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Abstract

Prostate cancer remains one of the most prevalent malignancies affecting men worldwide. Although
conventional therapeutic approaches-such as surgical resection, chemotherapy, radiotherapy, and
androgen deprivation therapy (ADT)-often yield initial clinical responses, the majority of patients
eventually progress to castration-resistant prostate cancer (CRPC), highlighting the persistent chal-
lenge of treatment resistance. Inmunotherapeutic strategies have demonstrated limited success in
prostate cancer, largely due to intrinsic immune evasion mechanisms and the establishment of a
profoundly immunosuppressive tumor microenvironment (TME). As such, transforming the immu-
nologically “cold” phenotype of prostate tumors into an immunoresponsive state represents a piv-
otal therapeutic goal. Secreted Phosphoprotein 1 (SPP1), also known as osteopontin, is a multifunc-
tional phosphorylated glycoprotein that plays a central role in modulating both innate and adaptive
immune responses, while simultaneously promoting tumor angiogenesis, invasion, metastasis, and
immunosuppression. This review provides a comprehensive analysis of SPP1 from three perspec-
tives: its molecular and biological characteristics, its pathogenic contributions to prostate cancer
progression, and its potential utility as a predictive biomarker and therapeutic target in immuno-
therapy. By elucidating the mechanistic underpinnings of SPP1-mediated immune regulation in
prostate cancer, this work aims to provide a robust theoretical framework to support future clinical
translation.
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1. 5|8

T Z1 e (Prostate cancer, PCa)s 43RG P 55 14 f 1 WL AAIA PR AE 5 2R G0 B 1 i eg, FORO 3R 7E 53 1
AR e B, BRI ERAIR T [ 1] PCa A 2 AE K 8 [ K 2B E T =& 2], R PCa
PG IT BAEAREPERT SR VIBR AR . A7 BUTHIEIRTT, 5 FAEAFRLN 99% [3]. SR1MNKHE 7> PCa
FAHELBIRITIE 18 AN H &/ A 25 M F 3k & R #5 vE 2 K P IE: AT 1 B 9% (metastaticcastration re-
sistant-prostate cancer, mCRPC) [4], HLAH WIT S #8443 Why7 12 ol 7 — e FEFE 3R a8, (EAT) THI I i 24 5
R, AR B R L RS A R AT S I Ia T B, BONERTT N 00 S U ) MR

FPIRIT H 2010 £F sipuleucel-T (—F H KGR0 G 28y 75 S TR 9T PCa [5G Bl 1. &
Xt PCa B 68 J7 V208 B 45 S0 B A6 A & #1177 (immune checkpoint inhibitors, ICIs)a &%) 988 AH < P S 1
RS PR YU BN e, (H T PCa ik M) S Ze b LA MR 73R 5 (Tumor Mircroenvironment, TME)
2 E I S AL, BUE PCa /2 SURU “V MR, WTRAE ORI IR, ORI RIETT AL
()

AR AL & 11 1 (secreted phosphoprotein 1, SPP1), RJ LA S AN IE Bk S s R4, fEdkfim
MAEER. 2%, BRfbiEiifle], HmRRKPFSZMEEDEA RMAEFRELAX[T]. £XE
FERIR SPP1 1E PCa % iad7 AR RIS S S AT &, DU A IR RS2 (8T 1 % .
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2. SPP1 KA 154514

IPEBEIRALEE A 1 (secreted phosphoprotein 1, SPP1), & —FBEERAL 1) & S W ik e 1Y) JE R JR B L i
T, /NEAREGHUA N-ZEHHE 5 H (small integrin-binding ligandN-linked glycoproteins family, SIB-
LING)Z BRI A [8], SPP1 & 4wt B #5 2 I (osteopontin, OPN)IFE R, 7T 4 S Yotk b, JLHRE 4q22.1
i, SPP1 FEME & -GASMNE T, BTGk BT I A A R AR AAR[9], SPP1 JE K] MR B 2
SRR R A BERANTIUE A 5K[10].

