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Abstract

Pulmonary Hypertension (PH) is a severe and life-threatening disease characterized by elevated
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pulmonary arterial pressure and vascular remodeling. It has diverse etiologies and an unclear path-
ogenesis, with limited efficacy of current pharmacotherapies. Therefore, in-depth exploration of its
molecular mechanisms is required to identify new diagnostic and therapeutic targets. In recent
years, metabolic reprogramming has been identified as a key link in the pathogenesis of PH, involv-
ing enhanced glycolysis, lactic acid accumulation, impaired fatty acid oxidation, dysregulated cho-
lesterol and bile acid metabolism, as well as abnormal amino acid metabolism. This review system-
atically summarizes the latest research advances in metabolic reprogramming in PH, analyzes the
mechanisms by which various metabolites and metabolic pathways contribute to the development
and progression of PH, and discusses potential therapeutic targets. It aims to provide a theoretical
basis and research directions for the future diagnosis, treatment, and long-term management of PH.
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1. 5|8

Jifi 2 ik =1 & (Pulmonary Hypertension, PH)/& — 2% WL B B0 ar PER B, = BRE RIS Bk 77 i ifi
EBR AT T S S I A, SECHOEAAIINE, &RAHIO)EEE R[], HEl PH K2
WrbsiE . IR, §ERA OSBRSS A3k E 71(mPAP) KT 20 mmHg. HURRE 2%, F
PR 1) BB EEPAH): 2) 2 OFEMTE PH: 3) i &KE TS0 PH; 4) 1841
FekeZEYE PH (CTEPH); 5) ZINRIAHIRRTE PH [1]. RIFHLHEIE LEEF R, KAERMN. SN
WA S EHEZATTH[2]. BEE 2 MEER 25PN, PH S I AR A7 I [A) B A 0 o S o, HK
TR AT 3]

AU G B 2 T8 AR VA TEAR N APIR B2 R, ORI A A AR ) DLIE B3 5528 4 K 5 IR 7
IR . CHOARNZ PAH IS EIFIDNREREAG A2 0L 2 —. ABEOLT, Flzhik e & 41 (PAECs)
F 2 kP H LA AL (PASMCs) 4 +7 45 Be S AR 1 20 &P 47, (BB PAH B, AR AU & AR B3 oo,
RINA ENERE MG (R Warburg 200, JEIDTEREAIRGS . ZehiiAThREFRAG . R B A IR PR AR 2%
i, VAR R EE . ARG T PH W AR EgwAe, #F— LU PH AOWALE], ik
Hr S SR TR R RS

2. BEEAHE
2.1. PEEERR

PH &35 1¥] PASMCs #1 PAECs #ij ) B AR L8 = BRI A SRR G o, A B AE A R T
W) T id i BE IR A R RE, X PRI R FRAY Warburg RN 2 TUHF SR B,  WEIR AR AT 1 DG BE g L I
Wy 2 (HK2). B S WEES 1 (PFK) S AR B0 77 R bE-2, 6- — W5 IRES 3 (PFKFB3)£E PH fii IfiL & 40 i
Foak bR, AR AU ) BE TR AR L AR, DTS S PRI G 20 ot R 2 A U R B R 3R [4] 5]
PFKFB3 W I f 425 () OB, FLAE PAECs W RIEANEPE B3 58, @b® PFKFB3 A] iK%
S PH, /> PASMCs 858 KX ML J85E[4]. fEMRE AT, IMIDIC (& Jumonji Z5#43% C (IMIC)4Hi&
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12 FR ARl 5 1 R 0038 0% STAT3 15 ‘5 i@ B (2 iiF PASMCs HEBEMRAHOCHE, 40 HK2. BEER H
BRI | (PGK1). FLERMEEE A(LDHA)MRIE AR FEA R, fiEilk PASMCs 1958 J2 I H A4 [6]. Itk
4, PASMCs H' Rho BEFBERRAIZ M YAP, {F vk 5% I s Rl 1@ 1 5% PFKFB3 Ki&, {21 PASMCs
PEEZ G SE, 40 Rho-YAP-PFKFB3 i@ % 1] Js2% PAH #EfE[7]. PH 55— S 505HE 2 15 N1
P-catenin [FIREZEIE Bif, BB HK2. PFK. LDHA ZER e sl 2i4, M3k B V2 o wt e e A0
PRRERSL, JNE PH RIS EE[8]. L8 BATIAR, FEREMRIG /2 PH AU B g2 A% O IR, DXB)4H M 1Y 5E
PURT S A R, S PH VRITH4E 7 B ZHE A5 [9].

