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Abstract

Traumatic brain injury (TBI) ranks among the foremost causes of mortality and disability globally,
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characterized by intricate pathophysiological mechanisms that encompass secondary cascades sub-
sequent to the primary injury. These cascades include oxidative stress, neuroinflammation, disrup-
tion of the blood-brain barrier, and apoptosis. Heat shock proteins (HSPs), a class of highly con-
served molecular chaperones, are integral to the cellular stress response and are implicated in the
pathological processes of TBI through mechanisms such as the regulation of proteostasis, suppres-
sion of inflammatory responses, and anti-apoptotic effects. In recent years, the mechanistic roles,
diagnostic value, and therapeutic potential of HSPs in TBI have garnered significant research inter-
est. This review systematically synthesizes the biological properties and functions of HSPs, the path-
ophysiological mechanisms of TBI, and the mechanistic roles, epidemiological correlations, diag-
nostic techniques, therapeutic strategies, controversies, and future perspectives of HSPs in TBI. By
integrating existing research evidence, this review aims to elucidate the central role of HSPs in TBI,
thereby providing a theoretical foundation for precision diagnosis and targeted therapy.
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1. AARRER S G ARERG R BRI
L1. #AREONEDEFES T

PRTE H I (HSPs) & — RAERE Em BRI E AR KR, |2 A ETEZEYMMEZEY Y, K
FAKKCPAEG M 52 BB AR S IR A8 A TR SB35 i [ 1] ARE 7 T2 KV, HSPs 404
/N3 F- HSPs (41 HSP27. HSP30). HSP40. HSP60. HSP70. HSP90 /% HSP100 £53V 5 ik, ANV 5k A
BB A e AL S Y FIhAE[2]. BN, HSPT0 FKEAE N FAABRIAZ R 5L, B AT 40
LRbifA K R, GBI ATP KT XS SH A KN & 8RS R A ML E AR BSL 3.
b4k, HSPOO fEA—F IR 2 TR, S 5REZMESEAMNITE 5T e, W EGFR. Akt M [
B R 2 AR5, A CAE e VR T R g 1[4].

HSPs 1) D ae AR PR T8 B AR 4%, 1825 G R 15 | 40 T A S0 ROOR 2 45 1 A « 9
HSPB3 {EIZ 3 e e M RIE, Hik Rk vl B Bi05 1% S iz s & ool T2[5]. AN
PFF, ERK /-5 BIS BfER 1L il 4% HSF1 MRz E6Ar, #Ems2m HSP70 3RIE, 23T 40 xS0
BHIBURYE6]. LA, ARDI /51 Hsp70 LEEATE R3S N Hh R FE S BEVE R . N3, Hsp70 75 K77
Pk ARDL CBEf, S53EEAS Hop S5 G R HEE R E ST [ 7]: RIS W], Hsp70 2 AWtk it 517 Rk
Fil§ CHIP 454, BalEAMEAERE7]. X REUIa R 7 40ME sk T E A iies T
i, TAHMATIE B ORH B

1.2. RGBSR B RRIRE IR LS

U A 475 (TBI) A2 i Sk #8352 2 Ah 01 F S B i L 23953 0, s A B R m] 9 09 D R 45 4%
AR AL TP B TR NE SR R A ) BRI T N2 43 S BOR RO 53407, B A7 /50 P I i
SR PR R ST BT . AR RSO MR AR SR A PR At B, SR — R IR S NLIB D K J H
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PRERLRE, KGR BRI . AR M SE . 4IRS N T MR SR (8], WHAER W, TBI &
L0 J3 Bt R R A P 5 35 ML A aE P o, R R ) B SRR R, dE— 0 0 ik A SUK i S e 2 A
[9].

TBI J& (A4 9 E SN A 2k R M A5 07 IOAZ IR T 22— o 5493 J /0N e o 200 B i, R ST 8 200 i
A7~ IL-18+ TNF-a f& 1L-6, [R]E 22 T o 40 B4 A T2 SO MR [ 10]. 7EAR AR/ R TBI AL A1, 453
)5 3 RIB A 4ERRME B (1 (GFAP) /MR R 4N b ) Thal FOZRIE T @[ 11]. bbab, S A0 N AE TBI
W ORI AR B0 5 SRR T BB RS T EUE R A(ROS) K& 4B, #Em 51 R fe il k. A A
1k DNA 45 12]. BFFCRIL, 20-F2 =1 ix VY& ER(20-HETE) rl @it GPR75 & Src/EGFR/NF-xB 155
P, RN T A BRTE AL S A R R, N R AR /N R TBI S IR 4R 5[ 10]

