
Advances in Clinical Medicine 临床医学进展, 2026, 16(1), 1979-1988 
Published Online January 2026 in Hans. https://www.hanspub.org/journal/acm 
https://doi.org/10.12677/acm.2026.161250   

文章引用: 李烨莎, 邓玮. 人工智能在水肿未分化疾病中的临床应用与研究进展[J]. 临床医学进展, 2026, 16(1): 
1979-1988. DOI: 10.12677/acm.2026.161250 

 
 

人工智能在水肿未分化疾病中的临床应用 
与研究进展 
李烨莎，邓  玮* 

重庆医科大学附属第二医院全科医学科，重庆 
 
收稿日期：2025年12月15日；录用日期：2026年1月8日；发布日期：2026年1月21日 

 
 

 
摘  要 

人工智能技术在水肿未分化疾病的临床诊疗与研究中展现出重要潜力。水肿病因复杂，涉及心、肝、肾、

内分泌等多系统疾病，传统鉴别诊断流程耗时且易受主观经验影响。现探讨人工智能技术在水肿未分化

疾病中的临床应用价值与研究进展，以期优化诊疗决策流程，使疾病的早期筛查与干预更具实用性与指

导性。 
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Abstract 
Artificial intelligence technology has shown important potential in the clinical diagnosis, treatment 
and research of edema of undifferentiated disease. The etiology of edema is complex, involving mul-
tisystem diseases such as the heart, liver, kidneys and endocrine system. The traditional differential 
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diagnosis process is time-consuming and susceptible to the influence of subjective experience. This 
paper explores the clinical application value and research progress of artificial intelligence tech-
nology in edema of undifferentiated disease, aiming to optimize the diagnosis and treatment deci-
sion-making process and make the early screening and intervention of the disease more practical 
and instructive. 
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1. 引言 

临床上常见的水肿症状和多种疾病存在关联，牵扯到多器官系统，诸如循环、泌尿、消化、内分泌、

神经系统，还有眼部、骨骼肌肉之类，水肿的诊断及病因鉴别对制定有效治疗方案极为关键，由于水肿

呈现出复杂多样的临床表现，传统诊断方法需进一步完善，而且不少疾病在早期阶段症状不典型，致使

部分水肿病例成为未分化状态的疾病，难以明确病因。 
近年来，人工智能(artificial intelligence, AI)技术发展势头迅猛，特别是深度学习(deep learning, DL)和

机器学习(machine learning, ML)在医学影像分析、疾病诊断和预估疾病预后等领域广泛采用，为水肿未分

化疾病的诊断难题提供了新思路和新方法。医学领域里面人工智能的运用，其目的是模仿人类认知过程，

通过对大量数据做分析学习，辅助医生达成更精准、更高效的诊断结果。在水肿相关疾病中，AI 技术的

应用主要集中到医学影像自动化分析、生物标志物的检测与量化、疾病早期筛查分类、治疗效果评价以

及预后预测等方面，针对眼部疾病而言，采用光学相干断层扫描(Optical coherence tomography, OCT)图像

可清晰展示视网膜结构与水肿情况。 
AI 算法可自动分割和量化视网膜内液(Intraretinal fluid, IRF)和视网膜下液(Subretinal fluid, SRF)，为

糖尿病性黄斑水肿(Diabetic macular edema, DME)、视网膜静脉阻塞(Retinal vein occlusion, RVO)和新生血

管性年龄相关性黄斑变性(Neovascular age-related macular degeneration, nAMD)等疾病的诊断和治疗提供

客观依据[1]-[3]。在骨骼肌肉系统疾病中，磁共振成像(Magnetic resonance imaging, MRI)是检测骨髓水肿

的重要手段，AI 模型能够基于 MRI 图像实现对骶髂关节炎患者骨髓水肿的自动检测和诊断[4]。 

2. 人工智能在眼部水肿疾病中的应用 

眼部水肿是导致视力损伤的重要原因之一，常见于糖尿病性黄斑水肿(DME)、视网膜静脉阻塞(RVO)、
年龄相关性黄斑变性(AMD)等。光学相干断层扫描(OCT)作为一种非侵入性成像技术，可提供高分辨率的

视网膜三维结构图像，是诊断和监测眼部水肿的重要手段。人工智能技术(尤其是深度学习算法)在 OCT
图像的分析解读方面展现出显著优势，有效提升了眼部水肿疾病的诊断准度与临床效率。 

2.1. 视网膜水肿的自动分割与检测 

视网膜内液体积聚的精准分割与检测是眼部水肿疾病诊断的核心环节。传统人工阅片存在耗时费力、

主观性强等问题，易受阅片者经验与疲劳状态影响，而深度学习算法为这一难题提供了高效解决方案。

Donghuan Lu 等人提出的全卷积神经网络(Fully convolutional neural networks, FCNN)多类别分割检测框架，
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融合 OCT 图像强度信息与视网膜层分割结果，可精准识别液体像素并剔除假阳性，在 2017 年 MICCAI 
RETOUCH 挑战赛中斩获分割与检测性能双第一[1]，充分验证了其技术可靠性。 

此外，U-Net 及其变体在视网膜结构分割中应用广泛：A Jeya Prabha 等人提出的轻量级混合学习模

型 RD-OCT Net，可实现 nAMD、DME、RVO 及正常视网膜的多类别自动分类，对 DME 的分类准确率

达 98.08%，AUC 为 0.97，核心优势源于对视网膜液等关键生物标志物的精准识别[5]；Mikhail Kulyabin
等人探索的通用分割模型 Segment Anything Model 2 (SAM 2)，在 OIMHS 数据集上对黄斑裂孔(MH)和视