2.2. ALEEETR

VENFERER A=Y, FLERAE PH B RTALSUR M 2 b B2 T, 78 PH MR R R4 H B4k
Mo BFFERR, FLERACT RIS AN S B O RE TR R 3 0, 338t 22 o WL A 8 4 i If 57 28 A R ) R Py
[10] [11]o FLERWWOE H 5244 GPR81 &5, ™5 Wi ML 5K 3 FH S8 REBE PR Fe ik, AT s el fie I 657 PRy Wi 4 A B
(11 MEAh, WHIERRG SR AN LR & A R B M A MU i iR 4k, T8I A TR BV 5 Tif1E 1a (ASICla)
1233 PASMCs M58 AT RS, In = Al 3 S A A0 PH [12]. FLERIGIE L HE S B M sh e, 253k B4 o A
VFTE T 4UH0(Treg) 031k, B8 AT L 8RE SN[ 13] [14]. 40, FLER{EHE FoxP3+ITiE T 4UAEHH
S, SR AR T RE, RSB S K s ) e B[ 14]. PH 4 PASMCs HALRRBARE A
(LDHA)RIA T 57, A AE SCALIRIG N, WOE 40 M 3G FE AT R A DG I Ake {55 3@ i, e b il i A S5 40 Je A
O IRERERT . 7E PH B KW AR I, #i) ZLRR AR B D LR AR R Ae s PH. I ML B0 /) 2 it
M EN, FRABRAERZ PH VG E S 5 [5] [15]. FLRRIGET —FF O AR B FLER 1L I Wi AL
2S5 PH R4 KB /E PH KR PASMCs T RILZ AN LR G 87 X E & 4 & A AR 1L 1811
IX LGB 0 R SRS R T (HIF) S, ERLRWB T RIAH ST, 2t PH st
JE[16]. FLERANEHERE MR AU ™4, EAE NG T 25 T AR =75 i % 40 i 5 DR ek M D IR S
RZIR0 PAH 95 3RS

2.3, IBITHEARE

WE T A 3 5 RN LR & FAAE PH R AR R B R B BE L B IX S AR 57 o 1096 97 SRS IEE R AR 2R
NI BE 2 AR OCBERG 40 HK2. PFKFB3 L& LDHA 3E 1 COgIE B RE 085 43 100 %% PH I (L4 K Co i i R4
I, AR KE 7. filhn, EH PFKFB3 #lifil5f] 3PO By PFKFB3 [, ReffA RBH (-4 &
Sugen 5416 i%553:/¥] PH [4] [7]. miR-125a-5p I8 #0a HK2 $0HHERERF % PASMCs 58, 23 5% PH B
AU AT O IR JE AT IhBE[17]. [FIAE, =-E 2 R1 (Notoginsenoside R 1) iz 111 B B% i AH S BF(PFK L HK2 |
LDHA) KA AR ZAFLIR /KT, D i L 9 e s # PASMCs o eF 44t s, 22f# PH i
THIERE[S]. TEPRN B AR A0 L, S LDHA il 715k LDHA F0H, Befg /b ili2l 23k AL G &
0, A Al I A R G O T RE[10]. BEAE, BRALEL(H2S)iE i Sk S B Al A i AR T R, AR
IR MEIT B Ik = R [15]. a5 &R 5155 PAH W7 NI 5Kk 57), mIaesScal v RBg %, #2
FIRTT ROR[18]. B MIZHIE RS, WRAR-FIE LRI ZE ) PFKFB3 A7 2k & B 0 i) 551
XA RN 2, CAEZNPIE AL B 7R 58 I 20 ik s e R 97 K19 o A SRAIE 56 75 12— 2 BH 1 bR T e A LR AR
WA LR, PR R FEr PR AR, RS IR IR 2 VAT 2%, LA PAH 3%
PEAL T A RUNIR T T B

24. FHEERE
ARSI B 4R AR AE PH AP 3 BRI MR AR Y 5n M AR B A, I8 1T Z R L HI 52 0 PASMCs #1 PAECs
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RIS TR R PURT, 2 FRE S AR 5 70 2 AE S S 96 T e SE REVE IR I BN K I 0, oS0 Al .
R S DD RERRRS . (H H T EAE AR IR S 6 T SRBAS B, D55k — BT R I PR B0 A o