TBI G AL T G T B0 AR T, o TR R B ARt gt —. $ifi)a, &
T A Bax RIATHR, PUHATIE A Bel-2 IR, Bax/Bel-2 HUAR KA 38R WA R LA N R, 40
3 C B, B caspase I B[11]. B, /N TBI AR, #ifif5 7 RKifES CAl XHH&
JCIRTZ R E RN, 1 HSP70 [ 2654 Al it #1 Bax/Bel-2 LUAH FRARAHZE eI T2 [13]. b4k, TBI 1Y
W PERRE R FE A U T E R N . B K ERCT B NMDA 2441 BER0E, 855 1 Ay
T, 51 20 B N S R AR K B B S 12]

1.3. k& BRI SRR G R ER L

AR 50 B I (HSPs)7E G5 P U452 473 (TB) HH /R F AL 2= 2905 Je B A AR AS TR . SORE . P
T % M0 B B AR 47 45 7 T - WU B, TBI J& HSPs HIRIE /KT BT 5, HH RIS im0 ™ ER
J TG B VIO 14] . 75K R 45 i1 7 i T (CCBE A, 353475 f5 24 /NI &2 4 J], g 55 41419 HSP9O.
HSC70 Jz HOP WIRiARETm, HIERRHER FAHEEEY, SEEARTTS R E K MEREGT[14].
X—SEWNE AT AL TBI Ji5 8 A AR R AT I SN 2 —

HSP70 /& TBI " 5T e ) 2 1 HSPs i, Hodid 2 Mg ie KM ARy EA . &5k, HSP70 AT
HESH#HRMENEARS S, AR EN S0, FFEAFRRST7]. HIK, HSPT70 Al & IE &
. fE TBI #&#Ir, HSP70 Hid %A 7] 3 25 FAK IL-18. TNF-a M2 IL-6 ZE2 R A K T-HIKIE. 17-AAG
Y4 HSP70 ()% 555, @i s HSP70 RisyA: TBI & MK Bk & eh 4 ThREBA5[15]. kA, HSP70
KRR TS B R R E R . fE/NRL TBI BB, HSP70 B LIRS BRI I3 47 PR AR S5 25 /N
H AR BE PR, . MMPs I8 53052 201401, #H%, HSP70 @i/ R AHG AR R EE K, #WEy)
RETILIS B8 25 16]

/N93F HSPs U1 HSP27 7£ TBI it k4% H EAE ] . HSP27 al @i #lH actin & w4y 28, #
7 AL 7 B SE [ 17]0 WF ST RIN, N R 0 R S R dok ik HISP27 W] il 25 Y ot I FE-VBE S 453475 i 17 I ki
BEBERGIR, b T R AR IR E[17]. hAh, HSP27 I8 Al 4% MAPK BB M T 7 TBI #
Rk, HSP27 RIBERRAL T 45 S T15 S AT IS 1 (ASK1), PFHIEFBH INK/p38 il i, HEMmHnH#L T
FTI[18].

HSP90 7t TBI 1 ¥ N & 2%, HRE T i 45 % 7 8 H (W0 EGFR. Ak Z 54 J5 e 2l 72,
AT BEIE (R A hE S BN E A5 4% . HSPOO #4171 17-DA 1] 235 B TBI /N BRI idiZK . Evans #i5 H
NEBERE AR ESR, FRAIH] ROS 425 MMP-2/9 HIEE[19]. X 20T HSPOO f30 AT A1 i Uik
3 AL B B R IR B 9 i S S R A 2 ORAP 1 P

WILER M, 1£ TBI J5, SILMAMSBHROREANEY), . HSP70. HSPO, #F A4HAuSM =3 [A] N
eHSPs, 5 TBI J& I #0E N A [20]. BEE, eHSPs #HEBGGHSE S TAHERMDAMPs) [ fi 4, 0] i /ME

DOI: 10.12677/acm.2026.161295 2354 I IR 2= =23t e


https://doi.org/10.12677/acm.2026.161295

SKITIR &%

JRARBE R R 4 M 25 2 T AR 30 TR ) B2 4 (D Toll #E324K 2/4, TLR2/4)IRMI[21], TLR4 M2t
— PR T IERERE /LR T 88 (MyD8S) KM (115 5 id s, FEULH T xB (NF-xB)5 SR 4 i 3 5 111
A, B KR S MR IR SRR T-a (TNF-a). AN 3R-18 (IL-18) % K& K TR 1A 22] [23]. X Fh eHSPs
N FMME R —I XT8N« (AP, &SRR B TIEBREE s (HRRSEEGS B 1) 98 RE )
SN I i BB AR . S B e Ak R ST .

