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Abstract

Objective: To identify key genes closely related to M2 macrophage infiltration in clear cell renal cell
carcinoma (ccRCC) and evaluate their clinical prognostic value and immune microenvironment
characteristics. Methods: Based on transcriptomic data from the TCGA-KIRC cohort, CIBERSORT al-
gorithm was used to quantify immune cell infiltration. Weighted Gene Co-expression Network Analy-
sis (WGCNA) was combined to screen gene modules highly correlated with M2 macrophages, which
were then intersected with the IRIS gene set from the InnateDB database. Univariate and multivariate
Cox regression analyses combined with Least Absolute Shrinkage and Selection Operator (LASSO) re-
gression were applied to eliminate redundant features and identify core prognostic genes, followed
by validation in the external GSE167573 cohort. Single-sample Gene Set Enrichment Analysis (ssGSEA)
and correlation analysis were used to explore the association between key genes and M2 macro-
phages. Results: Three core prognostic genes, CST2, HAS2, and C1QTNF1, were successfully identi-
fied. These genes were significantly highly expressed in ccRCC tumor tissues, and their high expres-
sion was associated with advanced pathological stages and poor overall survival (0S). Validation
in an independent external cohort confirmed the robustness of their prognostic prediction. Im-
mune correlation analysis showed a significant positive correlation between the expression lev-
els of CST2, HAS2, and C1QTNF1 and the abundance of M2 macrophage infiltration. Conclusion:
Using machine learning and bioinformatics approaches, this study identified CST2, HAS2, and
C1QTNF1, revealing a significant correlation with M2 macrophage infiltration in ccRCC. These
genes may serve as potential prognostic biomarkers and might be involved in immune microen-
vironment remodeling. Given that these findings primarily present correlational evidence, their
biological roles as potential candidate targets require further validation through subsequent ex-
perimental and clinical studies.
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1. 518

' 21 o (renal cell carcinoma, RCC) & WA R 5 40 % WL IR 14 igg 2 —, FL v B 3% B 48 i (clear cell re-
nal cell carcinoma, ccRCC)/E N EE ML, 543 RCC w1 bt =702 —[1]. BEER
BEH AT SNEN R, 3857 51 ccRCC R 3 AT Il I AR v6 P BLOR B ' B A7 VI B AR SRAS LT 1) SRy 4%
i, AR AR S — R BIHEYIZ I A T R HE S IR AL e, HAREEKR . BB RS RRE
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[2] [3]. AT4ER, BEIAVATT A A6 A M) 7] (immune checkpoint inhibitors, 1CIS)7E ccRCC i i FH i
FOEE T BE AL R, (BRI AR BAMEZE R, IR INE T W[4]. F£500 TNM 43
HA L TR RN PR B ME DL 7870 IR W8S N TE (R AR ) 24T AN 4 A e R R AIE[B] . BRI, ey 2
TorF K s B E RS 4 TS VPSR R, 12 ccRCC REHETS YT Sk b s A A e 1) 2 82 ]

i 93 4 925 SRk PR 35 (tumor immune microenvironment, TIME){E ccRCC )& A4 &k F i Fe b R % S R 2
TERI[6]. B T 4iffl. B RAAGAN Ak L 4n Bl oAb, JFEEAH 5 LM 4H i (tumor-associated macrophages,
TAMSs), JUH R i 7] G 2 I AL R R 2L 0 M2 BYEEGR M, B\ 2 SR 20 il Ra 2F Jie R g2 1k 16 1y o
BEMPAEAR[T] [8]. BRAERFFLRIA, M2 BY S EGH M AT i i 0 i 2 PR AN B IR 7. EEIAN AR . (i I
A AN BRSNS E R 1R, B 5 ccRCC IR BIEBANAITIN %, HRIEKFEES AR
TE E VAR [9] [10]. $RTM, FESE M2 2 EWRAH AAR O S % JE DN 1) RAEVEAZIR I A 2, BLA L%
RETHREBE WISV —F 5, S5 T ARG R ARG RIRIERHIE . JERIAM 2
FGIRES R PR i, M2 R OGoF BEE J LI PR TS 3 S vl A A5 280 4 T o A [11]