SPP1 J7¥Z 4 Aii T4l fa #h 3 i (extracellular matrix, ECM) X 3% « JRIGAFLITE 2 R, IR0
Jfo T TR A4 A AR A vh B AN P B B A BRAE o 4R SR IS 5, SPP1 I FEAMN IR T 5E 1Y
MR, ARSI N SR A AT AR A EE AR . A SRORGAAE(DCs) bk EL A0 A 2 o 4
FEANMI[11]. 24 A1k, AP SPPL AW RGWITL, 7 A N4 9L SPPI (intracellular SPP1, iOPN)
F153 7Y SPP1 (secreted SPP1, SOPN), 3% [KI7E4H M P (14 58 A0 AN [R] 10 R FEAS [F] (1 AE ) % Th R 12] iOPN
Z 590N B AL A S TR IR, IR AERE R LI AR TR RS S s AE I [13]; sOPN I 32 24585 15 8
B R CD44 S50 R 2R A BARR, Nt SURE N 5T 12]. ERERRZ, /RE IOPN £
EN TN, HAHR & 58E RN CD44 SSRGS R I[14], fEAIMITRE . 200 Rl LA B 40
SR EROE RS BA EEZ DR

ANRIFRAL LA R AS [ 40 MRS KT SPP1 WA A AN R AR F o JiRE RIS SPP1 B 88 SRR M6 40 i 75 I
TP AFIE « A RS B AL B0 R S A [ 15] FEBURVR A SPP1 A] LLIE I 20 g SMF 5 1 15 I8 (extracellular
signal-regulated kinase, ERK)/™ 5 {5 5 1@ 26 & 45 SP HERAC s it e AL 2R [ 16]. tb4h, SPPI &
H) 22 50 R IR SiE NI R RGN B ER . A, AR HT A R EL R bRt
G MIEY AL RE[17]. SPP1 WA FRHME S S RGEVIMR, NIGBHRTS SPP1 7E R #1 e S et
I7 BT AEN LR BEE 1 AR A .

3. SPP1 ZERTF AR B P RO{ER
3.1. SPP1 M RIFIIRE R ERIFERIER

3.1.1. BIZERARARL, #EREIDHIMERIFE

WK B, SPP1 2 Hi 51 s e e iR S5 v S e i)l R9A% 00747 5, SPP1 - 2LIE IS 7E B VR 40 i
225 B 2R iR ik A 1 (tumor microenvironment, TME), {23EM83 ) & 4= 3@ . Lyu Z5[ 18l i 78 H 40 iy
FESRH I, A T 5 e S MR BRI Bt i 31 25 KPR BL, SPPI i 2k I R A ¢ B 41
Jf1(SPP1hi-TAM)IZ i U ILAREE R HE, BN TME HREs R % . I Dhae S 1 e 0. TAMs 7] %
DA S () ML (g ) R 28 M 1) M2 L2 RTIRT) . Fejza 250 N[19] SPP1 S %83 TAMs 7Y 1) ¢
W, SPP1 RERSH MR 4N iuEk TME (¥ A 40 M (B FE B4 i [ B ) 7ridh, Jlid 54 2 F1 CD44
ARG, SR F AL M2 B TAMSs MRtk . ok M2 2 BT A it sk SR & i
% SPP1. IL-10. TGF-p 7E N IS S 4H M R 7, #0] CD8'T 4 A A5 Hi iR S e 4 (s 1k . WU 45
(20738 Job 2 [A) 3 S 240 J G % 5 e S B IESE. SPPITERELN ML S FAP i AH ¢ T 4 4l il (CAF) FE B IE S 1534
%, CAF 47k CSF1. IL-34 4E¥F SPP1TEWRAHMUAEIE, Ja& B CXCL12. TGF-B %1% CAF,
BERIEIAR S 4 difl, FHAS CD8'T ZHMiR i, #F— D i s Mt PRGOS, I 55 Ge oA 25 a4 il )
(Immune checkpoint inhibitors, ICIs)7E H %1 it H 1197 R4

3.1.2. B3 SPP1-CD44 5= 83%$ T ZHEETHEE
7 A EziE Lt B R EAER . SPP1 IS REELFE/EH TR0, T 400, Mg HPtERE /1. CD44 &
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FEE