网膜内囊肿(IRC)的分割 Dice 分数分别达 0.913 和 0.902，在 AROI 数据集上对视网膜内液(IRF)和色素上

皮脱离(PED)的分割 Dice 分数为 0.888 和 0.909，展现出强大的跨场景适配潜力[6]。 

2.2. 水肿量化与疾病活动性评估 

视网膜液的精确量化是评估疾病活动性、监测治疗反应及预测预后的关键依据。Martin Michl 等人基

于 AI 的液体量化方法，对五项多中心临床试验中 2311 名患者的 11151 个光谱域 OCT 容积数据进行分

析，系统评估了 RVO、nAMD 和中心受累 DME 患者接受 12 个月抗血管内皮生长因子(anti-VEGF)治疗

的病情变化。结果显示，IRF 在各疾病各时间点均主要集中于中心凹，SRF 分布在 nAMD 患者中呈现特

殊趋势，且经治疗后 IRF 和 SRF 体积显著减少，其中 RVO 患者 12 个月内 IRF 和 SRF 减少中位数均超

97% [2]，为临床治疗效果评估提供了客观数据支撑。Weilin Song 等人验证的机器学习计算图像分析算法，

在 DME 和 RVO 患者视网膜液量化中表现优异，进一步证实了 AI 算法在视网膜液检测与量化中的精准

性[3]。 

2.3. 疾病诊断与分类 

基于 OCT 图像的 AI 辅助诊断系统可有效提升眼科医生对眼部水肿相关疾病的识别与分类效率。

Sivamurugan Vellakani 和 Indumathi Pushbam 设计的临床决策支持系统，融合不同深度学习卷积神经网络

(CNN)与长短期记忆网络(LSTM)形成图像 captioning 模型，其中经生成对抗网络(GAN)增强的 OCT 图像结

合 DenseNet201 与 LSTM 的模型，整体准确率、阳性预测值和真阳性率均达 0.969 以上，Xception 与 LSTM
模型也取得相近性能[7]。Bin Lv 等人开发的可解释人工智能框架，通过“图像层病变分类 + 眼睛层疾病

诊断”两阶段流程，实现对 9 种视网膜病变(含 DME、AMD)的精准识别，深度学习模型病变分类平均 AUC
为 0.978，随机森林模型疾病诊断错误率为 0%，与一位人类专家准确率相当且优于其他三位专家[8]。此外，

结合注意力机制与迁移学习的深度卷积神经网络模型，在脉络膜新生血管(CNV)、DME、玻璃膜疣等疾病

分类中，训练集和测试集准确率分别达 97.79%和 95.6% [9]。多任务卷积深度神经网络在 nAMD 活动性检

测中，准确率(94.2%)和 AUC (0.984)均优于单任务网络，决策过程更契合人类推理逻辑[10]。 

2.4. 治疗反应预测与预后评估 

人工智能在眼部水肿疾病治疗效果预测、预后评估及个性化治疗方案优化中具有重要价值。Ten Cheer 
Quek 等人提出的 AI 应用程序概念验证，通过“液体评分”实现视网膜液预测与个性化连续监测，其包

含的 CNN-ViT 分割网络和 CNN 分类网络，内部测试 IoU 分数 83.0%、DICE 分数 90.4%、AUC99.18%，

外部测试 IoU 分数 66.7%、DICE 分数 78.7%、准确率 94.98% [11]，为高风险患者的预防性管理提供了有

效工具。 
Cesare Mariotti 等人的研究证实，AI 算法可通过评估 IRF、SRF 体积及外界膜(ELM)、椭圆体带(EZ)

完整性、视网膜高反射灶(HRF)等生物标志物，精准识别黄斑裂孔(MH)手术后视觉恢复的关键预后因素，

其中术前 IRF 体积与术后最佳矫正视力(BCVA)恢复呈负相关，ELM 和 EZ 完整性对视力改善至关重要

[12]。Muhammed Enes Atik 等人的深度学习框架整合 OCT 图像与临床数据，采用 ResNet-18 网络时能以
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最高准确率预测 DME 患者接受 TREX 抗 VEGF 治疗的视觉结果[13]。Michael Hafner 等人利用深度学习

分析难治性 nAMD 患者转换为 faricimab 治疗后的生物标志物变化，发现治疗后 SRF、纤维血管色素上

皮脱离(FVPED)、脉络膜体积显著减少，中央视网膜厚度(CRT)降低，注射间隔延长且视力稳定[14]，充

分体现了 AI 在治疗方案优化中的潜力。 
优势：优势：技术覆盖“分割–量化–诊断–预后”全流程，适配临床核心需求；关键指标经多中心

大样本验证，性能可靠；技术路径多元(专用/通用/轻量级模型)，适配不同场景；多模态整合 + 自动化分

析，突破传统诊断瓶颈。局限：数据集缺乏多设备、低质量图像验证，泛化性受限；聚焦常见疾病，罕见

病及复杂病例覆盖不足；部分模型结构复杂、预测指标与临床标准衔接不足，落地困难；缺乏统一评价

体系，性能对比缺乏客观性。眼部水肿疾病 AI 技术横向对比见表 1。 
 

Table 1. A cross-sectional comparison of AI technologies for ocular edema diseases 
表 1. 眼部水肿疾病 AI 技术横向对比表 

