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Abstract

Chronic cough is a common symptom affecting approximately 10% of the global population. Its un-
derstanding has evolved from being merely considered a protective reflex of the airways to a com-
plex process involving bidirectional regulation along the lung-brain axis. The core pathogenic
mechanism involves multilevel integration of peripheral vagal afferent signals, which are relayed
through the brainstem to higher brain regions. This article focuses on the role of neural circuits of
the lung-brain axis in chronic cough and potential intervention strategies. This regulatory network
encompasses several key targets: specific subpopulations of peripheral sensory neurons act as ini-
tial signal receptors, the brainstem cough center is responsible for relay and integration, and higher
brain regions participate in advanced modulation. Furthermore, alterations in synaptic plasticity
and neuroinflammation-mediated central sensitization constitute the core pathological basis for
persistent hypersensitivity in chronic cough. Novel P2X3 receptor modulators can block peripheral
nerve signals, neuromodulators can correct central sensitization, and traditional Chinese medicine
has synergistic effects of anti-inflammation and neural modulation; non-pharmacological therapies
such as cough skill training and neurofeedback techniques can also improve cough hyperreactivity
by modulating brain activity, showing clinical potential. In summary, the multi-level regulatory
mechanisms of the lung-brain axis provide a theoretical basis for precise treatment of chronic cough.
Future research should focus on clinical studies of multi-modal, individualized intervention strate-
gies to promote translational applications.
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1. 5|8

MBI (RFEEIT [A] > 8 A [1])FE A BRI E N B E 2 10% [2], M HEBFREE REREIFMEL
DA RGET A . HOmR B A LSS 1% S0 STE ORI IR S, AR5 A2 WSS A 8 R R ) S
Btk . IERFOEE AR S TIEAEMEOR, BB B - i fi(Lung-Brain Axis) XA 41
fil: MG 5 Z M T A% B R R IR ) AT VI B A G, i3 — 30 2 3 )5 510 % 52 405 w6 i X R A 24
V3], FEULEEAN b, e T RN 43— 2 3% T IS LR AL (Cough Hypersensitivity Syndrome,
CHS)IIMER, W E SN “ Wik B PGB il IC o B2 B B E S v, 2R S 18 M A A L
[F R ph 2 AL [S], SNBSS RHR R Z WA TT 8 SR AL T O E IR S ¥ .

JEEBUHIBIEFEAWIRN 18 1 0 0 P i PR BT T I 2 N IR 7 i B A B S 25 EiAE FH 45 3k
. DRI, RGN - ol e 12 ME R o AR F LA, IR A AR S T I b, X HES A
1BYT 5 RRA T 0 B A

2. Fifi - BRI AR S ThEE EAl
2.1. SRR
RBAE N 20 22 TEAE AR 5 e T IRORIZE AT, FEO R I P A 180 T G 5 R
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H AR b, BRI A2 T R R IA RN 2 AR AL B L 1 AY(Transient Receptor Potential Vanilloid
1, TRPV 1)) & FBiE A BAL 1 (Neurokinin 1, NK1)52 44,  H A HX 58 fi 35 43 5t 2 = X 5% ¥ (Paratrigem-
inal-Nucleus, Pa5), Driessen %52 % # [6UES1% X 3k NK1 5244 FH P40 28 05 S PE A T 22 WK 5 1%
WSS, 3 RV R AT R 2 PRI R N . AL TR, GRRAT R 4E J0 32 O A MU0 AR SO, TS
2R BUB A AR, B85 HnT RE S 5 AU R Ak A R ORAP VR S ST o Jiang 55 2% 35 [ 738 1k B 20 Al
PG TRE IR SLES, IR NN AN IR 2 o R AR, BRI P R & e R e AR .
PN 2E K 425 BH A4 (Somatostatin-Positive, SST*)/E b #1148 Ju ks 7 M R 0 K S B s 17 82 1% Mas A% G S A 1S
6324 C11 BHE(Mas-Related G Protein-Coupled Receptor C11-Positive, MrgprC11H)#£ 56, {UEBFEMEN T
W St o 12 AN AIE S P W -5 6 W A7 AE SRS R A1 JL R 22 A% S IE G, S DR O RN #AE 3 [ ) IR s 5 1
R T BB ARYE .