SPP1 )N EEAZAR, 2RI TEN T AE L M B R T [21]. Gordon S5[22] & BLAE I 51 B
R RER L, mIKEER) SPP1 5 CD8'T iK1 ) CD44 455 Jatkid stk (E S, A% T 41RhRemm
PR E T, Xl ELAE FH AT Ha] T 20 A R TFN-y S5 CB A M b8 71t 7= 2, NI 20& ) T 400
P RPEARIRNL . SPP1 il SPP1-CD44 Hliff) ELZANHIVE T, W J8 4 I SR AHL A4 S5 A% -0 O BT
TERPERT£R(23], PRI AR 27 W B L e A A8 i 701

3.2. SPP1 {Ri#FFIFIRRZRI & RINEFER

TERT N I () R A AT i R, SPP 1 A 8 IS 368 1) 2688 0 2 1 e AR SR G Rl 7, SPP1 fe &
YN AR AN IR T IO E S RE B, IRFEA S T ORI R ) 2 N SRR

KR 7 EEAER TR B m AN, SPP1 ICREIEIT 55 7r WAL, YA IR T g5 o 1 e Ad 4 i, TR A
WA R 22 . WANG %5[24]4F Trans-well 122855504 & 8L, SPP1 ReWe I3k it 4 J& & 1 g (Matrix
Metalloproteinases, MMPs) ) 25 I35 14, 45141 MMP-2 1 MMP-9, ilF5Z SPP1-ERK-MMP #ili/& ADT [iif 24
oAl B 2 B A 22 e S EE LR, RIS, SPP1 & REA ik PR I 70 £ VA e IS I (uPA) R K0k,
— G IR T IR 20 R XS I R I B A RE 7T Pang ZE[25 I RN RR, R SPP1 FHYEM TAMs /£
CRPC W itrh B4, EES5IHEHE 7R &0 T8 A8 A B 2 floB g s .
Sanchis %261 70 K I SPP1 fEB H MR IE B2 & TR A 8 8 5kt 5 CAF o7 IE kit
IR AT AE AL BB, (6B A TRl Rt PKA-SPP1 Sl i3t i 41 i 4% %2, (R, SPP1 @it H#:/EH
T 96 R ) R 4 PR B 2 B P DU S, A T — AN RROR IR AR R R G, IREN T F e R R N
JEASE [ 378 Ab 2 B (e S

3.3. SPP1 iESAIFIRE R BN

SPP1 {F A i BB S e flh B ) AR 5 001 » I 5 S BE A A e 20 it 2 1] B2 2% (AR ELAE
T P8 e JEE PO [R) ) S B AT ) W 5%, 080 ik 4 i o € R S i

33.1. 5aERESEROHEER

SPP1 5 PD-L1. CTLA-4 %54 Mok A5 ml BB 2 [MIAAAE R VI I R OC &R, JLEIA SR 1 IR fe g ik
I 2 HEE2

Z I P AT 7R [27] [28], SPP1 [IFKIA/KF5 PD-L1/CD274. PD-1/PDCD1. CTLA-4. LAG3.
TIM-3/HAVCR?2 %52 F a2 i 25 S R R R IA RIS I IEA G . XA U] SPP1 AIRES 5 T
IXLERG Y T RS T . R TE TS M Bz B SPP1 4% PD-L1 8¢ CTLA-4 FIA 1S5 IF 4
MIEAR B R, (B A R SR A T A T SR A T R R i, BRI SPP1 BENSIE L NF-«B
SRS S IE R, b i R 2 AR AT [ 4 S T ) PD-L1 3K [29], AL SR T 0SS5 . BhAh,
— D S P R AE AT F RS T, pS3-SP1 Bl rT RE 4% 1 S ke 25 55401 CD276 (B7-H3)FKRIL[30], XK
SPP1 KRk A 2 5 ¥k 2 S0 TAERT 51 e h AR E A Ll . BE T 0k, SPP1 nlfgidid 5 S
Ko fUEER P VR, SRR T 400 AR5, M-S EU S 2 k6 25 s 40 1 350 A R4

3.3.2. BRRMEESIERE, EERiEeEkiE

SPP1 il SAHMI L M ZAREE &, Wos— RVVEMIR(E S0, TRk aT 51l e e b . if 2411
[ B2 HLH] . Messex Z5[317& 8 SPP1 fEfSI4IE PI3K/AKT/mTOR. MAPK/ERK1/2. JAK/STAT DL}
RhoA/RhoC %5 ‘5 iE % . PI3BK/AKT IEEKEOE G, i b #0120 B 81 1 o0 b, FEHRHIARE 28 K1
FEAE, NI TRIFEEI S5 1 B8 G2 SORE o 3 6 188 % P S s AN AN B2 Tt T e e 4 A S s P S 0 1R 2%
HRMPUIITIRE S, Rl S 2 P EE R e %, Sema A M IR 19 2 s, TSI A R T s AR K
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3.33. NERBEHRE, SIXESUWHA

