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Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder. Its major motor symptoms in-
clude bradykinesia, tremor, muscular rigidity, and postural instability, while non-motor symptoms
include sleep disturbances, hyposmia, autonomic dysfunction, and anxiety or depression. The eti-
ology and pathogenesis of PD remain unclear and involve multiple factors. In recent years, the pri-
mary pathogenic gene of Niemann-Pick disease—SMPD1, which encodes acid sphingomyelinase
and plays an important role in lipid metabolism—has been shown to be closely associated with
the onset of PD. This review focuses on the structure and basic functions of the SMPD1 gene,

EIREE

XEFIH: XI5, B SMPD1 JEK SIS AR BB ). IR REE 3t &, 2026, 16(1): 1390-1396.
DOI: 10.12677/acm.2026.161179


https://www.hanspub.org/journal/acm
https://doi.org/10.12677/acm.2026.161179
https://doi.org/10.12677/acm.2026.161179
https://www.hanspub.org/

IR, B

epidemiological findings, and its mechanisms contributing to the development and progression of
PD.
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1. 3]

45 %99 (Parkinson’s disease, PD)/& —Fi i LA IR VA 2B AT PR, R ERICAIBIAER . JRiE3)
SR DRI . H RIS E R AR IZ 2R 28 Rl WIRGRE . ZBAAT, RSk fE i
IRFERS . WAEUGE . H AT RERERS, i 75 BRARAE /2 2B T SOIRAA 2 B RE AR 22 T B Ab AN 25 5k DA
S I Gy /N[ 1]e WA KRNI S 2 Fh R 2 B0 AE BAE B UIAE G, AEEL 2 . IR R 2
72 LA SOE 3 2l R A 2 IR AT M AR [2]. 7E PD AHSCEME R 24, SMPDI1 2R 2B RIS PD K
AR A S B UG JE (R o 1232 TR 2 0 T 1 R Tk TS B (Acid. Sphingomyeinase, ASMase), £ . 40
FASUER TR R IEE HEAEH . /288 - UL 50 (—Fhss Gy oo i o vt A% (10 s A QU It 5 ) 1) 3 22300
FR, HLEREZHI RN, SMPDI REAR 7 54800 KA/ F L R[3].

2. SMPD1 EFE R EFEBWGEM R EIEThEE

SMPD1 £ [K(OMIM:*607608)fi7 T YLtk 11 p15.1~pl15.4 X3k, K% 4.6kb, B 6 MIET, %
B[R9 ASMase, HEFMH 631 MAZERA L, H N SmgieIsm C b a5 Fdi i, N st
W2 W E AR N, il SRS BN SRR, 5 R K s S T K HEEF . ASMase £ A4S
6 N N-ZEHEEAL AL A 8 N AN 2 MBS T, RS AT S AR e M OB E I (4] 1E A —Hh
KEEMIBEIR —HRERE(5], ASMase 7£)LF A Ui BL h &2 Kik[6], JLIE LT WInBEARIX %[ 7].

#4155 (Sphingomyelin, SM)/E 41 M 5 1) = ZERENE oy, Tz 00 A0 T . VSRR IAR % e R AR 55 22
JELER[8], S HIFTTHRMET.. AESEZ N AL FE[9]. SMPDI1 K 4mfd ) ASMase & E 1) SM [#
fRHENTEE[4], ASMase 4L SM 20 N4 £ i (ceramide, Cer) A1 H & (phosphocholine, PCho) [10], B
1 SM % 35 I A7 A W s B 1 2 FE Bl (Sphingosylphosphorylcholine, SPC) A B, ZEFRFA AR S A
P R B 1 i Joid L T T 5 S R AR B [11] . b Ah, ASMase i R P4 A 6 B P 4 R0 I Ak P9 s 2230
(intraluminal vesicles, ILVs)H1 ] SM 7KF, {2t 54k i5(Glycosphingolipid, GSL)AX 4. JH il B 733 f 1LV
(RS, DR BV Bl A4 1E 5 D RE(5] -

Cer 1E2 ASMase A4 5 B 1) = B =4, 0 AR AQG & 22 Pl i v s b R R OAE T, I K52
ASMase G PEE TS . Cer RAEL MM E LT, &) 259 0E 5. EEOIIR4ER
[12]. BWESI[13]. HRETE. S S5ET[14)5 208 . kB n] B2 e m R sh e . I E
HeF S A5 50N R . B, ASMase I i8T7 Cer IZERL, TEAERFBEDIREEREM: . MIRiLIE. (5515 F
JNEIUS R R R A S AE F 6]

ASMase I 1E % Dt =& 4E R A0 M A 2 A AR BRE  1 J6 A, 24 SMPD1 A2 8L ASMase W& 1% 7 H I, I
IR Z R . BRI, B WY ASMase 5 EEAARSE . ILZE 47 I 2 Al 14 5E (Amyotrophic Lateral
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Sclerosis, ALS). A4 7% %% (PD)FIFI /K 7K 5 BR % (Alzheimer’s disease, AD)Z54H22 R Gip5cips S VAR . HLAE
IR B 20 23 b i TR B e PR, S SANRE T RInBLEE . SRR AW, S SO
KA PEAN M ThBE KL, AR RE[15]. Kk, 8] SMPD1 [/E ML, X FH S8 1) F- 112
Wi\ vaT AT B A A .