技术名称 目标类型 应用场景 优势 局限 
FCNN 多类别分割检测框

架 IRF、SRF 视网膜液分割 + 
假阳性剔除 

多信息融合，分割检

测一体化，稳定性强 
缺乏多中心外部验证，对

低质量图像适应性未知 

RD-OCT Net 视网膜疾病相关水肿

(DME、nAMD 等) 
多类别视网膜疾病

分类(含水肿识别) 
模型轻量化，运算

快，适合快速筛查 
疾病覆盖窄，存在人群选

择偏差风险 

SAM 2 IRF、PED、MH、
IRC 

视网膜容积图像分

割 

通用适应性强，无需

单独训练，分割精度

高 

对小体积水肿分割性能不

明，计算资源需求高 

多中心 AI 液体量化方法 RVO、nAMD、DME 
相关水肿 

多区域液体体积量

化 + 治疗反应评

估 

样本量大、随访长，

量化维度细，反映治

疗动态 

仅适用于 anti-VEGF 治疗

患者，未考虑个体差异 

机器学习计算图像分析算

法 
DME、RVO 相关水

肿 
视网膜液检测 + 

定量分析 
针对性强，检测灵敏

度高 
RVO 的 SRF 量化一致性

较低，缺乏极端病例验证 
DenseNet201 + LSTM 

(GAN 增强) 
多种眼部水肿相关疾

病 疾病检测 + 分类 图像增强提升适应能

力，准确率高 
模型复杂可解释性差，缺

乏误诊分析 
可解释 AI 框架(深度学习 

+ 随机森林) 
9 种视网膜病变(含

DME、AMD) 
病变分类 + 黄斑

疾病诊断 
可解释性强，疾病覆

盖广 
运算流程长，缺乏多人群

泛化验证 
注意力机制 + 迁移学习

CNN 
CNV、DME、玻璃膜

疣等 
眼部疾病分类(含

水肿相关) 
聚焦关键区域，数据

依赖低 
疾病覆盖窄，早期病例诊

断性能不明 

多任务 CNN nAMD 相关水肿 疾病活动性检测 + 
积液预测 

多任务协同，决策契

合临床逻辑 
适用范围窄，样本量未明

确，过拟合风险 
CNN-ViT 分割 + CNN 分

类程序 视网膜液相关并发症 液体预测 + 个性

化监测 
一体化管理，含外部

验证，泛化性较好 
外部数据集特征不明，临

床阈值未确定 
黄斑裂孔术后 AI 评估算

法 黄斑裂孔术后水肿 预后标志物评估 + 
视力预测 

聚焦术后关键标志

物，实用性强 适用场景单一，样本量小 

ResNet-18 多模态框架 DME 相关水肿 抗 VEGF 治疗视觉

结果预测 
多模态整合，模型易

部署 
仅针对特定治疗方案，数

据标准化不足 
CNN 生物标志物分割算

法 
难治性 nAMD 相关水

肿 
治疗反应评估 + 
生物标志物分析 

针对难治性病例，解

决临床痛点 
缺乏初治患者对比，长期

预后预测不明 

3. 人工智能在骨骼肌肉系统水肿疾病中的应用 

骨骼肌肉系统中的水肿，如骨髓水肿，普遍在炎症性疾病(像脊柱关节炎)、创伤、感染和肿瘤等情况

里存在。磁共振成像(Magnetic Resonance Imaging, MRI)是检测骨髓水肿目前最敏感的影像学方法，但传

统的人工读片与诊断流程既耗费时间又依赖经验。人工智能技术，尤其是深度算法学习，为 MRI 图像的
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骨髓水肿自动检测和诊断提供了新方案，极大提高了诊断的效率以及准确性。 

3.1. 骶髂关节炎骨髓水肿的自动诊断 

轴向脊柱关节炎(Axial spondyloarthritis, axSpA)是一种慢性炎症性疾病，主要影响骶髂关节。骨髓水

肿是 axSpA 活动性的重要影像学标志，准确检测骨髓水肿对于疾病的早期诊断和治疗监测至关重要。

Kang Hee Lee 等人开发了一种基于深度学习网络的 MRI 图像分析方法，用于检测 axSpA 患者骶髂关节

的骨髓水肿。该研究获取了 60 例确诊为 axSpA 的患者和 19 名健康受试者的 815 张骶髂关节 MRI 图像，

使用钆增强脂肪抑制 T1 加权斜冠状位图像进行深度分析。研究过程包括设置感兴趣区域(ROI)并将其归

一化为适合深度学习网络输入的大小，使用基于卷积神经网络的深度学习网络对单个 MRI 图像进行骨髓

水肿判定，以及基于单个 MRI 图像的分类结果判定受试者的骶髂关节炎。约 70%的患者和正常受试者被

随机选为训练数据集，其余 30%作为测试数据集，该过程重复五次以计算五折数据集的平均分类率。结

果显示，在基于单个 MRI 图像的 ResNet18 分类网络性能分析中，使用 ROI 对骨髓水肿的检测性能优异，

准确率为 93.55 ± 2.19%，召回率为 92.87 ± 1.27%，精确率为 94.69 ± 3.03%。使用中值滤波器反映上下文

信息后，整体性能进一步提高，最终对个体受试者的活动性骶髂关节炎诊断准确率为 96.06 ± 2.83%，召

回率为 100%，精确率为 94.84 ± 3.73% [4]。此开创性研究表明，基于深度学习的 MRI 分析可作为临床医

生诊断骨髓水肿的辅助手段，为 axSpA 的早期诊断和病情评估提供了客观、高效的工具。 

3.2. 其他骨骼肌肉系统水肿的 AI 应用前景 

尽管目前有关人工智能在其他骨骼肌肉系统水肿疾病应用的研究相对稀少，但基于在骶髂关节炎和

眼部水肿疾病中的成功经验，AI 在该领域存在客观的应用前景，在进行创伤性骨髓水肿评估期中，AI 算
法可自行对水肿区域实施分割，量化出水肿体积，而且结合患者的临床信息去预测骨折愈合时间和预后，