AR bR e R, AHIT 7 3 R e 3 R 4H B3 (The Cancer Genome Atlas, TCGA) KFEABA 1], HJEE T
—ERE QIR IERIE S B R L RIA 4% (1) R G i e ms . FRATTRIA CIBERSORT RAEFAHIE S INIEL
FER L RIE M2 7 BT (WGCNAYVEI AR, 1R 515 M2 B [ W5 20 I3 R AIE P AH DG I DGR B RS B, i
5 InnateDB ¥ & BUZ 8280 e A% o e o0 7o (EBEIERE I, SRAISIRZIZ IR Cox LLApl R (A1 )5 45 &
I/ 2 T W A 5 i 5 B T (LASSO) B0 5 B TU AR RFAIE 07 ade 2L A 0 37 905 A i (0 DG B Bk Y], I AE
GSE167573 AL BAFIH BGHIE T H TS 2B AR e . AW AL B 7E WL 4K %8 M2 BLE R 20
R TEAREND, A ccRCC [ AR 73 /2 S AE IR e 0 T HE O R B HE R4

2. MRER=E
2.1. BEFEFEPEERFRILERF(DEGS)

AT 58 e e s DR 2 1 (TC G A) e J2 1 485 325 FH 41 e 19 H (TCGA-KIRC,
https://portal.gdc.cancer.gov/projects/TCGA-KIRC) [12] )% e 2H ¥ S I PR 2R 48 5 B e ] 22 ik 1 e ok
BUIGIRBE TS BEA SRS, BN 529 iR 2120 % 72 il 55 15 420 8 TCGA-KIRC A 7B\
Hl); 5 IR 25 45 5 BUHE JE (Gene Expression Omnibus, GEO) T % GSE167573 % £
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE167573) [13]4F &b 4t 37,56 31 A 51 o

AW T R ET (v4.4.2)1058, FIAH DESeq2 BAFEX FRAGTHEUE FE A TARHELL AR B . 152 1
J& P {f(adjusted P-value) < 0.05 H.|log2 (Fold Change)| > 1 M IRI{H , itk 2 77 3 ik JE [ (Differentially Expressed
Genes, DEGS). % Tt it DEGs il X m) SRS 5 K Ll B, BOUL 7= IR 5 1E 3 A 2R R s e e
Je SRR AT, NGBS B RFIE 3 M B R K 4 B 5E LA -

2.2. REREFMEFHEZIE R NNERILRIAMEIGE

HET TCGA-KIRC HtH ¥, KA CIBERSORT HLii&hi & LM22 REAEHE R DAk 8 i A 154 1) G 5%
RIPRES . ZHOE B HAE Y 1000 K, THEAFIFEA T 22 Fhia e AR Aaxs 5, JFHIBRE AR BA
F A BRAG E BE ( A0 B S R DARRAIR A BT e 75 o FE R ERE I, R R 18 5 AU (R 4L R0 W 45 43T (Weighted
Gene Co-expression Network Analysis, WGCNA) ¥ L[ 14]x] 22 573 R IA L R LR IA M4 . Il T 2
(K1) Pearson #H ¢ R ¥ TG AR R BIME B, BESLAF & T REEF AN AT RHAE I BB FE R, 1 — P 3 ik
#h E4E F% (Topological Overlap Matrix, TOM), &5 & 204 B DI VLR A E DR R IA AR, IR& IR RIAH
R AR
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N BT A D RE A R HERE R, % S 2 A0 M = FE AR Dl PR IR 5 R ALE 5 K] (Modlule Eigengene,
ME)ZEAT RIR 47, I70E 50 7 S P A 52 2 35 AH G (P < 0.05) Y “ o R GBS ” o Be#%, A InnateDB
4  (https://www.innatedb.com/redirect.do?go=resourcesGeneL ists) 3} BX A 2 6 7 F [K] 41 % (Immunogenetic
Related Information Source, IRIS)fENAMHES R, W4 H 5 CEBIH N LR ECEE, s E SR E g E X
AT G R O S e AH DG HE A

