Advances in Clinical Medicine IfifkE 2588, 2026, 16(1), 2136-2150 Hans X
Published Online January 2026 in Hans. https://www.hanspub.org/journal/acm
https://doi.org/10.12677/acm.2026.161270

ET16SrRNAFMIAEFE X LA Fr 53 # 3 5 B
XFL R B E W EHERFEMAE YRR

A5, B, 4R K2

TS ROk R B, S sk
PN HVE XN REERE H VAT, EE REAIVG R

ks H . 2025412 H21H s FHBEW: 20265F1H16H; KA HH: 20264F1H23H

HE

HE: AR BERN BARTFRE BE T B BEE R A BRI, 5 K34F1TACH
RWITHIBEFEN S AEAEHA(PTH, n=17)5%EHHCTA, n=17). PTAETER E ORI
ML EVI (BH2 g), CTHARMAZREN. THAITHAE RWTE2IRNERES MBEER, 25T
16S rRNAJI FF S3RE R HZE . SR : THUEPT24 & HFEAlphaZ #:tE (Observed species.
Chaol. ACE}:Shannon#s#¥)EBE & T CT24(p < 0.05), BetaZ RN ERHAHBEHEZESE.
LEfSe/ TR, PT2HTEHARE .. PHRATE. XBTERB. #ERAE. BHERNHEEZ KA
BEAREANEREEEAE . REHEHZESTEREHR 103N BE2 R RIEY, KEGGEEMTRI32%
EBEE=RAEER, TEPRERARE. BEREVEHR. HER - 28R - FERAE. BHRED
AR a-TRBARH R BERAREE. & R4EFTHSHTERERBENNE. AREEEAR
RIEREHE AR, R—RERERBNTTHRESFLLRE S, NERNARAE THEY - RitH
T AR -

X 5in
FURE, WTEIEA, AR, WEER, REd%

The Impact of Probiotics on the Gut
Microbiota and Metabolites of Breast Cancer
Patients after Chemotherapy Was Analyzed
Based on 16S rRNA and Untargeted
Metabolomics

i (-
FHERERE

XESFIH: i, WHE, EFRIZR. T 16SrRNA FIESE w4 4L 5 20 35 AE 1 o FU A B3 0T ) B vl BEAAR
WHIRIRSIR ], RIS %3, 2026, 16(1): 2136-2150. DOI: 10.12677/acm.2026.161270


https://www.hanspub.org/journal/acm
https://doi.org/10.12677/acm.2026.161270
https://doi.org/10.12677/acm.2026.161270
https://www.hanspub.org/

[

La Sa?*, Rina Naz, Lidong Ren2#

!Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia
2Day Treatment Center, Inner Mongolia People’s Hospital, Hohhot Inner Mongolia

Received: December 21, 2025; accepted: January 16, 2026; published: January 23, 2026

Abstract

Objective: This study aimed to investigate the effects of probiotic supplementation on the gut micro-
biota and serum metabolites in breast cancer patients following chemotherapy. Methods: Thirty-four
patients undergoing AC regimen chemotherapy were randomly assigned to either a probiotic group
(PT group, n = 17) or a placebo group (CT group, n = 17). The PT group received oral Bifidobacterium
lactis V9 (2 g daily) alongside chemotherapy, while the CT group received a placebo. Fecal and blood
samples were collected before the first chemotherapy cycle and 21 days after it. Analyses included
16S rRNA gene sequencing and non-targeted metabolomic profiling. Results: After the intervention,
the PT2 group showed significantly higher gut microbiota alpha diversity (Observed species, Chao1l,
ACE, and Shannon indices) compared to the CT2 group (p < 0.05). Beta diversity analysis revealed a
distinct separation in microbial community structure between the two groups. LEfSe analysis indi-
cated a significant increase in the relative abundance of beneficial bacteria in the PT2 group, including
Faecalibacterium prausnitzii, Lactobacillus reuteri, Bifidobacterium spp., Bacteroides stercoris, Bac-
teroides intestinalis, and Roseburia spp. Metabolomic analysis identified 103 significantly differential
metabolites, and KEGG enrichment analysis highlighted 32 significantly altered metabolic pathways.
These pathways were primarily involved in purine metabolism, arginine biosynthesis, glycine-serine-
threonine metabolism, bile acid biosynthesis, a-linolenic acid metabolism, and taurine metabolism.
Conclusion: Probiotic intervention was associated with improved gut microbiota structure, increased
abundance of beneficial bacteria, and altered serum metabolite profiles in patients after chemother-
apy. These findings suggest that probiotics may have the potential to mitigate chemotherapy-related
intestinal toxicity, providing preliminary evidence at the microbiota-metabolite axis level to support
their clinical application.
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Figure 1. Alpha diversity analysis box plots of gut microbiota
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Figure 2. Beta diversity analysis of gut microbiota
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Figure 3. LEfSe analysis (LDA Effect Size) plot showing microbial taxa with LDA scores > 2
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Figure 4. Principal component analysis plot
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Table 2. PLS-DA model validation parameters
% 2. PLS-DA fREVGIFSH

