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Abstract

Objective: To investigate the value of the machine learning model incorporating CT features and clin-
ical factors in predicting spread through air spaces (STAS) in lung adenocarcinoma presenting as part-
solid nodules. Methods: A total of 152 patients with pathologically confirmed lung adenocarcinoma
manifesting as part-solid nodules were retrospectively enrolled and randomly divided into a training
cohort (n = 106) and a validation cohort (n = 46). Univariate and multivariate logistic regression anal-
yses were performed on clinical data and CT features to identify independent predictors of STAS sta-
tus. Machine learning models were constructed using logistic regression, multilayer perceptron, ran-
dom forest (RF), and naive bayes algorithms. The predictive performance of each model was evalu-
ated using the area under the receiver operating characteristic curve (AUC). Results: Univariate and
multivariate logistic regression analysis identified carcinoembryonic antigen level, maximum tumor
diameter, cT stage, and spiculation as independent predictors of STAS status. Among the machine
learning models built with these variables, RF model demonstrated favorable predictive perfor-
mance, with AUCs of 0.920 in the training cohort and 0.859 in the validation cohort. Conclusion: The
machine learning model combining CT features and clinical factors show good predictive value for
STAS in lung adenocarcinoma presenting as part-solid nodules.
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Table 1. Comparison of clinical data and CT features between the training group and the validation group
= 1 ONGRAFIEEAIRAR SR CT $HEELE

Y4 (n = 106) BE4H (n = 46) GiiHAE PH

P51 0.075 0.784
% 62 28
% 44 18

aa 58.37 + 10.85 58.59 +9.31 0.119 0.905

WA st 0.091 0.763
7 83 35
f 23 11
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STAS 0.098 0.755
i 57 26
A 49 20
CEA 0.188 0.664
EH 84 35
THE 22 11
(AL 1.383 0.847
T it b 35 13
A fi A 6 4
it R 17 10
e it b 23 9
oYl 25 10
i 88 B K A% 17.00 (15.00, 23.75) 17.00 (14.00, 23.75) —0.040 0.968
SEPE A B K AR 11.00 (7.25, 13.00) 11.00 (8.00, 16.00) -0.803 0.422
CTR 0.60 +0.18 0.65+0.21 1.422 0.157
cT 43 4 0.809 0.667
Tla 49 20
Tib 50 21
Tic 7 5
b 0.002 0.967
N 48 21
H 58 25
53 HE 2.243 0.134
7 13 10
A 93 36
EHIE 0.148 0.700
p 38 18
A 68 28
W 11 g4 41 8.116 0.004
x5 35 5
H 71 41
AL 2.646 0.104
7 47 27
A 59 19

VE: STAS NS IEHEHL; CEA AEMPUE; CTR sk sy tefi.
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Figure 1. A 57-year-old male patient with STAS-positive lung adenocarcinoma. Axial (a), coronal (b), and sagittal (c) CT
images show a part-solid nodule in the right upper lobe, with a well-defined boundary, containing a solid component and
peripheral lobulation
1.STAS PRi$FIBREEE, B, 57 5. #Hfi(a). ERE(b), RERKAL(c) CT B rGhi EHERS SIS Ts, 3
FAMT, WRTRSEMERSY, BBR I SH1E

Table 2. Univariate and multivariate logistic regression analyses of clinical data and CT features
2. ImRER, CT FHERRE R R AR logistic BV 47

FLPR R AT EASE T
OR (95%ClI) P 1A OR (95%Cl) P 1
5 1.776 (0.813~3.877) 0.149
R 1.035 (0.997~1.074) 0.070
WA 5 1.356 (0.537~3.422) 0.519
CEA 7.694 (2.387~24.802) <0.001 5.182 (1.158~23.189) 0.031
A E 0.933 (0.734~1.187) 0.573
Jiyed B R A% 1.276 (1.159~1.405) <0.001 1.168 (1.029~1.326) 0.017
St B kAR 1.371 (1.201~1.566) <0.001
CTR 16.882 (1.596~178.584) 0.019
cT 431 14.981 (5.677~39.539) <0.001 4.650 (1.291~16.744) 0.019
RS 2.244 (1.023~4.925) 0.044
53 HHAIE 12.800 (1.599~102.471) 0.016
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i 111 B £ 1.225 (0.542~2.769) 0.625
TR 1.525 (0.703~3.307) 0.286
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0.868~0.973)#l1 0.859 (95%: 0.733~0.985) (# 3). A&tk MiZk3R ] RF AL i 25 S 5 sEprat A AT —
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Table 3. The efficiency of different machine learning models in predicting STAS status of lung adenocarcinoma
& 3. NEMBEFE SIRB TGRSR STAS IRZSHIRRE

YIZRA I0UFZH
it
AUC (95%Cl) HUR R iR R AUC (95%Cl) BB R iR R
LR 0.909 (0.853~0.965) 0.878 0.807 0.829 (0.698~0.960) 0.750 0.846
RF 0.920 (0.868~0.973) 0.837 0.877 0.859 (0.733~0.985) 0.700 0.962
MLP 0.904 (0.844~0.964) 0.816 0.895 0.842 (0.712~0.973) 0.750 0.885
NB 0.907 (0.851~0.963) 0.816 0.860 0.783 (0.641~0.924) 0.700 0.808
H: LR, ZHEIE; RF, BN MLP, ZEEH%: NB, Fhax ik,
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Figure 2. Calibration curves of different machine learning models in the validation
group. LR, logistic regression; RF, random forest; MLP, multilayer perceptron
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Figure 3. Decision curve analysis of different machine learning models. LR,
logistic regression; RF, random forest; MLP, multilayer perceptron
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5] U1 3 A 2 S TR, H AUC 15 0.807, (HIZHF 7T RS IRuE St — B PPAR Y It G o [RIFE, Li 45[18]
HEALFET CT (1 logistic [A] VAR T it B STAS, FAE 36 UE S AN &R 4E AUC 4351 v 0.801 F10.692.
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