在如骨髓炎的感染性疾病里，AI 能辅助辨别感染性水肿和非感染性水肿，提升诊断的精准水平，处于肿

瘤性疾病中，AI 可检测与肿瘤相关的骨髓水肿，辅助完成肿瘤分期与治疗效果评估。 
未来研究方向可包括开发多模态 MRI，如 T2 加权成像、弥散加权成像、动态对比增强 MRI 与 AI 结

合的方法，借此提升骨髓水肿检测的敏感度。整合临床数据、实验室检查和影像学特征的多源数据融合

模型，预期能进一步提升 AI 在骨骼肌肉系统水肿疾病诊断及预后预测的性能，增进 AI 模型的可解释水

平，让决策过程更容易被临床医生理解采纳，也是推动 AI 于该领域实现临床转化的核心。 
优势：自动化诊断解决人工读片耗时、主观问题，骶髂关节炎水肿检测召回率 100%；模型结构简洁、

运算高效，适配基层部署；应用可向多类型水肿延伸，拓展性强；提供客观量化依据，助力科学决策。局

限：核心研究为单中心小样本，缺乏多设备、多序列图像验证，泛化能力弱；仅聚焦骶髂关节炎水肿，其

他类型缺乏实证支持；未验证对不典型病例的检测灵敏度，技术适配性不足；缺乏统一评价标准，模型

可解释性差，临床转化支撑薄弱。骨骼肌肉系统水肿疾病各项 AI 技术对比见表 2。 
 

Table 2. A cross-sectional comparison of AI technologies for musculoskeletal system edema diseases 
表 2. 骨骼肌肉系统水肿疾病 AI 技术横向对比表 

技术名称 目标类型 应用场景 优势 局限 

基于 ResNet18 的 MRI 分
析方法 

骶髂关节炎骨髓

水肿 
水肿检测 + 活动

性骶髂关节炎诊断 
针对性强，漏诊率低，

模型简洁易部署 

单中心小样本，缺乏外部

验证；仅适配单一 MRI 序
列 

创伤性骨髓水肿 AI 算法

(展望) 创伤性骨髓水肿 
水肿区域分割 + 
体积量化 + 骨折

愈合预测 

可量化水肿程度，辅助

预后判断 
缺乏实证研究；需整合多

模态数据，技术难度高 

https://doi.org/10.12677/acm.2026.161250


李烨莎，邓玮 
 

 

DOI: 10.12677/acm.2026.161250 1984 临床医学进展 
 

续表 

感染性骨髓水肿 AI 算法

(展望) 
感染性/非感染性

骨髓水肿 
水肿类型鉴别 + 
感染范围评估 

辅助病因鉴别，提升诊

断精准度 

缺乏实证研究；感染与非

感染水肿征象易重叠，鉴

别难度大 

肿瘤相关性骨髓水肿 AI
算法(展望) 

肿瘤相关骨髓水

肿 
水肿检测 + 肿瘤

分期辅助评估 
辅助肿瘤分期，监测治

疗效果 

缺乏实证研究；需结合肿

瘤特异性特征，模型复杂

度高 
多模态 MRI 融合 AI 模型

(展望) 
多类型骨骼肌肉

系统水肿 
多序列影像整合 + 

水肿综合诊断 
提升检测敏感度，适配

复杂临床场景 
数据整合难度大；模型复

杂，计算资源需求高 

4. 人工智能在其他系统水肿疾病中的探索 

除了眼部和骨骼肌肉系统，人体的其他器官同样会出现水肿，诸如内耳、胸部等人体部位，人工智

能技术在这些领域的探索现今仍处于开始的起步阶段，但已凸显出极大的应用潜力，为相关疾病的诊断

及管理给出了新思路。 

4.1. 内耳水肿的 AI 检测 

内淋巴的积水(Endolymphatic hydrops, EH)是梅尼埃病、波动性感音神经性听力损失等内耳疾病的关

键病理特征，采用 MRI 成像技术识别内淋巴积水，对于理解内耳疾病意义十分重大。Tae-Woong Yoo 等

人利用 3D 深度神经网络模型，去分割由耳蜗、前庭和半规管组成的内耳部分，以此实现对内淋巴积水体

积比的精准自动计算。此研究构建起一个包含 MR 脑池造影(MR Cisternography, MRC)和 HYDROPS-Mi2
堆栈的数据集，同时对内耳的外淋巴液及内淋巴液的空间进行标注，搭建了一个 3D 分割深度神经网络

