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Abstract

Cardiovascular diseases pose a serious threat to human health, and their pathogenesis is closely
related to imbalances in energy metabolism. As the primary energy source for the myocardium,
dysregulated fatty acid uptake is a key factor in the development of various cardiac diseases. CD36
is a core protein mediating fatty acid uptake in cardiomyocytes, and its functional abnormalities are
associated with the onset and progression of multiple cardiovascular diseases. This article reviews
the central role of CD36 in common cardiovascular diseases and explores its feasibility as a thera-
peutic target, aiming to provide a theoretical basis for drug development targeting CD36.
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1. 5|8

OB B ARG RGP, REBBARYE TAEfar . IR BEN R BGRIRES, TEAFRE RIS (A R iE
I3 o X Fid B A OO LA B T DA V2 R RE AR « Bk AL S CRI BT RE RN FLER) « TR 1k S S JE R 25 22 P )
i, LA R RS R ATP FsRHFERFIRAEThRE[1]. fEZ PR RIS, TRliRE 2 OIE ATP 427~
IR TTERE , 2915 40%~60%; HARH (2 20%~40%) N #7208 . FLIR < B X B IR S oKk &4
AR AR R AL 2]

S T i 197 P %) e L = L i e s B A R e RIS B L R IE . 4 M A1 R S I 7 BB (Free Fatty
Acid, FFA)[ 245848k, B0 G DT R #% 12 £ H (Fatty Acid Transport Protein, FATP) A& 41 i 73 (L1 36
(Cluster of Differentiation 36, CD36) W Bl N UL AE[3]. FEAMUF G, FFA TERITBESEHET A SEFR0 M
R, I ATP AR R0 S RS A K BE T D FRIBE L 4G Ao JLrR, 29 90% KB i 107 R IBE S i g A
W E R AR, I g A ATP: HARE 4 WIS AE T O LA BRI H i = Be it e b, DAAARI
Z 4] [5].

EOMERERARE R, ONUERAIIAEIIER 70%H1 CD36 fr5[6]. CD36 X 4 H&MilR % [ M (Fatty Acid
Translocase, FAT), {FE NS NRITIRL G/ KIFERZIL, CD36 Dhe AL 2 EREAW R[S O ME
T BB . EESIBKEFEREA . e 005 O UBEIBE . o0 77 35 3 K W R 95 o U & — R HIE K
OILERR KA S KRS, BREREEAER: flandid SRR PRI % 20 RV A 4H IS 5
SN FIRR, 25X BRI R T ARk, CD36 ThAE IR R O B AE T 5 G % 540k
B, AT AR £ A R ESKCREEE Y, CD36 NS EIIREIUE FE CD4" T 4kt
Gy I 38 0 J T RE 2 AR I B IR 2R [ 7). 1X %7 CD36 W] AE I i 1 HE ARSI R 58 )32 (s B A B f rp
RAEAER o B X B L 72 32 250 B0 v 1) 38 = SATS A RHAR N BRAIE , (HE AT 1o 5E Bl CD36 1)
DR ZAEPEFTRE 1 A0S o

KT CD36 fEAFER T 5 FIIReM m R Ak, ALER B 1L R Guhi AR OB O INUE 950 H 1A%
OAER, JEE SHIAT R R P 2R S B Ak, DU — AN N RIS KB EAESL, ARk
Fh1ERE ] CD36 B 25T A e it 1 S Y BSR4

2.CD36 o FHiE. RixiFiESgRRY
2.1. CD36 K9 FEM S FRL BT

CD36 & B JRiHIERZARFIRAIRB K T . ZEARACRE TR, B zom TRk, %
B ZORLAA e PN W 45 2 R T 200 D B 8] XA RS PRSI A IR 5 1 L T RE 22 FEIE O 5 R B Ak, i
HAEW AR XIS 5 IR 55 H MRz EHHN L, CD36 MRk TR HHA. H#%
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AL FERE PR R dm . A A B 2 DA R sk e B R [9]-[11], 38%€ V¥ KBS 5B RmAl S
PAE L [ H AL

CD36 A 32 RIS & 2 R T . FLIhREZAEIERE 20 IR T 1048 mRNA AR FEPEBTHE[12], T SE A
BN 52 2 IR R B AT, KRBT HRDa A PR R DI RE R 8k . e, X AR
Rk MIENENIR S =B AT R GO ERERE R RIG I B A HARIE, R, BFUKREIRE . B
AR T s BEIR & A SR 2 055 W HRGE BAT I E 6] X RoRs 40 #2500 4 w5 oL IE
FIE AR S B R E