23. L RERXERNIEESR S

MH R 55 clusterProfiler €%} 42 AMZ O B #H TR I BAT I REERE, P B 4EZE R A4 18 (Gene
Ontology, GO) [15]-5 & #fJ8 [A] 5 JE K 21 75 F} 4= 15 (Kyoto Encyclopedia of Genes and Genomes, KEGG) [16]
W E L. GO 43 M LA 55 4 W24 12 £ (Biological Process, BP). #Jf14H %) (Cellular Component, CC)
J 5y PyEe(Molecular Function, MF) = Kitils. FFEH:T org.Hs.eg.db ¥ /%, KHI Benjamini-Hochberg
AT Z BRI IE, LLUF%E)S P 1 (adjusted P-value) < 0.05 VE 5 B E Lk rnE, FFFIH enrichplot A%
ggplot2 G AT WAk B, DARRAT CEEEE I 2 5 ARV = DR 515 5 i .

2.4, FEHEXIZREEER Cox 5§ LASSO EIVAfFE

HF TCGA-KIRC A:17%#E, FIMH RiE S survival %} 42 M O3 R K BAT AR 2 (P < 0.01) £ £
K2 Cox [E A4 HT(P < 0.05). AR Ftekik Ky 1bid 34, #t—FH LASSO [HlJH(gimnet £3), j@id 10
P28 WIGAE A 2 B AR BT R B A, ik BB R IR RBENE N BTG S & o

25, KBEREFS. FURBEETTE R SMBIEIE

AR AIH R i S (survival, survminer % timeROC )47 HGE 0 #r. LLIE R ik & Ar 80k 7
TCGA-KIRC BAFI4r4H, KH Kaplan-Meier 2% Jobf #4553 (Log-rank test) PP Ad &£ FFIH(OS) 2 7, I
THE 1. 3. 5 FErfEKHEME ROC M2k FIHA(AUC) AR TR AL RE . BEJG, KA IFRAELESN IS
GSE167573 AT AL IR UE, AR 8 A S 0 A A7 22 e J2 38 P (P L) A PO HE 1 14 (AUC) — Bk, #e B &
Fa e 1 (1) M2 784 [ 0 AT PR A O T35 b 420

26. XRERNRAERRIGKFRES XK

FEEL TCGA-KIRC BA%IH 3 MZ 0 FE K (CST2, HAS2, CIQTNFL) 4 4H%¥, £ log2 (TPM + 1)bx
LA ER 5, SRA Wilcoxon FAFIAGLS LR MRS IER AL RIEER . SEEFLERERER RS
(AJCCYREL M IE R, N Kruskal-Wallis 656 PFAt AN [F] 43 1 (Stage 1~1V) 8] 22 [K 2 1A I B AR 0 A 22 5+
Font 2 AT ZEL ) P 1 EL . b4, B GEPIA ¥k FE (http://gepia.cancer-pku.cn/) [17]7E 2R BiE 43 3
Tk, MXPIGET RIES ggplot2 & ggpubr f.4:4i, LA P < 0.05 NGuila i & hri.

2.7. XEEFRS M2 B EREARZENEX S

= BIIF LR S M2 BB R0 0 e ORI, AW AR ECA AR M2 B A PR M AR
EY(In CD163. MRC1 Z5)fyid LML, A RIES GSVA WHUT BREAKE K 4 & 4 7017 (sSGSEA)
[18], EAbfEH] TCGA-KIRC FEA T M2 B 5 W 4H i (1) A R T

T log2 (TPM + 1Rtk KA %3, K Spearman A< 20 iEA5 CST2. HAS2 K CIQTNF1 %
KK M2 B E A0 ssGSEA P4 LMo 2 . [RIINE, DA% PR 263 B 1) 2 308 PO REAR 23
iRk 4L, A Wilcoxon FRAIAS S8 L B8 4L 1a] M2 B S WG 20 BRI i 17 23 (9 25 5, AR DG 45 B i i 1
AN AT AT ARAL R
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3. &R
3.1. HiERMMEEERFRAEENEESHHESH