模型。该模型用 MRC 和 HYDROPS-Mi2 堆栈的对齐对数据来实施端到端学习，同时对外淋巴液及内淋

巴液空间进行分割。总液空间跟内淋巴液空间分割性能的 Dice 相似系数分别是 0.9574 和 0.9186。此外，

经验丰富的耳科医生计算的 EH 体积比跟人工智能深度学习模型预测的 EH 体积比高度一致，通过组内

相关系数(Intraclass Correlation Coefficient, ICC)和 Bland-Altman 图分析[15]。此项研究为内耳疾病内淋巴

积水的客观、定量评估给出了自动化工具，有助于增进疾病诊断的精准水平。 

4.2. 胸部水肿的 AI 应用 

如心衰、肺炎等疾病常常会出现胸部水肿，胸部影像学(如 X 线、CT)是诊断这种情况的主要手段，

Fatma A Mostafa 等人对借助医学图像开展胸部疾病诊断的 AI 技术作了综述，其中涉及到对水肿的检测。

综述指出，深度学习技术，特别是卷积神经网络(Convolutional Neural Network, CNNs)，在胸部疾病如肺

炎、COVID-19、肺结核、心脏肥大、骨折以及水肿等)自动检测方面取得显著进展。采用图像预处理、迁

移学习和集成学习等手段，AI 模型可从胸部 X 线或 CT 图像中鉴定水肿的特征性表现，例如肺淤血、胸

腔积液之类的[16]。在出现心力衰竭症状的患者里，胸部 X 线往往显示出肺门影增大、肺纹理增多且模

糊、Kerley B 线这类肺水肿征象，AI 算法可自动辨认这些征象并做量化分析，协助临床医生开展心功能

的评估与决策事宜。 
现阶段 AI 在胸部水肿检测应用方面的具体研究存在短板，但基于 AI 在其他胸部疾病(如肺炎、肺结

节)中的成功应用实例，我们有理由坚信 AI 在胸部水肿的自动检测、分级和预后评估方面将发挥不可替

代的作用。未来研究可关注多模态数据(例如临床症状、实验室检查、心电图及影像学)的融合，以增进 AI
模型对胸部水肿病因的鉴别能力。 

优势：为内耳、胸部水肿提供自动化定量方案，填补传统诊断空白；核心技术分割精度高、可行性

强；适配罕见病、急症筛查等场景，转化价值明确；技术思路可迁移至其他系统水肿诊断。局限：样本量
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不足，缺乏多中心外部验证，胸部水肿原创性数据匮乏；内耳模型对图像质量要求高，胸部模型病因鉴

别能力弱；缺乏与临床金标准的验证及统一分级体系，关键指标阈值不明；研究成熟度低，可解释性不

足。各项 AI 技术在其他系统水肿疾病的横向对比见表 3。 
 

Table 3. A cross-sectional comparison of AI technologies for other systemic edema diseases 
表 3. 其他系统水肿疾病 AI 技术横向对比表 

技术名称 目标类型 应用场景 优势 局限 

3D 深度神经网络 内耳内淋巴积水
(EH) 

内淋巴液空间分割 + 
体积比计算 

自动化定量，分割精度

高，与专家结果一致性

强 

数据集规模不明，缺乏多中心

外部验证；对低质量图像适应

性差，早期轻度 EH 检测灵敏

度未评估 

CNN 胸部疾病检测

技术(综述类) 
胸部水肿(肺淤

血、胸腔积液等) 
水肿征象识别 + 辅

助心功能评估 

技术成熟度高，可整合

到现有胸部疾病筛查系

统；迁移学习降低数据

依赖 

无原创性数据支撑，缺乏针对

性性能验证；病因鉴别能力

弱，无统一分级标准 

多模态融合胸部水

肿 AI 模型(展望) 
心力衰竭、肺炎

相关胸部水肿 
病因鉴别 + 水肿严

重程度分级 
全面捕捉疾病特征，提

升病因鉴别精准度 

数据整合难度大，需解决多源

数据标准化问题；缺乏实证研

究验证 

内耳水肿动态监测

AI 模型(展望) 
梅尼埃病相关内

淋巴积水 
疾病进展监测 + 治

疗反应评估 
可动态追踪水肿变化，

辅助治疗方案调整 

缺乏长期随访数据集；模型需

适应不同时间点图像差异，技

术难度高 

5. 人工智能在水肿未分化疾病中的多模态数据整合与知识图谱应用 

诊断水肿未分化疾病，需综合考量患者临床表现、实验室检查、影像学特征等多方面情况，传统诊

断方式在高效整合、分析这些多源异构数据上有难度，引发诊断滞后或诊断失误，智能化技术，尤其是

多模态数据融合方式与知识图谱，为解决这一棘手难题提供了有力帮手，能明显提升水肿未分化疾病的

诊断效率。 

5.1. 多模态数据整合在水肿疾病诊断中的应用 

多模态数据整合是把来自不同数据源(如医学影像、临床记录、实验室检查、基因组学数据等等)的信

息整合到一起，借此获得更完整、精准的疾病相关表征。在水肿未分化疾病诊断这个阶段，多模态数据

整合能帮助 AI 模型从多个维度认识疾病，增进诊断的稳健性。在眼部水肿这一疾病中，Muhammed Enes 
Atik 等人提出的深度学习框架，把 OCT 图像和患者的人口统计学、临床及实验室的各类数据整合起来，

用以评估 DME 的预后情况[13]。在胸部水肿的诊断过程中，可以把胸部 CT 图像跟患者的 BNP 水平、心

功能指标等临床数据组合起来，以提升对由心力衰竭引起的肺水肿的诊断精准度。 
先进深度学习模型，如多通道 CNN、Transformer 这类，为多模态数据整合给予了强大的技术支撑。

这些模型可自行学习不同模态数据的特征呈现方式，并把这些特征融合成统一的特征向量，来进行分类

或回归任务，可采用一个 CNN 分支来处理 OCT 图像，另一个分支去处理临床结构化数据，如年龄、性

别、血糖水平之类的，然后使用特征拼接、注意力机制等措施把两个分支特征融合在一起，最终完成对

疾病的诊断与预后预估，多模态数据整合不仅可提高诊断性能，还能减少对仅一种数据源的依赖，提高

模型的泛化能力。 

5.2. 知识图谱在水肿疾病预测与诊断中的应用 

知识图谱是一种以结构化形式展现实体(如疾病、症状、药物、基因之类)之间关系的语义网络，能有
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效整合与表示医学领域里的复杂知识，在水肿未分化疾病的诊断实践里，知识图谱能帮助 AI 模型利用现