2.2. PTFHIRES

PR #(Nuclei-Tractus-Solitarii, NTS)/E A ML W S 5 19— 208G HpoAX, D BEARE 57 1 #0486 38 29l 1A
PO A FIAH 2 A 2% . Lu S5 [Q i I # 48 FR BB BR A GIs A% 2 R RESE,  ZRIAHTRT Jv ik (Prodynorphin-
Expressing, Pdyn")#H1 £ L I0CK H TRPV 1K E LR Z TGN, FF 2R BR e S 0s JE BUE M
WEIRZH o SIRO6 o, RS PR IS AT WS 1220 T LB R N DR S, 0 o) ) N 3 B R S B o T
U T /A 1 BH £ (Tachykinin Precursor 1-Positive, Tac1*)#H1£5 7t U 7E 1 W12 Bl 1) B 3 1 R 4 o ok 3 S B R
Fl, SEIGAIESEHUER AT 0] 70% LA L AT M [9]. BEAh, PaS [X NKI1 B2 44K B P40 4 00 2 ik i 5 0%
WK PR e Tk TR AR S R 22 B T R S 0 R PR R T T TR 56 ]«

2.3. BIRXBE

W IS5 AN SZ T TR 4%, 352 T i Je 2 )2 — T % FR G W BURR A 1117 RS 4H T 15 . Chen 5[ 10]
TR, ESYEZWAEE T, rR i Sk 8 B Rl 2K 5 (Periaqueductal Gray, PAG)$ AT E NTS I y-& 3T
J%(Gamma-Aminobutyric Acid, GABA)RE Ffill 5 FE W 25 ek 55, FEUNTS (1) “ EH1” IR LIESL, ¥
I PAG #2070 ] FRACAZ W U, A0 PAG WA RO B, #E—2B380E T PAG 5% W X 8 4% o
B M) fEH . TheEEREIEIR M (functional Magnetic Resonance Imaging, IMRI)fF 7T 7 B, 15 M 0% ik 5 35
TEWANBER G, X (A1 PAG)BUE 98, ERE X H(ELHE NTS)IEBNIRTS, HR7smAn s un L5 vl fe
IR R W U117 IR SRR, 45%~67% R e B 25 A E (CHS) £ 25 £ i ke 30 Sk it S o (A 5 4
B RENMESR) [12], i — B3R Z - G RGAE MR WO R LE] TR TR I -

3. 1R MR EY R AR AL L
3.1. SpEABAHERE R

AN W S0 JE B B JE B 32 8 R MO HL R BR ) 0 AL o IR TE S R R R W A A
SN RN AT E T = 1A% O A, SO AP ZE TG H TRPV T MRS §E 57 /48 X3 (Purinoceptor X3, P2X3)
(03t B 208 J 2 A T 0 SR ) U - Guo B8 [ 13 ]I BOB i 7T Kk 1 #i AL P2X3 A8 #4145 71 PSFL2915,
ZAYIEIL R RS P2X3 ARk S5 35k Py 1 48 (Intracellular Portal-Hinge Domain, IP-HD), 7EZ)#)AE T
RIS Gefapixant A4 BZST R, [EIIN 584 b0 | R S8 BEAS A RS, 9B RVRIT 4L 1 ¥k
Peo IbAN, HETIEANETE (Voltage-gated Sodium Channels, NaVs) 7 57 sh/F A7 77 4E 5465, HA5 e
A (NaV1.7, NaV1.8, NaV1.9)) L -PAUR R IA T UE & o, JOBIED)RerE fi ik Fif, mr&s
FRARRZ B St BRIEL . TBOK PS5 [ 14]-[16] 6
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Ty I, A - eSS AR AR RS R T IR S A €, Deng SE[17]HIE FUHE S IR TE
BRI, T IR E AR U -4 = (Interferon-gamma, IFN-y) B i #5 Janus 8 - (5 55 S A5
BUEE D - BN A-o-2058-3-F25E-5- F 2k -4- 53 ME Y IR 32 4% ( Janus Kinase - Signal Transducer and Acti-
vator of Transcription - Protein Kinase A - a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid Receptor,
JAK-STAT-PKA-AMPA)5 Sl i, 1755 2076 #2800 0 28 085 B8 1 N IR e AR, AT Sl 35 49 560 0% ik
SRR o T B TR R S D e 8 e DU e R TS B 4 2 R AL AH 9% JIK (Caleitonin: Gene-Related Peptide,
CGRP). I35 Mk (Vasoactive Intestinal Peptide, VIP)SE MK, Jx [m) 171 RIS IE N ) e 2 A T e
01 T 4A 2 %[ 45 9k B 40 2 Type 2 Innate Lymphoid Cells, ILC2s), 5400 J&) & 48 it R B[ 18] [19]. 1X— &
AN 7 2 TR T RS JE WO A @RI PRI R, TR X S - PP s BAE B+ sk
PR AL T EARAKIE . LR L, X PIRALAIE R R p T IS Ik R A S R B A, A LA AT Rt —
HPTBOR % W9 2 55 B