T TCGA-KIRC BA%1/(529 5 i& vs. 72 il IE%), 241k (log2FC| > 1, adj. P < 0.05)3:%5¢
6095 /> R ik KK (DEGs), H: Fif 4020 4. R 2075 4. FEHME (] 1(A) BaRkEAR R Sk K
SR, B TR S R s O B (B 1(B)) T TR OR T 2 R 3 R 1 A A58 1% DEGs
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Figure 1. Identification of differentially expressed genes (DEGS) in clear cell renal cell carcinoma. (A) Clustering heatmap of
DEGs in tumor and normal tissues; (B) Volcano plot of DEGs distribution (Red indicates upregulation; Blue indicates down-
regulation; Black indicates no difference)

1. BIERMEREESRIAEE(DECS)HEE. (A) MESESESHELN DEGs BAEMRE; (B) DEGs 77 ALLE
(IefxLbiE; BEefERTE; BaRRETER)

3.2. REREFHEZIER M2 B ERRHMRXERREE

CIBERSORT Jx &M 4 #1457~ TCGA-KIRC BAS G B A B 47 48 Wk 35 e o 1, o M2 28 B R 24 i
TEZ B AR 2R ARIEPRE (B 2(A). 2T 2R RERWE IS RIA ML, e S LR BIE g=3 LA
W TR ERIN AR (K] 2(B)), FEA B BTN SRR H 2 AR i R R LR IA B (14] 2(C).
2(D)). fhidR - PRSI I, Magenta #EE 5 M2 Y SIS 40 A AR X =F 1 2 f o HLEA Geit- U
IEMR(E 2(B)), #oniZBibRkE S5 T B MAR G e il FE . il — 0 8ie 5 e R A = Y
[F A% OFFAE, K5 Magenta BEHIE R 5 IRIS S SRR IR £, M2 E th 42 NE SRR (K 2(F). 1X
2 35k TR e L 3R 0K I 208 X SR AIE 5 B S 2R R, A T s S AR 9 11 M2 28 I PR R DA R R

3.3. #lL RGN X EE B Y F T Rk K il % E SR HIE

Xt 42 MO AR INEEAT GO Thag s & tr(14] 3(A)). (EEMF I REBP)ER, HNETEE
T MR M IS BN . B R I S R . O S R, 7
T2 5 B N L AR A5 AR . R4 (CC)Z T, WAk HAE P T RSN, I/
B o FIUREES « 3 WAL ML SRARORE e & 5 IR IR A AR AN R Jo S K e R 5 3k /N AR TR S R
JREEYIMR . 2 TUREMF) T BoR, OB 2 BAHRE . BERES S MR 1724
Ly B S IRE R R AMASE A DI RE, PR AR S BERCAR - S2 AR B SOE A o7 R % R R AR

DOI: 10.12677/acm.2026.161318 2583 Il PR 2 2 3t


https://doi.org/10.12677/acm.2026.161318

S

100% 5 el
™ B cells naive i
5 cells memory Scale independence
Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta

1.0

4567 891011121314151617181920 § 1
3

80%-

0.8

60%- = Macrophages MO
m Macrophages M1
®Macrophages M2

= Dendritic cells resting
= Dendritic cells activated
= Mast cells resting

= Mast cells activated

= Eosinophils

= Neutrophils

0.6

Mean Connectivity

0.4

40%

Relative percentage

Kl
3
8
=
=
B
o
S
2
5
»
3
&
o2
3
3
%]

20%- 3

i mu Lﬁthum M IMIMM mmm bl

T T T T T T T T
9
0% Soft Threshold (power) Soft Threshold (power)