有的医学知识开展推理与决策，增进诊断的可诠释性和精准度。Zhi-Qing Li 等人提出了一种依托知识图

谱推理的改进关联增强算法，用于综合衡量影响 DME 的因素水平，实现对疾病状况的预测。该研究对收

集到的临床数据做预处理，然后分析统计规则，基于 Neo4j 搭建起知识图谱，依托知识图谱实施统计规

则推理，以关联增强系数和广义贴近度方法对模型实施增强，并且采用链接预测评估指标对模型结果进

行分析验证，该疾病预测模型实现了 86.21%的准确率，在 DME 个性化疾病风险预测方面体现出较高的

准确性与效率[17]。 
知识图谱在水肿未分化疾病诊断里的应用主要体现在以下几方面：(1) 辅助特征筛选：知识图谱可展

示疾病与症状、实验室指标、影像学特征之间的关联关系网，协助 AI 模型选出更具辨别能力的特征；(2) 
达成可诠释的推理：通过知识图谱里的路径进行推理，可以跟踪 AI 模型的决策进程，解释诊断结论的依

据，提升临床医生对模型的信任；(3) 融合多渠道知识：知识图谱可把医学文献、临床指南、电子健康记

录等多源知识进行整合处理，为 AI 模型供给更全面的背景内容；(4) 支撑个性化医疗实施：基于患者的

实际情况与知识图谱里的关联规则，为患者提出个性化的诊断建议及治疗方案。 
随着医学知识不断增多以及知识图谱构建技术日益完备，知识图谱与深度学习等 AI 技术结合在一

起，会在水肿未分化疾病诊断时起到更明显作用。例如，可创建一个包含多种水肿相关疾病、症状、生

物标记物以及治疗方案的大型知识图谱，并与多模态数据整合模型组合在一起，达成更精准、高效地完

成水肿未分化疾病诊断及管理。 
优势：多模态整合解决数据异构问题，知识图谱实现决策可追溯；性能实用，泛化能力优于单模态

模型；技术思路适配多系统水肿，拓展性强；对接现有临床数据类型，转化门槛低。局限：多模态数据标

准不一，知识图谱难以覆盖罕见病因；仅在少数疾病中验证，复杂水肿鉴别能力不足；模型结构复杂、

部署成本高，知识图谱更新及推理效率低；缺乏统一技术标准，性能对比缺乏客观性。多模态数据整合

与知识图谱 AI 技术横向对比见表 4。 
 

Table 4. A cross-sectional comparison of AI technologies for multimodal data integration and knowledge graphs 
表 4. 多模态数据整合与知识图谱 AI 技术横向对比表 

AI 技术名称 目标水肿类型 核心应用场景 优势 局限 

ResNet-18 多模态框

架 DME 相关水肿 预后评估 + 治疗

效果预测 
多模态融合提升预测精准

度，模型结构简洁易部署 

仅针对 DME，适用范围

窄；数据标准化要求高，

缺失值影响性能 

多通道 CNN/Trans-
former (展望) 

多系统水肿未分化

疾病 
病因鉴别 + 精准

诊断 
全面捕捉疾病特征，降低单

一数据源依赖 

数据整合难度大，需解决

异构数据对齐问题；模型

复杂，部署成本高 

基于 Neo4j 的知识

图谱推理模型 DME 相关水肿 疾病风险预测 + 
个性化评估 

可解释性强，决策逻辑贴合

临床思维；易于理解 

构建耗时耗力，依赖高质

量标注数据；疾病覆盖

窄，仅适用于 DME 

多源知识融合知识

图谱(展望) 
多系统水肿未分化

疾病 
多病因鉴别 + 可

解释诊断 
整合多渠道医学知识，支撑

复杂病因推理 

知识更新慢，难以跟进最

新研究；推理效率低，不

适合实时诊断 

6. 人工智能在水肿未分化疾病应用中的挑战与展望 

尽管人工智能在水肿未分化疾病的诊断和管理中取得显著进展，但在实际临床应用里依旧面临诸多

挑战，伴随技术不断进步，同样出现了不少新的研究方向和应用前景待探索。 
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6.1. 面临的挑战 

6.1.1. 数据质量与数量问题 
高质量、大规模的标注数据集是训练高性能 AI 模型的必要基础，处于水肿未分化疾病领域，数据获

取和标注工作面临诸多难题，医学数据一般是分散在不同的医疗单位里，数据格式与存储方式差异明显，

较难做到有效的融合与分享。其次，数据标注需由经验丰富的临床专家完成，造成实际标注的数据量不

大。不同中心跟不同专家的标注标准或许存在差异，引入标注干扰，影响模型训练的实际效果，在 OCT
图像实施液体分割任务期间，不同阅片者对液体边界的判断可能会有主观性差异[18]。小样本学习以及半

监督/无监督学习方法在一定程度上能改善数据短缺问题，但如何在有限标注数据下训练出泛化能力强的

AI 模型仍是一个挑战。 

6.1.2. 模型的可解释性与信任度 
绝大多数高性能的 AI 模型，尤其是深度学习模型，被归为“黑箱”模型，其决策过程不容易被人类

理解，在临床医疗实践里，医生不仅需要 AI 模型给出诊断结果，还期望了解模型做出此判断的依据。模

型的不可解释性也许会让临床医生对其信任匮乏，从而约束其在实际临床中的运用。即便近段时间可解

释人工智能 Explainable Artificial Intelligence, XAI)技术取得了一些进展，如显著性映射、LIME (Local In-
terpretable Model-agnostic Explanations)、SHAP (SHapley Additive exPlanations)等方法用于对 AI 模型决策