3. BERARH
3.1. BAAEE 1L

i 105 R S A (FAO) 1 401 g 26 B i RV, 76 PHL AP AR R AR A, EERBN FAO IR 55 .
PH FPA S8R I A ) J it 240k FAO S04k, Sl 267 B AR IS 7 R A QA - 1] R AR BRI AR 2 oy« =2
TEIRPEIR” [20]. A AR 2 BoR K PH B IEMARUNE 0%, RIEITIR S & ST m&21]. A6
FLRW, PH T ARIIR & B (FAS)KIE K% i, FAS 25 PASMCs LR IhAE A E . R & ZHHLPT.
Y N R R T AR A R, (R PASMCs 85 . Filiif i A, #if] FAS Al X fpAR{E[22]. 7E PH
B AR ORI, FAO JRSS T BURBE N 7 WA R, 18I0 p-F2 5 T IR(BOHB)/KF-, i —3 i
TE UL A R 40 B(MVECs) ) TRPV4 45 B 11838 , (2 10F 20 B 3G 55 A0 S 015 S A% 2 23] AR ItZH A,
OV FEIFER I FAO W35, FECONURINRIE, MEL = REREAT[24] [25]. WHRERAEBER 21T 1
(CPT) AR A ) Sk RE, PH A I G = AT RERZ MM CPT1 i1, B85S FAO, Tt #EERN 78
L-PIBAR I FAO, I %0 I 25 E AN D REFR NG [24] [26]0 5 — T 50 R I LR (ACTZ) RE% Pk 52 FAO
FHIRBG I FIE K, #E e PH K BB A O DY RE A = 4P 4k, #E—HIESE T FAO 7£ PH fig
ARG OCEIER[27]. PAH IR 17 R A A& 1 00 R 1 R AR B A S BRe RN A L, id
LSRR T BE RN AR, R AR . KR FAO B A GRS A o sE PAH
BE TS A U8 TT H

3.2. JEEREFIAESHECIHRE

PH B # HEEL(TC) HIH =BE(TG)~ =% & A5 & A E BE(HDL) fIC% 2 i & A IS BE(LDL) & 356 5
#HNFEE(APOA. APOE F5)/K-F kAR ZE A, wREAE PH BIRm LI iy iE A . HiF iR,
PH & Ly - HDL B2 FF%, 1 HDL ] REd i fH [ B3 ) 45 o i) 98 A S B B a2 ik 2 2K P 46 AL
#M3% PH 1%, Kk HDL (%25 PH K4 K FE[28][29]. 5 HDL 2t48354L, PH B I+ LDL /K
LB R, JF H 5 NT-proBNP. mPAP S54RARAHIC, AMUAEHE S PH it M S F2RE, ifi HLZE Fitill
PH HEBE T XS S TR 5 THIAEAE N FHANE 28] [30]. 11 55 —Lewf 70 &3, PH " LDL MARZE R E A%
R 11 (LRIDYFRIE LI, {23k PASMCs M58 e T, JneE il M S A4 [31][32]. PCSKO 57 AE % 5 2%
F#{% LDL 7K°F-, 7€ PH h¥szi&rb R, I PCSKO $ 5750 AT LAy i 7 4 Ak be JORE S NG, 25038 o il
Uige s & EA[33].

NEEEE 70 324 BE(CYPTA ) fEAGIE [ BEAE SRR, FAE 9 i AR I B8 225 407, 4 RAE PH 1
WA 2 B E A WFFURIL, PAH AR MK A 28 VE S BEFI ARV TR B 2.7+ =1, {238 PAECs 3858, 3998 %
P2 RNE SN o T A S BRI R K £ 2 A 2RISR 7 (NCOAT) 42, NCOA7 H4:] PAECs
RN BRANE A S BT 5, ] NCOAT Wl FRAR AL S B SR BR KT, e i i S A . 2
HAOTIRE34]. Alotaibi & NHIBFFIUESE [ iR ekas, Abf170#r 7 2 Hobdiit 2765 44 PH &3 ARHHE,
SRR H] PH B A SRR A TR B &, IR B S 2 dEhs, W16 /e BATEE B, OFREO
ThRE/TREAEIG, RENEAE v PH i ™ B AR R R TS PG HE AR, AR TEIRIR Fdt—2 D 7[35].

33, IBITHARE
Ra WMt . PEE R X JE A B 2 78 PH AJR PR E EER, 80 e A e B R sl A =4 vl i
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J9 PH QYT HRHTI 7 1A {5 PASMCs i Sofg i PH KRR AL EAT AR A sk Be, A FAS i 5
C75 J& PASMCs 45 55, KRR sh /15 S D DI RE BB IGE[22] . BB IEA KA A 521k 2 (BMPR2)
FEDR RAR K il 2 Jik 4 7 8 PH SR 84 vh, 0 78 L- PR AT 984 0o UL D 23 eG54 0o D e 3 0B [22] [24]
PCSK9 il a4 1 J2 - [ 78 L AL(EMT) #0f] Wnt/g- %3 5 A5 S iE s HEk E R F S PH
JIN SRR U R i I B K, B S HERR[33]. 7E MCT 55 PH K RUABHL R, NOCAT 3h75 i #Hi| iH
[ -25 PR (CH25H) &S, FRAREAG S BE SRR, 9 PAH 44 15 [a) 135 g 4 - A - 2ORE I 2% 1R B
77 1A [34]0