3.2. RIREALLERFLE

8P 2 8k 1) R SR )3 K 22 AN A T ST AR 8 F A O A o R0 AN A B AT 5 5 NTS KA K
T2 58 (Long-Term Potentiation, LTP)FEEXAE, B RS A “IEMIC1Z” [20]0 X Ff S fih v] FE 1% (1)
AR S 0% W R IR S FF AR R R B B AR R AR R IRl . A UK, PAG-NTS @ i 1 15 Th e 2
FR[2 1] P = L B AR AR DAL 2 — o 0@« 247 RS S B A R 2% s PR R A . (A
PR, A ROREAEIX — I F A SRR IR TBORAE 5 /0N B 03 4 B A% J5 B T8 A BE X - (Tumor
Necrosis Factor-a, TNF-a). 941 %&-12 (Interleukin-14, IL-18)254% 48 K1~ ] S B0r £ 7o v] 3 iAR A i i 24
BY[21]0 BNWSEIGEHRUEST, S0 ) S0 28 RE OB AT 25 A AT N [10], X — KIAMHER T &
FORETENS VI A I B SR, O TF ROH B BT 4 B A1 VR YT SRS SR AL T R AR . X Se AL L (R
BT 8 T X BB [ B A IR 2, 5 DRI 3R A AE B RSO S, e ¢ 5 5 gk s e 4% P e 8 s R

4. ¥BEAT - FREHAY T RS
4.1. SPEABR T

VEHT — P b A0 JE A B 26 PR DG B 15, P2X3 2 MRAERTE B M & T S s i O E R, JLH
P78 i BEL T = W R AR £ (Adenosine Triphosphate, ATP)» 5 [ 41 B R A5 5 1) tRARAE N, B 18 1 gz ik
BITIE BT W IR LR 1) Gefapixant [13] B ARSI R 24 h IZ TR BEAIK 35%~40%, 1H
27 28% 1) A IR v f G, HEN S AR R MR R T 13 WA P2X2/3 AR ALAR DG, PR il I PR B
o %T IP-HD 5307 i, St i RoR, AR i35 77) PSFL2915 it e e HEAEH T& P2X3 24k
(RPN, AT 38 R P 400 o SO R AR R TT 1 P2X3 S2 AR, HAERLST 205 Gefapixant AH4, 1 WK 5L B fig &
AN 5.3%, TELRFE R SEEERZ ST A RIS, A R0 7 AL Seds iRl s e, I R B AR S
AI[13].

4.2. FIRIFIEFM
XTI - B AR EE A S AT RIS  RTT5R,  n0 i 24 T g A X A 5 X VA T e 1%
W o AR TR N M I S RS e BT AR ARG SR N AT EHE RS, WSRA T EA A AT HER TR,

il Pdyn "W AH OG22 e it BEDS Ay, R HEVR PRSP R B T, HR LS 2™ 5 I IR A 2]
T BT B RT3 I A ) i T T 4% 5 3 (Voltage-Gated Calcium Channel 2.2, CaV2.2)J8 /b HAX #1258 i3 i
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RO AFEIZ AR, (HIE AR SRR TR R R T, B2 WERESE A e RGN BB A
By, Holi AR R 52 2 S BR A 23]

4.3. PFEHZHMSHEEE

BTl - i - B B R R IR TT RN, S - ok p e = G, AR
T IIRE A WERRY], 2 25507 R SRR B o3 AT I8 A [RIATL ) T 42 R oA S5 S Il Rk, Sant
&I I 22 S5 IR ST o G i R W ROk A5 R I TR AR A R I /c AMP U IR 22 6 B 1 (Cycelic
Adenosine Monophosphate/Exchange Protein Activated by cAMP, cAMP/Epac){s ‘S iE 1, 520 T iiF f e
AR (Transient Receptor Potential, TRP)IHIE . P2X3 5244 J % i (Al T [ 3RK , SIS 2 Wi e 20 30 i 5
SR 5 STE JOE BRI [24] 0 425 VR A B H 7 25 (s AUE it 7 ) s #) TRPVL J@3E, s> P
Vi CGRP ZEHZE IR, ATk T R YR JO0E, PR B [25]. JE T “TF X, X,
BZ7 RN 72450 & M FH2 . BN E TN A IR TR XFE R S5 it E R DhRe, AE5HRID)
REJZ T 25 B A 1S VERZ W 0 B FR [26] 0 b Ah, 2205 A L A Bl 2 60T 80 22 D) w36 544 ot 28 R Pt UL -3 -
R T 0 1/ AR I LR - 3 -3 - 2% (1 U (Phosphoinositide-3-Kinase Regulatory Subunit 1/Phosphoinosi-
tide 3-Kinase-Protein Kinase B, BPIK3R 1/PI3K-Akt)(5 5 i@ M, KRIEHLA SEZEM[27]; FEEMZIE
Aol 4 T PR S o 48 R 7T SR MR R R S S A B (28], AER PR RZ IR T Hh R R TR NIRYT T SRR
TR,