Name Pre R2X (cum) R2Y (cum) Q2 (cum)
POS 6 0.534 0.965 0.888
NEG 6 0.620 0.950 0.843
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Figure 5. PLS-DA score scatter plot
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Table 3. Top 20 differential metabolites between the CT0 and PTO groups (Fold Change Top 20)
# 3. CTO 485 PTO 48 Top 20 ER A hHIR(E WA EHRRET 20 B)

lAchs R FR B A=
1 monolinolein (¥ IV Ji FR 1 Vi B i
2 Palmitoyl sphingomyelin (34 EESH 1% i) T
3 DL-Dipalmitoylphosphatidylcholine ( Bt N5 Bt AE ) A
4 Adenine (JRFER) i
5 D-6-Tocopherol (D-5-4= & ) A
6 Prolylleucine (2Bt 2 L) T
7 Tiglic acid (5% R) T
8 Isobutylamine (5 T %) T
9 SPHINGOMYELIN (¥ /i) i
10 1-PHENYLETHANOL (1-7K Z./f%) i
11 L-Arginine (L-F5 & R) T
12 LysoPC (0-18:0/0:0) (¥ I A8 Bk AH s (O-18:0/0:0)) T
13 LysoPC (20:3) (¥ I g BEAH 5% (20:3)) i
14 Isobutyraldehyde (5 T %) A
15 Norvaline (IE4IER) A
16 L-Methionine (L-ZKZ &) T
17 Creatine (J1FR) T
18 Maltol (£ %) A
19 SELENOMETHIONINE (fifi - B % %) A
20 4-Hydroxybenzaldehyde (4-¥£3E 2K %) T
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Table 4. Top 20 differential metabolites between the CT2 and PT2 groups (Fold Change Top 20)
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FFs R &5 A
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8 3-Methylcrotonylglycine (3- F % B 5k H & R) T
9 4-oxododecanedioic acid (4-%f8 T ki &) i
10 Biliverdin (IH£¢ %) A
11 Caprolactam (%N Efi%) T
12 LysoPC (22:5) (¥ It Jlg I IH 50(22:5)) LA
13 LysoPC (22:4) (¥4 LB IR BEIHIK(22:4)) +iA
14 3,4-Dihydroxybenzaldehyde (3,4- — $2 37 HI %) i
15 LysoPC (20:4) (¥ IfiL 1 /g I IH 580(20:4)) LA
16 2-(3,4-dihydroxyphenyl)acetamide(2-(3,4- — ¥R FEHEIE) 2. Wk Iz ) el
17 LysoPC(20:3) (¥ I f A5 It NH£8(20:3)) i
18 Docosahexaenoic acid (- B /N R) T
19 Nicotinamide (JHBEf%) T
20 Adenine (JRIERS) A
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Figure 6. Pathway enrichment analysis results between the CT0 and PTO groups
& 6. BEREENNLERE(CTO 45 PTO 2H)

Table 5. Differential metabolic pathways and their associated differential metabolites between the CT0 and PTO groups
% 5.CT0 A5 PT0 HEFKIGERE KX ERKEIR

pli TN ¥R A TERRAR ) 4 FR
Purine metabolism C00147 Adenine (JJRFERS)
Phenylalanine, tyrosine and tryptophan biosynthesis C00082 L-Tryptophan (L-{A % fR)
Tyrosine metabolism C00082 L-Tryptophan (L-{A % fR)
Selenocompound metabolism C05335 Selenomethionine (ffif% &K 2 R)
Arginine biosynthesis C00062 L-Arginine (L-f5 & R)
Vitamin B6 metabolism C00647 Pyridoxal (ML /%)
Arginine and proline metabolism C00062; C00300 L-Arginine; Creatinine (JJLEF)
Cysteine and methionine metabolism C00073 Methionine (FF A & HR)

THiJE, CT2 5 PT2 1A AR E i 22 il o 35 (6] 7). JEEE e 14 50 B3 & AR 118 % (p < 0.05),
Hodp 8 2 HA B R B4 452 0 R F-(Impact > 0),  H4ui @ E T TRAT KIRIE SRR 6). HEMR . ZL%IR
A E A (p = 1.57 x 10°°, Impact = 0.050) 54k &0/ (p = 2.17 x 107°, Impact = 0.159)iEE 1] p (&
KE] 1070 B, WontA W TR R YE TR ER . IR AR EERAR B R B p (AN
(0.0034), {HEA Hm52 0 BT (Impact = 0.194), FoRHilE NAD K S5 AL JRAS S W] BE 2
BTTRAE s o A, REERARH . AR S 4E A 3 B A S IE Bk FEa 2 R, JERA ) AR R AT
AT PUEACBI N . FRIER) M BE AR 25 J7 1 5 0 R AL AEAE AN [R] RS o
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Figure 7. Pathway enrichment analysis results between the CT2 and PT2 groups
7. BREESMERE(CT2 A5 PT2 4H)