2.2. CD36 THEERINE Y : H£IENESHIHkE

FEAEFIRET, CD36 A&-LUANMERIUIE IR . 4ERr s 2 pe AN oS 7> 1. WEFERY], CD36 &
JRBEDG B A 5 B E R UCR, SBCOALRER BN AL, BRI hRe[13]. SRT0,
FEIRERAS T, CD36 MMM BRI LR “ 1 S ", Hodp 2 RN LB AR (o A5 i . 0, E
B AT A SR R, TR CD36 & I RBE SR IR T RIS T R, SECLAURITR A L5
ERANERE AR 5, IO I REBA[14]. 52RO LI, BRI O IR, T4 5 Kot
U AT 7™ E 0 AR O OIS, BN CD36 BRI M AE A R0s s LI S PERE TR, I Bies O
HESAG TN BE[15]0 IXFPLEA RO Y B B0 JE Iy €, TRZIMIE 1 CD36 1FuiR T HE R B M 58k
i, TS A AR SR A A 4 L T R E A

3. CD36 7E %50 [ & % P R IR
3.1. FBKEHEREWL

B K 583 B A R — Aol DA 2l ik B 1 AP 8 RE D A B PR EAT PR, o B A% O A T SR A AR T B
1 (oxidized low-density lipoprotein, oxLDL)5 EWz 4 i 2 [ ) CD36 A& AH HAEH[16]. fEIX—id
%5 52 )l 22 11 (Low Density Lipoprotein, LDL) )840 @& B K J3 Zh 38715 AR FRAS N, LDL 1 4R [ i
PR, AGAREUEM, H/DEA K oxLDL S IEA GG SR, W& T, 4 LDL #
RKEBHEMNWN oxLDL J&, BEMNEZHAZR KT, 1M CD36 IER/ X — B M X E A
[17].

CD36 TENKR AL RO BURER, 46 T H A 300 oxLDL $3H, X —id 2 B 3 8 B a4 i
A E S IR TR IR A, A4 R B AR IR SRR 10] o FE BIAYERZ, CD36 TRkt fEFE A T
—ANBPEEIR . oxLDL FIr #8571 i 8010 I ot Re 0 AH L e s R, T R R e s IR - S it — P
CD36 [MRIE, TEm—ANIE B, I i i 5 iR 18]. s, BRI mEIE CD36 KBk
A i L A5 5 v L] R IR 5 o I/ 96 80 DT % 52 8 3 A DG A2, X MALAT 9 2 A FEE BIDIE 1 LB V[ 19] BRIt
A CD36 Ik O SCATIEN KRR 25 M0 A 1Y) = Bk mE , HANIARR CESE, CD36 Ik REA 2L
FEAR oxLDL 7K1, PRI A G 32 513 [20]

B T ISR A MRIE i, CD36 i /& B MR 4 A 28 i s S A AR 26 4 R B0 A% Co VR 5 o AE 28 0E J7 1HT
CD36 £ J5 S NLRP3 JSRE/MA 3 X 1 (1, {2k A4 i/ F - 18 (Interleukin-1 beta, IL-15)% 5%
SRR 2 A7 10 2k, AT TR BREER N 1) RORE OB S B2 [ 215 [RIIF CD36 47311 oxLDL #H <2155 5 B4
M5 SR A AE DG B AE s W) DL R RE AR EWIZRIE[22]. FEARMI 7T, CD36 Jiid H AR K AE i 1R 1) g
JI5EW E RN MR RE A T TR DT BRI N Bk AR, 5 — 7 A A i, S BUIRIDE
FRIELERIAA MR R, 51 R ZR R D) RERRAG . X5 7524 i 1) BE 5 (A 2N ey R0 A A IR A e 1 DL P2 A K i
5 % (Reactive Oxygen Species, ROS)AFFIE, 11 ROS 1E N KBRS 570 ¥, #t— D IE % A F «B (Nuclear
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Factor-kappa B, NF-«B)55id %, 24 ERR AN — s BEAE R R AL (23]