4.4. YT

TEARLIT T T, BESEVATT I — I DO AT B BRI F . XA - Tt e 2 B K ) BE S VT
LAV DO RS S AR SRR, SR S AR 2 . FEA A R S R A, R e
I E /N B 3 2 T 5 T o 22 0 23 2, B I 5B T U 0 S TR AR T 0.49~0.77 L/s [29],
REUCEACE. SEREET I, MRS - KA DAL, T 6ETh AL HER I i %
R EMR[12], 8 T IR . oh, 5T EMRI [ S2R 02 AR A 18k 1 0
MRUEPRAE T 008 . A AT AR L S G X 1 5 R A, A SR
SR TR 90, SV T BB 110 I S RE S [FHESh 7 PR MBI B 2 26 4 01 10 %2 A
PEIHEAR, SRR IR WG 0] i B0 T BT,

5. g

R I - IR A S AR, P AR N R G I (AL A% ) B A A
U % 7 6 X (376 108 R 000 B 2 ) DO 4% 38 g PR3] [5] [81-[117 [18] [20] 0 25700 Lo BRAL b 6
T4 RS2 B 5 K R A7 0851 Ty B R S 7 5 B ik S S 7 BUROIR A5 [4] [10-[12] [17] [20] [21].
TEIX T 24080, T 2538 75 5 245 A 42 SR R 47400 368 B L BT 90 T LA T SR R (8] 110
[241-[281, i [ B 5 J0) 3 2 3 - o 420 0 7 F AR5 SR s LR AT 1 2590 9F 2 2% 7 W 6] 9] [11] [15]
[16].

TR AR I T Bk . %, WA SRE I R AT S5 A R E £ 7 T A7 B
S, KR T SRR I R SRS (b 1 B 0, 754 TALEZE[30], A5 /N BTE D% A
P2X3)MFEE AL AL FAETE RN 2 5 . BT/ BB RLB A B0 R0 S PR P2X3 SZARTEHUA, HAEA
AT BT A RV PR 25 50 A S R T T ARR S A 5, AT 51 Rk S RRS S5 BIME F, S 2 B 28 2 P
PRH SR 5. BbAh, FEAT SR T, Wk 2B AT A S AR O R 5 4 2k (8], HS
R B RGN G5 5 P 5 AR BRRE31]. Fik, HESRX—H s, FRE A
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I RAH ST A SE IR AR Y AR GE AR JEBE o LU, W0 X (U By iy AU B 2 )48 1% W VA4 o B8 PR LA 1
REE . HETMZRBRAEOR, Flig tMRL, RN PN ML 0 1 Th A 2 LS4t 1 Rl .
FHEIFURWI[32][33], SEEBENAEAEL, MRk e 7 A B WA SR, W Rt i R
SR R U X (T2 ZLEHE By AT B A AT B R I S RS SR, BT BRI,
BEIESA MRI 5SS MR S, A BT U H DL “ Pk sgfs 79 ¥ ?EEI‘J%E%%E]Z’” S
UL T R ORS HEVR ST SR A T B EMKE . R, RORFEME — DR A REMIIRBUR . N 55 2 S
MEABBOR, A At i A vz i 2 (10 e BEAP 22 30 % . EAh, %?é%léﬂ%ﬁﬂﬁﬁﬂ/‘émﬁ‘]?’l‘%
WK e BRI D R AR S R (341, A ek DRI A 2415 - (AR T T 24 SR I 1y BB 1) o A2 AP R 2450 FE T
T 0 e RN i) P B P A 58 o 24 35 S 70 5 Ao 03 B PR TR T A, D v B 27 7 SR IA OB 24K 3
ZR PR, MR VERZ W IR T 2 B R T U 2R SR R . RRIIE TR — 25
BEMARE, REESIRKES:, RGP HEGHURRIL AR 07 i,
B 24 SEHUAR RN W RS HEE PR S AR AR T

SE
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