AUC 均≥0.820)。Liu [28]等首次系统比较了基于常规 MRI 特征、影像组

学特征及其组合模型在预测 HER2 三分类表达状态中的性能。结果显示，综合模型在训练集和测试集中

的平均 AUC 分别为 0.859 和 0.842，显著优于单一影像组学模型(p < 0.05)，NRI 分析进一步证实其分类

能力更强，验证了多模态融合策略的有效性。 
此外，部分研究尝试引入影像组学新技术以拓展方法边界。Zhang [29]等比较了 DCE-MRI 与非单指

数模型扩散加权成像(NME-DWI)在预测 HER2 状态方面的表现，发现 NME-DWI 与 DCE-MRI 性能相当，
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而将二者结合为多参数 MRI 可显著提升预测效能。 
多模态融合策略在上述研究中表现良好，相比单模态模型进一步提升了性能。但多源数据的异构性

(如 MRI 组学特征与临床分期的维度差异)对特征融合与模型构建提出了更高要求。深度学习通过其分层

特征抽象能力与动态权重调整机制，正成为解决上述瓶颈的关键技术路径。 

4. 深度学习在 HER2 状态预测中的应用 

近年来，深度学习技术为乳腺癌 HER2 状态的无创预测提供了新的解决方案。 
Dai [30]等开发了一套基于 DCE-MRI 的深度学习系统，采用 U-Net 架构实现乳腺肿瘤的自动分割，

并利用 ResNetGN 模型对 HER2 零表达、HER2 低表达与 HER2 阳性三种状态进行区分。该系统在训练

集、内部测试集和外部测试集中均表现稳定，在区分 HER2 零表达与 HER2 低表达/阳性、HER2 低表达

与 HER2 零表达/阳性，以及 HER2 阳性与 HER2 零/低表达的任务中，AUC 值分别达到 0.768~0.782、
0.787~0.820 和 0.745~0.792，显示出良好的泛化能力。 

Zhang [31]等开发并验证了一种基于 DCE-MRI 的视觉 Transformer 模型，用于区分 HER2 零表达、

低表达和阳性表达的乳腺癌，该模型在区分不同 HER2 状态时展现出良好性能，AUC ≥ 0.71。更重要的

是，基于模型预测的生物学解释研究证实，其决策与 HER2 信号通路关键基因(ERBB2, GRB7)的表达变

化一致，并显著关联 CTLA4、CD4、CD8A 等肿瘤免疫微环境的相关调控基因。提示该深度学习模型可

能捕捉到更深层次的影像信息，为无创预测 HER2 状态及病理微环境情况提供新的手段。 
Wong [32]等则开发了一个人工智能框架，首先使用自监督学习预训练的基础模型(MoCo-V3)从 DCE-

MRI 中提取特征，随后通过 XGBoost 分类器进行 HER2 三分类预测，模型采用 t 分布随机邻域嵌入(t-
SNE)和均匀流形逼近与投影(UMAP)对特征进行低维可视化，并通过夏普利加性解释(SHAP)分析。低维

特征可视化显示不同 HER2 类别呈聚类分布，SHAP 分析可识别出对分类贡献突出的影像特征。模型在

外部验证中微平均 AUC 为 0.821~0.833，宏平均 AUC 为 0.835~0.857，该研究表明人工智能模型可一站

式预测 HER2 状态，具有较好的临床实用性。 

5. 多模态影像融合的探究 

除 DCE-MRI 外，乳腺 X 线摄影(MG)与超声(US)同样是乳腺癌诊断的重要工具。近年来，研究重点

已从单一模态转向多模态融合策略，以期整合不同影像的互补信息，提升 HER2 状态预测的精准度。 
Lin [33]等的研究探索了多参数 MRI 栖息地与超声影像组学的结合。融合了最佳栖息地模型、超声模

型和临床模型的联合模型在预测HER2状态时展现出显著优势，其训练集与测试集的AUC分别高达 0.945
和 0.835，性能超越任一单模态模型。SHAP 分析进一步揭示了关键影像特征与肿瘤异质性(如坏死区域)
的潜在关联。在此基础上，多模态融合的范畴进一步拓展至深度学习领域。Wang [34]等开发了一个双模

态虚拟活检系统(DM-VBS)，通过整合 MRI 的放射组学特征与乳腺 X 线的深度学习特征，成功实现了对

HER2 阴性、低表达及阳性状态的精细区分，在验证集中对三类的预测准确率最高达 89.68%。 
综上所述，多模态影像融合相较于单一模态模型均有较好的性能提升，通过多种成像方式的互补有

助于推动“数字活检”的发展，未来需要更大样本的前瞻性研究去验证。 

6. 局限性与展望 

基于 MRI 的人工智能技术在预测乳腺癌 HER2 状态方面展现出显著潜力，然而其临床推广仍面临诸

多挑战，需要更具操作性的未来研究路线图与更深入的技术讨论。 
首先，MRI 多序列影像参数存在固有的异质性。不同扫描设备、成像参数及采集协议带来的数据差
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异可能引入潜在偏倚，而多序列图像之间的配准精度也对人工智能驱动的自动分割算法提出了更高要求。

未来研究应优先构建标准化的多中心公开 MRI 数据集，通过统一成像协议、标注流程及质量控制体系，

以减少数据异质性并支撑不同算法间的公平比较。同时，有必要开展设计严谨的前瞻性临床试验，进一

步验证最优模型在真实临床场景中的稳定性、可推广性及决策增益。值得强调的是，未来研究还应聚焦

关键科学问题，如如何利用 AI 技术实现 HER2 状态在治疗过程中的无创、动态监测，以推动更精准的疗

效预测与治疗反应评估。 
其次，当前大多数人工智能模型仍属于“黑箱”架构，其决策过程缺乏透明性，导致临床医生难以

理解和信任模型的预测结果。因此，未来研究应积极引入可解释性的人工智能(XAI)方法。例如，可通过

梯度加权类激活映射(Grad-CAM)生成空间可视化热图，明确模型在预测 HER2 状态时关注的关键影像区

域，从而验证其是否聚焦于快速强化等具有生物学意义的表现。同时，利用夏普利加性解释(SHAP)等方

法量化不同影像组学特征对模型决策的重要性，有助于揭示纹理、形态或动态增强特征在区分 HER2 零

表达、低表达和阳性中的作用[35]。 
最后，模型的泛化能力与临床验证尚显不足，多数研究基于单中心、回顾性数据，仍有待大规模、

多中心的前瞻性研究加以验证。未来应开展前瞻性、多中心的临床试验验证最优模型的诊断效能及对治

疗决策的实际价值。 
总之，基于 MRI 的人工智能技术在 HER2 状态预测中表现出良好的可行性与有效性。在多模态数据

整合的进一步支持下，未来有望实现对 HER2 及相关基因表达模式的更精准预测，为深入理解肿瘤异质

性、制定个体化治疗策略提供有力支撑。 
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