作出解释[8] [19]，但这些解释方法在复杂医学场景中的可靠程度和临床实用性仍需进一步验证。如何在

维持模型高性能的同时提升其可解释性，是 AI 在水肿未分化疾病领域面临的棘手挑战。 

6.1.3. 泛化能力与临床适用性 
现有的多数 AI 模型是在特定数据集以及特定场景下实施训练和验证的，其泛化能力欠佳，若将模型

运用到不同的人群、不同的设备或不同临床环境时，性能会急剧下降。例如一个在某家医院用 OCT 设备

采集的图像上训练的 AI 模型，当应用于另一医院利用不同品牌 OCT 设备采集的图像时，会因图像质量、

分辨率等方面的差别，导致性能下降，AI 模型在理想实验的条件下，性能一般优于实际临床环境，怎样

提升模型的临床实用性，让其能灵活应对复杂多样的现实状况，是 AI 落地应用的关键突破口。 

6.1.4. 伦理、法律与社会问题 
AI 在医学领域的应用牵扯到一系列伦理、法律和社会问题，数据隐私保护的相关问题(Ethical, Legal, 

and Social Implications, ELSI)。如何在利用患者数据对 AI 模型进行训练时保护患者隐私与数据安全；责

任认定问题，若 AI 模型出现误诊造成医疗事故时，责任应怎样区分开；算法形成的偏见问题，AI 模型

或许会继承训练数据里存在的偏见，引发对特定人群诊断的不公正，AI 技术的大量应用或许会对医疗资

源分配、医患关系等造成深远影响，针对这些伦理、法律和社会问题，需要医学界、计算机科学界、法学

界与社会各界共同努力，拟定恰当的规范与政策，以保障 AI 技术的健康成长与合理应用。 

基金项目 

重庆市科技局大健康重点项目(CSTC2021jscx-gksb-N0016)；重庆医科大学附属第二医院“登峰学科

群联合项目”(No: 2024217)。 

参考文献 
[1] Lu, D.H., Heisler, M., Lee, S., Ding, G.W., Navajas, E., Sarunic, M.V., et al. (2019) Deep-Learning Based Multiclass 

Retinal Fluid Segmentation and Detection in Optical Coherence Tomography Images Using a Fully Convolutional Neu-
ral Network. Medical Image Analysis, 54, 100-110. https://doi.org/10.1016/j.media.2019.02.011  

https://doi.org/10.12677/acm.2026.161250
https://doi.org/10.1016/j.media.2019.02.011


李烨莎，邓玮 
 

 

DOI: 10.12677/acm.2026.161250 1988 临床医学进展 
 

[2] Michl, M., Fabianska, M., Seeböck, P., Sadeghipour, A., Haj Najeeb, B., Bogunovic, H., et al. (2020) Automated Quan-
tification of Macular Fluid in Retinal Diseases and Their Response to Anti-VEGF Therapy. British Journal of Ophthal-
mology, 106, 113-120. https://doi.org/10.1136/bjophthalmol-2020-317416  

[3] Song, W., Kaakour, A., Kalur, A., Muste, J.C., Iyer, A.I., Valentim, C.C.S., et al. (2022) Performance of a Machine-
Learning Computational Image Analysis Algorithm in Retinal Fluid Quantification for Patients with Diabetic Macular 
Edema and Retinal Vein Occlusions. Ophthalmic Surgery, Lasers and Imaging Retina, 53, 123-131.  
https://doi.org/10.3928/23258160-20220215-02  

[4] Lee, K.H., Choi, S.T., Lee, G.Y., Ha, Y.J. and Choi, S. (2021) Method for Diagnosing the Bone Marrow Edema of 
Sacroiliac Joint in Patients with Axial Spondyloarthritis Using Magnetic Resonance Image Analysis Based on Deep 
Learning. Diagnostics, 11, Article 1156. https://doi.org/10.3390/diagnostics11071156  

[5] Prabha, A.J., Venkatesan, C., Fathimal, M.S., Nithiyanantham, K.K. and Kirubha, S.P.A. (2024) RD-OCT Net: Hybrid 
Learning System for Automated Diagnosis of Macular Diseases from OCT Retinal Images. Biomedical Physics & En-
gineering Express, 10, Article 025033. https://doi.org/10.1088/2057-1976/ad27ea  

[6] Kulyabin, M., Zhdanov, A., Pershin, A., Sokolov, G., Nikiforova, A., Ronkin, M., et al. (2024) Segment Anything in 
Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers. Bioengineering, 11, Arti-
cle 940. https://doi.org/10.3390/bioengineering11090940  

[7] Vellakani, S. and Pushbam, I. (2020) An Enhanced OCT Image Captioning System to Assist Ophthalmologists in De-
tecting and Classifying Eye Diseases. Journal of X-Ray Science and Technology, 28, 975-988.  
https://doi.org/10.3233/xst-200697  

[8] Lv, B., Li, S., Liu, Y., Wang, W., Li, H., Zhang, X., et al. (2022) Development and Validation of an Explainable Artificial 
Intelligence Framework for Macular Disease Diagnosis Based on Optical Coherence Tomography Images. Retina, 42, 
456-464. https://doi.org/10.1097/iae.0000000000003325  

[9] Rakesh, K. and Gupta, M. (2022) Optical Coherence Tomography Image Based Eye Disease Detection Using Deep 
Convolutional Neural Network. Health Information Science and Systems, 10, Article No. 13.  
https://doi.org/10.1007/s13755-022-00182-y  

[10] Ayhan, M.S., Faber, H., Kühlewein, L., Inhoffen, W., Aliyeva, G., Ziemssen, F., et al. (2023) Multitask Learning for 
Activity Detection in Neovascular Age-Related Macular Degeneration. Translational Vision Science & Technology, 12, 
12. https://doi.org/10.1167/tvst.12.4.12  