CD36 B0 H B ZAR DA B SERFEEE A AR A HES) b 5V, ShIkEAEREAL
R SAEZ PTG REAN T, SCHAE TIR & B R 0 B AE BB N KU BE 241 CD36 Jdid i A i[RI AL il 4ie
BEY IR BRI I (R A A T R R 0 55 T R R R e, SE I 3 Bl T 4 R
TR J1[25]. BHEEZRSE, CD36 MIBURTEH B 7 IR L, W 2 i a4 R H 44—
IR B RN—FIE /MR SRER R, CD36 5K T M e R A % UIFH < [26]. EHE
W], ML/ oxLDL (15 S5 B2 5 H CD36 /KFIEAHDG, CD36 fi 2 vl LRI ML G052 e g 75 5 1 1L /)y
R 10 s 2 R T ASE TS [ 27

g5 FRrR, CD36 @i Rl B AR . UK JORE N HERF JORE R DL ik AR TR e, #aRK 1 3
Ik AR R AL A R R ) e B B B ok, BT T BB T RE A

3.2. 1LANEESE SR B E R

LU BE (Myocardial Infarction, M@ H e IRBN Ik S EFHZE S OWUEIESE, LULREE IR
WERAL SRS, LRFBCOESEH SIhRMRE . X EE RS METE: 20l
IFE . Wi DhRe bt I J5 B2 2F AR T S G PE B8 Sy — T i, T DRIk ML S 4R 51 R I e =
RUTFENL, B ATP & R/ o X PRI AH BRI, TG G 2R, AN W 0 =5 52 4530 I 7RO e 553 12 [ 28]«
ENEN O UL ZERE kU, RRITRR A E L R h 2 X EE . JRRIRTh e InT, Je iR A
W2, HARERE Yo KE R [29]. XM B R AL Re D RIRES, Mk T S 800l
NEER S ) O BENLH . 5T CD36 fEfG BRI A RE EfE AL ICEE T, & OO O NIUBEZE I 7 1
TBITHE R

I A— TR FE R I, # CD36 [ERIEMEAGAZ I, GeG R0f b IR I BRAE G, AN 38 it 9 M 5 4
P s Bk R B ACH R4 MESEIAR . DB O EDhRe . SE S,  IX AR 0L R i 1Y o H MR okAE
I 2R AA T B, AT o LT B ) QI (300 5 — THUML ST A 50 U M IR F0 A R R 44E T A iE: o
RS e R IE CD36 REWS B 1E & 7y i far O I o 2 I RE AR 3R SRk [RIIE, Ok CD36 it
PR 22 SR R G R I N SRR A, MAE N BCIRAS TORER ATP (77 AEREJI[31]0 IXLLUEHE
FLFEZRH, SRR T CD36(J0H 2 HARMEME ) & 58 OB 5 O 1B B I R IR T RS

SR, B ONUBEZERRIT SR T, fER N 2 AR T A & o s @ s M . KB RS
PO I R EVE T, 2 1 — IR R I IR B, e AT RERE— 2B RO LA A

B AL/ FE-#EVE (Ischemia/Reperfusion, fAjFK IR)IAN], O UL AIAR AR T & &k A B2 23R [32]. TR T
RIL, (ESRIMPYEE, 4HARAE L) CD36 Rike N 32%, [FINTIE MR SA M R SURIFRAR, X Fhid NP2
WA B TR R it AR R, OIS BA R R . AN B, B CD36 [3RIAK
AT YE TR BARANL, (H 8 D B S R EN RE R 2 B B i i 17K P [33]. 4T CD36 TEHR M BRI 1 4%
OAER, A HT R B - PV 2 4% 1 T S s A7 S A T4t FL Tl e DA b VR 52

IR, RO N RE M ERR CD36, BAFWOER IEE A, AEEE VR J5 R &R0
Rt o HARFFHLHILE T, CD36 B 18 A8 Co [ 2% ) B vy 280 1) 6 6 W 284, IR/ T I A 5 28 A SR A B
PRt a & FER, AR TR MR EE(34]. 2RI, 45 M CD36 milki /s BB IF A s H R FE
PR ER, £ UR JEha i sz ™ E4if(35]. X Fh 2 5 n] Redl T4 5 YRR B 51 R 1) 2 4H 2R 35 L
PLE IR RE SR 46 B AR & 8, A IR 5 B Ja AR L Re e Rt B CD36 IR AR FE A o
ANFE . PR, AEHETRE UL E S0 CD36 Thae, R4 S TI, AT e SO B R
Qe
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[NEES