5 10 15 20 5 10 15 20

C D Gene dendrogram and module colors
Clustering of module eigengenes

1.0

1.0
L
MEback;|
0.9
I

0.8

Height
MElightcyan
MEsalmon
lightgreen
MEpurple
MEgrey
MEcyan
Height
0.7
L

02 o
L
MEbrown
MEgrey60
06
1

MEmidnightblue
ME
MEred

MEgreen
MEturquoise

MEgreenyellow

MEpink
MEblue

MEtan

Dynamic Tree Cut

MEmagenta
MEyellow

Module-trait relatonships .
G193 om o o oow 0@ 67 0% 22 10 o 6o 077 oo o 08 Overlap between IRIS immune genes and
(0.08) (2e-07) (06) (0.04) (05) (0.1) (26-04) (0.003) (26-08) (1e-04) (0.002) (0.1) (05) (0.003) (0.8) (07) (0.1)

0052 -0s 018 0% 0O O 00 0K 00N O 008 01 008 02 011 001 0mr WGCNA Magenta module

A
A
NA

08) (02 ©1) 6e-0) N 04 02 0003 03 ©2 O 04 ©2 08 08 O3 ©I) 03 o) 005 O (05
NA
)
NA

~0083 0081 0086
05 02 ©2 ©2
00048 0079 -0086 02

Metiack

Melghian

015 00w 002 003 0099 -00023 0061 014 0057 0061 -0066 0045 015 -DO79 0057 -0088 0065 -D02 0009 ~0068 00035
((0006) (08) (08) (08) (009 (1) (03 (002 (03 (03) (03) (04) (0005) ©2) (03) (008) (03 (©7) (©9 (@8 (1)
014 0031 0008 011
002) (06) (009) (005) (NA) (09) (008) (7e-07) (0.1) (009) (06) (0008) (04) (0.05) (005) (0001) (07) (1) (00 (02) (03) (09) IRIS

e 0027 -0t 015 00 NA | 095 02 0037 007 05 02 00 011 013 0011 00 00% D15 005 0051 0108 0080 3
©8) 05 (©8) (08) (NA) (0.005) (e-04) (05) (02) (1e-08)(Se-04) (05) (005) (002) (09) (02 (05 (003 (©2) (©3) (©3) (2

— 0035 020 001 0012 | NA 0079 013 -0008 007 01 -0025 0029 -03 035 DOR 001G -ODMS 001 -DIGB OO7 006G 0026
05 07 08 08 A 02 009 09 02 0 0) 05 00) WT) 03 05 0O 09 02 0§ ©) 01

00096 01 028 -0095 0098 003 015 -7 041 012 -0.19 -0.026-540-05 -0.1¢ 0081 -0084 00052

MagentaModule

Weningrtive 02 09 O) N ) 08 04 ©) 00 08 08 08 09 03 ©5 O3 () 08 O ©8 00

0018 0cost 0015 0oz NA 0058 022 00f1 002 0064 003 012 -0052 019 0032 0029 0013 -0028 -DOST 00099 -0021 0041
©8 09 08 08 (N ©3 (1e0) 03 mn ©3) «7.51 ©0) ©4 000 05 ©5 ©8 06 03 08 ©) ©5
031 0 01 NA 04 0n2 038 028 0049 024 00041 011 0056 0038 01 <041 -015 0028 0071
ge08) (01) (003 (m (1»11; (004 (ﬂl"ll)ﬂfﬁn(’erm)ﬂl-lﬂ) 04) (er05) 09 (006 03 (05 ©007) @e-td) 00 05 ©2)
0075 0067 0083 0.19 02 011 0f6 018 013 00 012 024 01 002 0071 01 013 -0049 0013 003
03 09 01) 5020 (W) (00500 037 000 03) O 03 05 Gete 0 07 02 0 008 04 08 05
012 018 0015 022 NA | 012 02 08 -012 -006z 0068 028 013 025 -0f6 03 017 -00% 013 -00z -00%3 011
004 (0001) (08) (1e-08) NA) | (004) (Ge-04) Ge-ti) 005) (03] (02) (1e-06) (003) (1e=is) (005 (2-07) 0003 (0 (0L03) (©7) (05) (07)