34. WRSRE

PH A fgCo JULEAR i AN 2 23 b i o A S R S T R A R R e AR A BRI, 7E PH R AE K
R EEAR, HH RO T AR AN PH K ELARLE] A B0, AT RERE J B SOAE G BEIRON  FE AR
IRYEAE . 5y —J7 I, T HE B B W TR B 2 AL, ARG B 2 SEUR WA HLAE PH Hh e e R
RAER,  DAIIT A B KL A 254

4. SEBRKE
4.1. B FELBR S

BRAW N2 — AR THRAER, ENNGEZNFEMGERERY, S52MEENRP, T
TE PR 8 GE AT, 38 o) R R DA A BN B B I R R A U e A 3 A B e
(GLSHEfL, SRR EBIEAE RS ER . o B . GLSI £ PH B3 KAl rh RIX B3 LR,
il GLS1 7]k PASMCs Y458 S Hrif T, o5 il i M S AT S IhRE[36]. 4 &BERE /3 fd AN 2 20 i
REER oK, ICREIAAE G SRE A EE, B — Dk 1M A S A4 2 PH et ik i o Bl U A At it b 2 o 2
KRGy, HoREZ — BRI R S KA RN 115 2 80E YAP/TAZ (555 S, |
B AR B - AR 2% - &R B S 5 R (A O R R 1) s 31, 0 =8 fili 1 41
YEAK[37]. TE PH 40 2FH5 841 PAECs i c-Myc F ERIE T, HAR ARk ff ) 32 B 7 N e ik
BRAWNE oy i, 5% PAECs 3858 K PUIAT[38]. T AMNEIE 43 fif 4 G Ik e o] B A1 4 DA S R4 M 110 184
MEERAT N, #E5h PH R E R FE39].

4.2. FBRERNKH

—HMENO)H— A E A HENOS) AR Z IR L K, T NO-cGMP-PKG 15 5 #% 3B I K £ &7 5K
I 90 )00/ N AR R S AN I T LA B A B OV F - PHL B B RS IR AR 3R L, RIS EIREL =
NO G g5 TR, PH H NOS #ik T, HAEA R NO B>, b il g Wi & E A, e
PH 5t . IR EIR & NO = Hizahiit &, A OIhEEmifs . AAAmRARSS, "IRElEN PH B4
FERITIE FEFR[40] [41]. FER RN (arginase) 2 73 — PR R AR WA DGR, 7€ PH hRIA RIS, w4tk
THFERSERR, (613 NOS KME/b, BRI NO AR EE[42], &5 PH RKAEKRE. M4, RSB
FEIIN SR T S S PR U T UL 3 i SRS, DRI AR . 7R RGBS SRR
W, AR R FIRE S8 NO G2, PR ThREIRTS, TR kg SR AU 1 S0 B e 0 24 5 i 1
EIRER RS B H E[43].

4.3. BTHERE
PH AL I R AR R 7 3 N R iR T RS 3R B TR 7 IRl {8 GLS1 #iil5
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PBTES REW k2 2 hE RIS T 1) PASMCs 3958, #i PH KR AOM ML B A 40T RE[36]. Piao
2 NAE PH KP4l 28 & k% A 40 751 DON, 45 5 & B DON Rl I cMyc-Max {5 5@, 3
MR ZAE . S O IhRe[44]. EADRE IR R FR VAT SRS tAERF 7L . Yang S5 NWAF SR
By, Eif NOS BZRIAREE %] PASMCs I FEATRS, FRACMZIIKIE 71, B0 = HA[45].

44. HRSRE

BN TR RRACH R 0 7T T 2 TR AR &R, o T IR SRR, WH =
M2 L2AR . CRIRET B, XA RE S S S PH AR LRSI A6, Rk 2= E
ZHREE TR A AR, B PH AORHLHIRI S H o 5380, X T2 BRAR SACEH 7 et 72 B AT %
IRTzhWsets, Wt — A NARA BT 98 76 T SRR A 3R AR5 -

5. R4

PH {9 —F 5 % BB s 0%, AR AL FIERABT SO T e R 26 BA 2R L. Huifi
HAMREAE PH A K1E T CBOAWE FO A e, IR s AR Mo S R S AU S S5 22 T T o TR
AR R A, AnFLER . ARORESE L 2 AL (e I 0 2 A T, T o PR I L 2 KA
PE R S A TR A AL, (2 aECo ULAR D B Pt 2B 23 mh B S CAR o 53 M IR A2 T RE T2 Dy bRt 48 B F) 4 P 2
BB HIREEARY), M4 2L 5 2 MR AR At 7 30 e AR R . RERFREANSE T
IS AR B I E E  HTR T SR, ARV O B AR . PH RO S SR RE T ORI i T
FATRBREALA AT, AT A DCRIRIIRAL, SRR T BB AR S SR A
B AR A RS HEVR T RO PH B B A B, HESNIX — Brdm SO I B AT

SE
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