3.3. R LALR

2 BUBE PR B AU T IR RO ML, FLa 155 ZE I8 v AR T b 8 e IR 2 Jig o i PR O UL
J# (Diabetic Cardiomyopathy, DbCM)f#4a 5 & MMl e S b RSBk T o0 . el R A & 51 i i O LS e
DR As, HAZ O FpEAE TR 204, JCH R MR BRI 2R EL[36]. FERE RIS T, RS RIPT 5 TEIF FFA
KTy, FEERAE LA M BRI ITRR, 5 S M IR BUAR 2R [37] [38]. IXFPHEBEPEAMN T HEIEH
PIREE AL, SRZIKFOLEE S OIETh ARG OSBRI R, BRI, A0 IR B 1 O ORI BB R
O NUR B Z 7 1]

CD36 {EiX —Ji B R EHEAE N, ERIE SIEHEERRR I R B39, X Rz
B2 B KR IRAN : FENE R 00 e 5 2 IURE B B, B RIS S BUUUE - CD36 X9hn 1.5 %, [Flif
YN CD36 ks> 62%, A XU CD36 MAHMI A [ UUIREE AL, e AN s 7 1 P e o 0 4 i e =%
Rl PR B A 401 BIAERE ANHE RIS e 1, R B 5 SR KPR B 2K N %, CD36 fE R T sk
PR MBSt SRR AR, T A B B v RS 5 v R IURE PR W] Rt — IR s R IE S I A [41]. I,
U E CD36 HIRFLE s ik FEORERITRRIMA, WECEMEfEIS, M HE OEDEE.

L, #EEOAUIE R, Rl 2 iM% CD36, TP R DbCM R i % (1167 Hik . i3, /£ DbCM
AN, AT K TGRS SZARREW L ] CD36 HIAFHIER AL 121, PHMT L m U 3is,
A Rk R T R T, f 2717 DbCM B R AR K [42] .

SR, CD36 WL M B U, HAE A B AR T B . SRR O LBk CD36 T
ARFHERERZAM, ERERFOVUENEFTHET, TR CD36 Thfexifmgem b fm Ryt &
HONEWAEDIRE . G, ARSRIIGTT REAE T 58 2 mibx CD36, 178 T A5 Al 4% H o i M o A
DAY S0 WL ) e B A R~ 1

4. BESRE

O ML ™ NRAERE, HBiE 54 H ™08 . CD36 1F 30T fe & A 5 IR A5 5 BRI ¢
ST, AR ML R RANE e B IR T R R B S 5 m ir Be . AEBIBOR R AL . CD36 A
(IR IRAA NI, IR I SRR MRS 5 T R AR E A, ARV SRR [ TR AR
JULSR L/ PR 1 ) Sk R ], LRI TR R — G SR R, (H PR 1] 1 Th E 2 R SCRT e R
15403 s FERE PRI Lo o, CD36 PR 2L I 45 2 i R0k, O Lo VURE B 3 5 R BE 1R O AZ L KB PR 3K
XM B S SR S (R, T CD36 AF IR RE R E, TR AR T IS R A
RS B, T R SRR ORI

SR, K CD36 HeAb vl SE IR T #E T I 22 BEBkAR: 15, FIEH CD36 fEAN R 4RI 4
il J3 B RE LB TS 54, IR EN SR RE ST SEAET . ARSI EAE XAEM, sl
AL PR PR SR AR R K, 7R WA AR L S B S5 B i an T B A R R LB 2 5 ThRE T I, A
KIEAGHII LML R B, RHITT CD36 wl Refid A MREACER MEARIIE R, SO T e 32 A7 ) 2E
Yo 5K TV MIDF A 98 78 PR B R

NNLXS EIRPRAR,  ARK AR TT A 75 [ AR UE . B YRR T A, IS AN 25T A A B
BEATEUEG . CD36 A7 BT A e, (B ASEL DD REIEFEIE 9%, 82 1 BT b ook, (EURS HESE ]
IR TR FERT A I RS HE T, (E I 2 Ve TR R PRAL . TR R BT IR
(RN, OGBS AN MR AT REAE THE RS IZ RGMIT R, Bl REL IR RS BU/AABLE A
it ik RGABIGLEH ARG . BL, KoREET CD36 MZWIF R, HEMEIGEZ P, HEFES
ECRIE 77
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