0% 0076 030 02 011 0% 015 014 007 006 002 OB -01 0 001 -00i3 0057
oe-05) 08 (009) (1e-11) (m (8e-08) (02) (5e-12) (Ge-07) (006) @e-08) (0008) (001) (04) (03 (12) (02) (002) Wetd) (02) (05) (03 ]
01 -000% 011 03 025 011 024 -027 002 0M -023 02 03 011 0% 053 0015 021 -0068 0058 028
008) (09) (009) (fe=7) M (1e-05) (006) (26-05)(3e-06) (05) (002) (5e-05) (2e-04) (002) (007) (002) (06) (©8) e-04) (02) (03) (te-08)
0029 -00028 0041 011 WA -01 0024 D076 0031 000 -00% 0060 012 0013 -007 -0012 0084 -005 -0028 -0011 -0028 0056
©8 () (05 (05 () 00 ©) 02 05 03 ©5 02 05 05 02 05 0 09 08 08 ©5 03
018 -002 0062 -0081 NA 013 031 0074 D09 0083 00025 -DOBY 0016 0013 -00fB 0063 028 -0083 006 -0031 0071 0016
[002) ©7) (03) () (NA) (003) (B-08) 02 (0) (03 () (©1) (08) (03 (08 (3 @) O 05 ©8 02 (08
003 -00055 -0027 0025 | NA 0035 -007 0018 0049 -0035 05T -00S 0023 0023 -004 008 -0083 -0OS3 -005 -005% 005 0052 B
05 09 05 07) N 05 02 08 @4 05 03 03 ©) 01 05 02 02 04 04 04 09 04

"*“%’f”w”w”i SIS i

&

0069 -0.0024-0.0087 002 | NA -000015 0031 0051 -0086 0.5 -0028 0012 0.1 -0.0091 0.085 0044 0015 -45-05 0011 0025 -003 01
Veoyan

Wetks
Megeeneion
Vemsges
Mo
vEgoen
Meigigeen

MEpurpe

gy

Figure 2. Identification of key M2 macrophage-related gene modules. (A) Stacked plot of immune cell infiltration; (B) Screening
of soft-thresholding power; (C) Gene clustering dendrogram; (D) Visualization of gene modules; (E) Heatmap of module-trait
correlations; (F) Venn diagram of intersection genes
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Figure 3. Functional enrichment analysis of core immune genes. (A) Bar plot of GO enrichment analysis; (B) Bar plot of KEGG
pathway enrichment analysis
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Figure 4. Screening of M2 macrophage-related key prognostic genes. (A) Forest plot of univariate Cox regression analysis; (B) Forest
plot of multivariate Cox regression analysis; (C) LASSO coefficient profiles; (D) Partial likelihood deviance plot of LASSO regression
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Figure 5. Survival analysis and ROC validation of candidate prognostic genes. (A)~(F) Kaplan-Meier survival curves for
CST2, HAS2, SELP, CI1QTNF1, C1QTNF7, and PROS1; (G)~(I) Time-dependent ROC curves for predicting 1-, 3-, and 5-
year survival
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Figure 6. Validation of core prognostic genes in the external GSE167573 cohort. (A)~(C) Kaplan-Meier survival curves of high and
low expression groups for CST2, HAS2, and C1QTNF1; (D)~(F) Time-dependent ROC curves for predicting 1-, 3-, and 5-year
survival
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Figure 7. Expression characteristics of key genes and their correlation with M2 macrophages. (A)~(C) Differential expression
of CST2, HAS2, and C1QTNF1 in tumor vs. normal tissues; (D)~(F) Association between gene expression and pathological
stages; (G)~(I) Validation of expression trends across stages using GEPIA; (J)~(L) Correlation between gene expression and
M2 macrophage ssGSEA scores; (M)~(0) Comparison of M2 macrophage infiltration scores between high and low expression
groups
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Figure 8. Hypothetical mechanism of CST2, HAS2, and C1QTNF1 regulating M2 macrophages. CST2 involves cell adhesion;
HAS?2 relates to HA synthesis, ECM remodeling, and integrin signaling; CLQTNF1 participates in cytokine interactions and
complement cascades. Together, they synergistically promote M2 infiltration, polarization, and immunosuppression (validation
required)
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