ASFELE32F AL R EoR, HFRIE SPPImMRNA J& CRPC 38 % B2 & i 25 (1 fE R R %55 Cheng 25
[331K B, 4105 i R A B e A I, i A B (i Al i 2 7 AR K& SPP1, iX 4% SPP1 HEATHFE &
Gi5, RefpmtE B g AR B AR I G O B, EL R AR N CDSTTCF1 ik T ISR 4E 555

A, AT BO G B 7 i S0 77U P 4 S PR 245 X LemiE e [R5 1 SPP1 72 iR S e ik rh i) 2 By
AN AL, [FIRF, AR5 — 5 AER] SPP1 @ M E 8 i S B iR 7 Bl i

LR P, SUEBORIT, SPPL EILAE G LA SEANI L MG, SPPL L Ui e
KA AOBE SO RN IR A SRR R, RS SR IR, M
RSSO TAMBIRAS, b5 A0 S A S I 25

3.4. SPP1 FNWEIFBREHI TS

KB RBE RS B2 — 8GR, SPP1 IFRIA/KC T 510 71 i 5 e R 45 5 2 DA 9%,
EI#IA N SPP1 A2 TS AN R i G K & [23]

BT HE N RIE 55 (GEO) Bl 22 45 K 4 JL 35 P 1) [ml PRt 78 AT Meta 3 T R BW,  TC iR A2 7E Sl Ra 4
21 mRNA 7Kk 2 B /K, SPP1 [ERIATE AT #I Il 24H 1) 38 v T IR W AT B IR 41[34] . SE EE 22
M4, SPP1 [Hm#Ris 5 B B Z 1 A A A7 A (Overall Survival, OS)AI AL & & A= 77 #(Biochemical Re-
currence-free Survival, BCR-FS){& # #H5¢[23] [25]. %1, @i Kaplan-Meier 217 #H 28 53 B Al DAY B $ 31
823, SPP1 ik dLif) g A A7 M 26 B3I TR FRIA 41 [35]. Cox LLfl RS AL 73 By iE—2B1ESE, SPPI
ATAE 9 TR Hi 41 Jies 26 T (R A S AR b 436

FEn 2 fE 903k g 2 mCRPC BB, SPP1 HIRIAK -2t — B BE & . 5K, mCRPC &
IR AL ZVRI ISR TR ) SPP K-F-251 5 A R TS FIAAF 2 T B BRI [26]. X $d7r SPP1 MY S5 [ HiF
P i LR R, SEAE R T A R S . SR B R A R i RO IR A . SPPL EZAS
M5 A 2577 AL T PTEN 5 Gleason, {HERE M SUEE SR B85 TSR, W& 1. EUHERN
TS AR EY S PSA BCG A, ARSI B AR

Table 1. Multidimensional comparison of SPP1 with classic PCa prognostic markers

5% 1. SPP1 54281 PCa /G545 YELL IR

Tabrde SPP1 Gleason ¥4 PSA {5 PTEN HtJRZS
R W - (L Bl R T E(E bR, ~ R
oA P S, HR = 1.7-2.3) HR > 3.0) "F(HR = 1.3~1.8) F(HR = 2.5~4.1)
Ko F’“éﬂﬁf’s/f;jiéff TR R R {E6(7 NGS/HC)
[p%N ik - F(ELISA = $20~50/7%) ORI + M) PWARCE BRI E)  m(NGS = $300~500)
M EE ST (AT B ) [ ENTES-RE 7)) (AT AL W) RGER A E)

FEtE h@mAaRis, JEPCatist)  mALUERSR)  PUBMERAETHE)  R(PCa fERFHD)
RS I (B + Meta 0478 F) T RGTIENE + RCT) T&WTIETE + HaSds) I ZETEMSE + B