3.SMPD1 AL PD KB

SMPD1 & [F RAZ @ T 5217 ASMase 1 DRE, 5 ZFBIR MR A HDIMS, H, BAFKIE0EX R
#& J& 2 L 57 9% (Niemann-Pick Disease, NPD) A UF1 B . /E N #iLY (i BRI A0, FLAZ oL 2 B i e
R, FEUR TR E NN FUR 5 40 i i 16]

ITAEK, SMPDI #iffiE > PD BIH WA EER . AT FHE AR, 1Z5EHS PD M RBAFE %
INFIZ S (EEARPURE AN, =R eI (p.R4A96L. p.L302P 1 ¢.996delC, fsP330)d NPD A 7Y
HUR AL 1 95%LA_E, Hodr p.L302P #A A2 PD (5K R 2, 128 SAR Rl e th R PESE[17]. 5
WRAZ p.RSILC LEH 4 1 E AHER) PD B ik KI5 PD ) I B AR G 18], PA L R IAE BN P s e
WAF R I0IE, WEERR SMPDI (/) R H B B A 2B AT M AR, ndh & e B b . /N R 4T
PRI B A DL AT 5 R [19]

4. SMPD1 EFE5 PD % w#HLHI
4.1. BEMEERASEES o-38 4% B (a-Synuclein, a-Syn)SE & K BEH

PD EERBEF I o-syn & REL R Z/IME[1], a-syn B ERARIZ D 1 5 T AR G 47 4 I B 2441
B 5 /N P i P2 52 G S5 4 R #%[ 201 ASMase & 1 R F# AT {2 a-syn (R ER R LS. —J7m,
ASMase 75 1% T P S S BE R E AN MM b AR, U RS AN SR T fL A, 520 o-syn HUMBEZE & 514
RIARE S, B PIHERMMELAYET R, RN RERR2]]. 5—7H, a-syn PIERE
BRI BEAIRE[22], ASMase 1% 1 N (4 S BUABE AT AE 2100, a-syn BEARSZPH, MO A a-syn T
FF I N23],

IEAh, HMIMATE o-syn [T B -5 R RS o A HE G B R [24] . AMIMA R B 22 Fhal i (B 8+ £2 00)
STUARIELAEZ) 40~100 nm [)/NEEI[25], HiEdIZE . JIEFT. Messenger RNA (mRNA). MicroRNA
(miRNA). Long Non-Coding RNA (IncRNA)#! Deoxyribonucleic Acid (DNA), REMSHATAEFFLIIRIEE . 1§
BRI M BAE 3 0 M D) R 8 ) TR EE B Ih BE[26]. O IR B, Cer Wt 528 P AL I {1 i3t
HNIMARTY 5 73 W[ 24]. SMPD1 A F:8L Cer AE BB/, AMBMEARCZHN, a-syn FIFRAM AR . HEA
ARG IN[27].

21, SMPDI1 RAF T 5 ASMase i P AR T LI a-syn (R JT 8. FFIRZIRA S WS, 2N
IR E e H- HESh PD MR AR R .

4.2. B S AEER 5N (x5

TEFLAZ AN, B o B 3 O T2 R - B2 4 & 48 (Ubiquitin-proteasome system, UPS)HI4
R - H %12 (Autophagy-lysosome pathway, ALP) [28]. Frf, ALP WM& IGiER a- R Al & H K%
AL, HIhRERER ARSI 2 ToAads, 16 W3 BN 1 i SR AR I XU [29]. ASMase 7E4EHF ALP 1E#
Dhee At OCERAE (3] M K AR SML AE s 422 Tk frc R Il ML, 4 e s g A 6% i 4 RS 6 B A A e 1k
HZH5ZE 58 FIIME([30]. 24 SMPDI1 H:HRAE 33 ASMase V& VE TN, SM 77 B A4 5 A = 57 8
R, WITHR R B A S50 S ThRE, SRS H R3],
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3% [A+ EB (Transcription Factor EB, TFEB) =N HMETh e A fe AU i = 2 1 R+
[32]. ASMase 7% 1% A8 T 50 SM TEIEBEAR AR 5, 3 B0 B A4 5 10 RO R TH AL IR IR HERR, ik R LIS
FEBUE L TFEB %O IS BEAR - BRI . TFEB %07 A i% , i B A2 R AR DL R i Ak 5 o i
PIRA[33]. fERIRANES PR G ISR T, BRI 08, SEUK BRSNS RN RS, JEe
HAE ) o Bk A RO K i T S ELIBE AR R ARAS, 5 NG = AR S 40 M 4% . ASMase HR-JG/NBR
PSR SM BASE . TFEB H0E . H Wil & G DL IR R G IR, i — 2487 SM - S I i
A 8 0 S O VA B A - B, SRS AN R R S e R R R (34