[11] Quek, T.C., Takahashi, K., Kang, H.G., Thakur, S., Deshmukh, M., Tseng, R.M.W.W., et al. (2022) Predictive, Preven-
tive, and Personalized Management of Retinal Fluid via Computer-Aided Detection App for Optical Coherence Tomog-
raphy Scans. EPMA Journal, 13, 547-560. https://doi.org/10.1007/s13167-022-00301-5  

[12] Mariotti, C., Mangoni, L., Iorio, S., Lombardo, V., Fruttini, D., Rizzo, C., et al. (2024) Novel Artificial Intelligence-
Based Assessment of Imaging Biomarkers in Full-Thickness Macular Holes: Preliminary Data from a Pivotal Trial. 
Journal of Clinical Medicine, 13, Article 628. https://doi.org/10.3390/jcm13020628  

[13] Atik, M.E., Kocak, İ., Sayin, N., Bayramoglu, S.E. and Ozyigit, A. (2024) Integration of Optical Coherence Tomography 
Images and Real-Life Clinical Data for Deep Learning Modeling: A Unified Approach in Prognostication of Diabetic 
Macular Edema. Journal of Biophotonics, 18, e202400315. https://doi.org/10.1002/jbio.202400315  

[14] Hafner, M., Eckardt, F., Siedlecki, J., Schworm, B., Herold, T.R., Asani, B., et al. (2025) Deep Learning Assisted Anal-
ysis of Biomarker Changes in Refractory Neovascular AMD after Switch to Faricimab. International Journal of Retina 
and Vitreous, 11, Article No. 44. https://doi.org/10.1186/s40942-025-00669-2  

[15] Yoo, T., Yeo, C.D., Kim, M., Oh, I. and Lee, E.J. (2024) Automated Volumetric Analysis of the Inner Ear Fluid Space 
from Hydrops Magnetic Resonance Imaging Using 3D Neural Networks. Scientific Reports, 14, Article No. 24798.  
https://doi.org/10.1038/s41598-024-76035-3  

[16] Mostafa, F.A., Elrefaei, L.A., Fouda, M.M. and Hossam, A. (2022) A Survey on AI Techniques for Thoracic Diseases 
Diagnosis Using Medical Images. Diagnostics, 12, Article 3034. https://doi.org/10.3390/diagnostics12123034  

[17] Li, Z.Q., Fu, Z.X., Li, W.J., et al. (2023) Prediction of Diabetic Macular Edema Using Knowledge Graph. Diagnostics, 
13, Article 1858. https://doi.org/10.3390/diagnostics13111858  

[18] Miranda, M., Santos-Oliveira, J., Mendonça, A.M., Sousa, V., Melo, T. and Carneiro, Â. (2024) Human versus Artificial 
Intelligence: Validation of a Deep Learning Model for Retinal Layer and Fluid Segmentation in Optical Coherence To-
mography Images from Patients with Age-Related Macular Degeneration. Diagnostics, 14, Article 975.  
https://doi.org/10.3390/diagnostics14100975 

[19] Streun, G.L., Steuer, A.E., Ebert, L.C., Dobay, A. and Kraemer, T. (2021) Interpretable Machine Learning Model to 
Detect Chemically Adulterated Urine Samples Analyzed by High Resolution Mass Spectrometry. Clinical Chemistry 
and Laboratory Medicine, 59, 1392-1399. https://doi.org/10.1515/cclm-2021-0010 

https://doi.org/10.12677/acm.2026.161250
https://doi.org/10.1136/bjophthalmol-2020-317416
https://doi.org/10.3928/23258160-20220215-02
https://doi.org/10.3390/diagnostics11071156
https://doi.org/10.1088/2057-1976/ad27ea
https://doi.org/10.3390/bioengineering11090940
https://doi.org/10.3233/xst-200697
https://doi.org/10.1097/iae.0000000000003325
https://doi.org/10.1007/s13755-022-00182-y
https://doi.org/10.1167/tvst.12.4.12
https://doi.org/10.1007/s13167-022-00301-5
https://doi.org/10.3390/jcm13020628
https://doi.org/10.1002/jbio.202400315
https://doi.org/10.1186/s40942-025-00669-2
https://doi.org/10.1038/s41598-024-76035-3
https://doi.org/10.3390/diagnostics12123034
https://doi.org/10.3390/diagnostics13111858
https://doi.org/10.3390/diagnostics14100975
https://doi.org/10.1515/cclm-2021-0010

	人工智能在水肿未分化疾病中的临床应用与研究进展
	摘  要
	关键词
	Clinical Application and Research Progress of Artificial Intelligence in Edema of Undifferentiated Disease
	Abstract
	Keywords
	1. 引言
	2. 人工智能在眼部水肿疾病中的应用
	2.1. 视网膜水肿的自动分割与检测
	2.2. 水肿量化与疾病活动性评估
	2.3. 疾病诊断与分类
	2.4. 治疗反应预测与预后评估

	3. 人工智能在骨骼肌肉系统水肿疾病中的应用
	3.1. 骶髂关节炎骨髓水肿的自动诊断
	3.2. 其他骨骼肌肉系统水肿的AI应用前景

	4. 人工智能在其他系统水肿疾病中的探索
	4.1. 内耳水肿的AI检测
	4.2. 胸部水肿的AI应用

	5. 人工智能在水肿未分化疾病中的多模态数据整合与知识图谱应用
	5.1. 多模态数据整合在水肿疾病诊断中的应用
	5.2. 知识图谱在水肿疾病预测与诊断中的应用

	6. 人工智能在水肿未分化疾病应用中的挑战与展望
	6.1. 面临的挑战
	6.1.1. 数据质量与数量问题
	6.1.2. 模型的可解释性与信任度
	6.1.3. 泛化能力与临床适用性
	6.1.4. 伦理、法律与社会问题


	基金项目
	参考文献