4. SPP1 FERNFIRRFE S L IATT P HIFT R 5 4 MRS S RE

YT SPP1 FEHT B g S B 25 FIAS UG o A% AR HT, 8L SPP1 K AR 5 il S A AR L 7 10
PEIRITH T .
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4.1. RS RERTHRB S

A B e S B SRS R T 4H B IR R HL B IR T R 5 A AU G B . iRy T AL IS S K
925 VI 7 1 G 3 2 BRAT ) G 2 A 7 7, FEERAEDIRZS R, K #0A SPP1 IZGY) 5 PD-1/PD-L1 S5 G ekl
BRI RIS, AEER “1+1>27 WP FEIEER . @idshs] SPPL, v LATHE i H 3 S/ %
PEHIGOAES, g M2 RUEWRANA. RE T dIMIhaessE, K W7 Momiseiby “# B, Mg
T RGN R . HATHF AR B, mCRPC BB AT/ A anti-SPPImAb 3¢ siRNA-
LNP, MIFHWTE - M hbc B s £ ICIs M2 8% WRRBESRZMGIF + CPLELS, FTHL SPP1-
CD44-TAM IF R BiA#%; JEH A5 CRPC 4, W% & SPP1 aptamer {E MRS 4R S AL 5 B
JTIE[33].

SR, ARIEIA PR RS R, H AT M I A T RIE B TPl SPP1 SZ ARSI B A Gk 2 pi BHITTT
PHRTT T g (I PR AT SR AR REG . SPP1 L2 V2 UK A BT SRR A, (R A 23
MG TT SRS T I s 2 Pk, G5 1) SERSRPiltk: SPPL fE 2 MR b 0L, AL45 R 4n i
EWRA AN e 400, 7 SRS SPPL DRt 2) AWM RMERE: SPP1 N4r bR, fE4/Nr T
EPURZ A DL LA [ HLThRE . 3) SRS RGuPEMIH] SPP1 LA MK AT RESL I AR S
FASEABIIGE: 4) SR LRZGY: HATHIGHENIGRIK T A0 SPPL Rr e, 2 mrs =k
AR IR AR T AT R BIE

4.2. SPP1 {EATRMMAE RS PIRE

BT SPP1 270 W RS A — b, & mT LA R 4H SR OB IR A 3, DR, A0 28 2 o 4 21
SRE ML SPPL K, A — MR A S| 1 AR R AVEZ W A D0 T B, 610 40 e 28 1 XU 2
JZ T R LA R e S AN VR T B A B I R R A .

BT BRI S M DhfRe, SPP1 A3 B2 Ny — A A7 ) T AL Wb 6400 o A 2 Pl hE i) i PR FE v
VBT B L B R 4L 2 b s K SF ) SPPL 5% PD-1/PD-L1 #0522 I B 6. AN R T i S 35 AH 55 [ 18]
[37], BEAh, —T0 Meta 73BT %G 5hox, SPP1 ZETM ICTs 7 R07 TR B R A7 X 43658 71[38]. AL,
SPP1 MY GEE )3 [ W IR A2 22 MEAE M) 22AT S, I RIE AL T PD-L1 RIA I TG 7 ZH8bs, SlBhR 5
ICIs J5 AT 247 1) v IRV N S Dl PR e SR B9 SR 1) 1) $2 it B 22 2 25 A4 - )8 H i If i SPPL
VE R B — bR B RS e A BURMEI A R i, (R S H AR S, B &gy s, A8
R H SRS VA SRR, N T A R AR A2 T SRR TSR

5. INEERE

GBI YT R H B A Ok TR A B, SR T TS 32 PR T T A1 M S e S B 1A A2 2 M L i
ZRU o XU MERERRAL B 1 1 Ay — P 22 Dhe A M LAl 7, £ R S B MBS AR I T R BT p A5 3 B
WrFER ], SPP1 HIL AT S e A ok B MR an kA #] T 4R ThRe, JFMGE (s SiE, &Y
FIRBERIT IR . BRI, SB[ SPP1 S L N5 Sl s, CONIRTH BRI 3 1 B 2%, (B
i ATWE PR IG R W FU IS e AR RE . R, 465 SPP1 RIKIKTAE A MRS B, DAL 25K & I 5 18 0
bR, AL VMR 1A AR BORAL, SIS B S B iR T BN, B 2 R R B Sk
JRAE D AR 2

e A
ARSI #1975 A LR35
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