Zx I, SMPD1 A2 FE (1) ASMase 1% 14 N Mt 2 iS MG A DI RE, 5K F MRS, AT 2 4ty BR 14
a-FAMZE AR RE, PIREZ SMPDI1 228 55 55t PD 19 ZHURALH]

4.3. BRMHHBIERE S MARIE

PREE JORE WA AR 1 B RS R 2 —, B XA 2R G0 PN /I8 I T 24 L R 2 T e ot 4 1) 3
AR KA i S I SR IR o 7R SOREIRAS T, B 4t i i B v A 5 2 W 22 P IR 28 TR - T L 4 B Y 3R - 18
(Interleukin-18, IL-1p) 983 SR LA -F--a (Tumor Necrosis Factor-a, TNF-a)~ T-# %-y (Interferon-gamma, IFN-
), FEHE TR IR ORE R BI[35]. BEFURIL, & RIE KA RER T & BT A, femH
FEA 4 AR5 SR BOR G BAE F([36] .

REBARH 5 H 5 RAE WS VARG . DA AR, il 0] ASMase 5t SMPD1 £ K T 3R AL #H
LW AT, B4 X S 2 B (Lipopolysaccharide, LPS)HIMIT) 7 i [ M358, FEAEBE TNF-a A K
4 ffl % PE B -2 (macrophage inflammatory protein-2, MIP-2)73 A48 iN[37], $2 & mbie G — e ik
TIRE[38]. 4 SMPD1 RAFFE ASMase Jif £ T ERF, SHBENEE AR N TR . MEB K TR,
WA T R BUE SRS, JF m) QB R ot i M A% 36 M2 IUAE 5 (391, /MR d # SRS AR MR RER, 7
W TNF-a IL-18 %5 989 K1 DAVE B 57 e PR s Sz 3 4 o AR, ok P38 38y DU P RE O A 8 JRE S B2, 33k
Y ERGEZSTE AT

[AItE, SMPD1 5878 T B M o A S 5 2 o S g S A 28 I Jhe A i /D THOR 2 RRE SN, 3 — 28
INERRE T, I AT REAE IR G AR (1) R AR ik e v R R E A

4.4. BRE SRR S SR

SMPD1 RAZ T FEL ASMase i1 T [, 51 B 1A A i A S 7 AUOR B 22 At A Flsl /b, SR 4
MRS . TR S AL R SRR SRR 2 —[41]. ARG IR A7 S
IRAT PR AR R BRI [42]0 AN ARNE o- RAMZ EE 1 2RER, TEICA B A UG, IRt 231k,
FFTE /N BT AN R SR AR B, 5 3 SO R TR A A 22 SORE S N I S 22 T 473 [43]
ASMase i V5 T [T EUHH 5 M 72 4N IRAE S 200 0 2 B b el FE AR SR WA FLEE M AR E 1, S MR PR B 1 A i
EYE, T IRER A SE AN NS I D RE . LR IR 15 T VPR BE D g 25 AL PR BE AR, 22D
SR IR A P e A R A B SR R e, SN R S PR A B, T PR R SR AR L ) 1R
TheE. LRIAR15 5] A WP i 2 AL A S PR U E BN, ¥ AN (44]. eAh, B E L AT e IR
O EA, TERCEEEIR, R E A T0[45]. ASMase Vit T BRI B A B ARl 2 gD
WA AR AR ST 5 AL R, BB o- RAMZE A REE . #h JOREME KA T BEFRRT . X — R IR AR
P R R RSO 4 303 4B 5 Tk R 1) R 431 itk . SMIPD 66 PR 948 5 A 4 359 1) i 2B R R A AE TR AE DR TG
AR FINLGI AT BE 20 S i R D REREDS . BRI AU R0l & - A% B IS5 . SMPDI1 SAR R 1 4k
JiEME(ASMase)i 14 B2 S A0 (PD) K AE A R I L UREN R 2R, 51 AR IR IR BREAS,  BOR a-SRfilA%
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B (a-syn)iE R IIIZOIEE, N a-syn T8 REREEHA; H S a-syn B2 AN ARG, 2R
TR BR PR R AL S o-syn R — DB/ AN, 75 K M4 JORE @03 OB ES), I B

{Z37]

REFH 5 a-syn B4, [N SM BERRBOREARENE, TIRLRIATIRE 51 A SR (R PRI K 2K,

et a-syn REIFFTRORRAE N, LRI Iuiass, #EZh PD iR . BUART AU IN PD B (L
WL 5 IR, HHAARZUREHLE AU . KRR IR SMPD1 IEURIER, 25 PD 151
W SR T IR AR I B S R
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