Table 6. Differential metabolic pathways and their associated differential metabolites between the CT2 and PT2 groups
= 6.CT2 A5 PT2 HER R IR REXERRBTIR

bl TS W Rz A TEB AR 2 B
Glycine, serine and threonine metabolism  C00719; C00300 Sarcosine (L& Z); Creatinine (JLET)
Selenocompound metabolism C05335 Selenomethionine ({8 R)
Arginine biosynthesis C00062 L-Arginine (L-f5 2 &)
Nicotinate and nicotinamide metabolism C00153 Nicotinamide (%)
Vitamin B6 metabolism C00534 Pyridoxamine (tH i)
Purine metabolism C00147; C00366 Adenine (JRFEP4); Uric acid (JRER)
Arginine and proline metabolism C00062; C00300 L-Arginine; Creatinine (JJLET)

Porphyrin and chlorophyll metabolism C00500 Protoporphyrin (Ji FME)

3.3. iriAX BEEE S IER T

DAl 2 AR B T TIO0T B i ER R IR R, EEE A R AR AR (L 7). 45 R EIR, PT 4 3~4
PMEVE KA Z(11.8%, 2/1 KT CT 2H(29.4%, 5/17), (HZEF TGt 2 R M (p=0.397). 4 1~2 G5 .
Wl S MR I AR TG 3 2 S o (AR, PT A7 HREE SR T ) I EL1(23.5%, 4/17) %%
KT CT 41(58.8%, 10/17, p = 0.043). Z5HEH, AR T HATRES G ™ EIRIG @AM, FFiib R
AL
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Table 7. Comparison of post-chemotherapy gastrointestinal toxicity incidence between the two groups

F7. MABREUTEEMESELERRLE

F SRR (CTCAE 73 4) PT #H(n=17) CT #Hn=17) pfE
115
1~2 % 7 (41.2%) 6 (35.3%) >0.999
34 % 2 (11.8%) 5(29.4%) 0.397
Tl
1~2 % 9 (52.9%) 11 (64.7%) 0.728
34 %% 1(5.9%) 3 (17.6%) 0.605
HX -
1~2 % 5(29.4%) 6 (35.3%) >0.999
34 2% 0 (0%) 1 (5.9%) >0.999
S FHRARZ) 4 (23.5%) 10 (58.8%) 0.043
4. W1ig

A IEIL B S 16S rRNA W7 S5IERE R AR A 2, WD 3R 1 FUOUET B VO % AC HI7 I3
i £ P v A S S AR R AR . 25 AE B T TS AT S Al B B A M e UM G . R AT
H(PT2) 7B H B Alpha £ #£1E(Chaol. ACE. Shannon $5%0) 5 3 /5 T % #7740 (CT2). LEfSe 20 it —
AR, PT2 HE 4 7 5 E @ ARG B BE, W T R Eh A 7= 3 R bR o (B B e M) DA R A A 2 AR
Bl B SUBT BE A LA [ 13] [14]0 TR CT2 H0N)E 48 15 SORE AR U S8 B FEAH S U BRI, e 5 {E B )
AR S [ 15]0 IXHE7RN 20 4 1 ] BE B I (R b PT 2% . RS YERF I B BESE 1, BRI IT M S I A ¢ 32
e A a2 AT S e 72 AN B 22 R . KEGG B B L RoR, 2 Fil 1 B
BT 1) RERARWH R/ 22 R 2 R RBERAEYER): 2) B RARMEI R R Y&
B ARREER AR, IR 2 AR B T GRS R T B R Rl e IR BRIB A R 16]. 3) AR S5 AULIEJE AR A
AR (MR AR o R/ It e AR ), X 5 A6IT 25 P L R AR A ARE AR R 12]. R s A W BOA B T
SR fR AR 25 L IR R, 26 2 B A 3~4 G TS AR 2 SR IUR T 2 BRI 2L I 95(11.8% vs 29.4%),
HRAR25WGEWR T B4 B9 2 35 FRAK(23.5% vs 58.8%, p = 0.043). X s SR, A 252810
Jrla — 3, $RoR fd AR B TRAT REE L T AR - AR A AT E FE I . AEE AU IR B T RIR
PE: FEARERVDN BBV AR, BREAERsER, T EERTERE, FERMMCHEIETE, Bk
DR SR 1) 5 e Th RE R FU AR IF s AR B S5V B 3R T Re = AR s o 25 B RTIR, At 50 R AL SUBAF 1 V9 F
s AC 7 iE RS M GE . A S EWAEAR G, RRET IR, RAE AT AIRE &R
WA DGR S, VD o D B 25 IR IR A . ARk R BT RREAS . KR I R BE
BT R ES, 4B ZH %0 — DRI A AU B ALH . AR5 2 N 5 B X R TR E
(2021GGO131) % Bh. E& A TR a8 v 5

HEemE
WS BIE XREHHRIIH (%5 2021GG0131).
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