LRtk HSP60: - %5g i T LR hi AL I, 7 STk ik & (1 O3 B FIZH25[24] . TBI S 204G H A 41
PR SE 4 7 45 S LR AR T RE[25] - HSPOO AT 4R 2040 A 2R (A RS, PR 4T it A Qg An i) 2R 4 1A
BRI T B EE[26].

RN GRP78 (HSPAS/BiP): £y 5t WX M A% o A $E 7, GRP78 78 P i W AT 8 8 (1 ) b
(UPR) 2% O EF[27]. TBI SRR AN IR Gl & SECRIT S/4E R TS R OIE N RN R, i
PR NN [28]. HEHT, GRP78 M PN 955 i 85 (40 PERK, IREla) Ffi#E, 0 UPR @ LAVK S
HAFARE . SR, FRek HoRZIM P R R 2 (2 GRP78 2 58 T-15 5 & [29]. K, GRP78 (1
TR INELESH A P4, R kE TBI JE A 0EE ST 2 —.

14. RIAEERAFRIAS G414 mAx G R X 1%

FENGPRA T, I HSP70 /K115 TBI B G S E K. — DX 84 @t HE TBI B 1)
LRI, B s HSP70 AKPAER )5 25 3 Rk B WEAE (L9 0T HRZH I 3 £%), H HSP70 /KF5 &
FHHIET R EFEMIHK[30]. ROC HiLk/rHTiRn, [fiE HSP70 2Wr TBI HEIET-HIHIZ N IHA(AUC) A
0.721 (95% CI: 0.611~0.829), B LW E[30]. Ak, HSP70 ikt 5 TBI Ja KN RIThEETK B AH
K TE/NR TBI MR, B A2 PRBE A 775 289% R il il Ik F il HSP70 SRk e N shae, s ifEs CAL X
P TCITE[13].

HSPs MK IAIL S TBI JGHIMAE S A, BRI, 183 RS v @ d 0 HSP20/BDNF/TrkB
B9 @t TBI FRARIThEERE[31]. Billn, 7ERE TBI AR, @ahilghn i 5 a5 L 5 i
o HSP20. BDNF K& TrkB FIRIEF B INFIThAE[31]. Uboh, HSPs FRIES TBI J& 1k 5f iz 5 %
DIFHIG: HSP27 vl i@ i) actin JE-G A2 N B2 A0 3L, 980/ I b Besdi s v . 72/ R TBI AL, Py
B2 A e S P IR HSP27 W] I 255 el 4 ML o P e 3R, il i Ak B [ 177

2. AR EBE MR EISEHRAR
2.1. RIAREBEIERGIEMBRR G 8 E WHRE

AR 50 B L (HSPs)F A 045 PR Ui A2 473 (TBD I A= Wb P oA IR A (E,  FEAEIMIE . i
e 20 23 (R 3R /KT AT s A 45 P B AR S . R BRI AR A TS [13]. I HSP70 A& TBI A h) 12
AR EWZ —. —TEX 84 B2 ERE TBI BE W LD, M HSP70 2Wr TBI BHIETH
AUC 4 0.721 (95% CL: 0.611~0.829), EAHZE 2N E[30]. th4h, 1MiF HSP70 /K-FidY TBI J& F#H£
TG B 3405 HSP70 /KF#, B 1) Glasgow Sk BRI/ AL, IME HSP70 7 i T &2 = h
TBI PR A, )X 53 e B3 SR fE B [30]

6 ¥ HSPs A4 TBI IAMbn M. W5 &KL, TBI &E3E WE W+ HSP70 KPR, H
Lt EER R RS B VIAR[32]. FERE TBI B8, JE I HSP70 /K-PAERA 5 24 /N ik B
B, H5nmmEEioe32]. that, HSPs Enl 5HAVEDbREMBS R, e WidEmte: &
ZFEME TBI ALY, 1f17E HSP70 5 pNF-H. NF-L B 600 ] 2 25 32 5 TBI B2 Wriguse: J fr 514331,
1% HSP70 5 GFAP. UCH-L1 BCE KGN ] 2 35 4 =5 TBI K2 WiigusivE S fr 2 1 [34]. kA, HSPs i n]
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5 H A AV VB ER, DR 2 WiEmPE[33]. K IiE HSP70 55 GFAP. UCH-L1 S8 L ifihr &
PR A AL, SR TBI 2 WU E 50 5 1 8 7 SR

2.2. AARREBEMBARGIR

PR T0 R [ (HSPs) ARG AR 3 AL 35 % BN 7F (Western blot)  BEIEE %2 W IHR IR (ELISA) . 4
ZUL S (IHC) I SERS 2 f: PCR (qQPCR)%E, X UEHRTE TBI BIEEARH 7 K G R 2 W 45 22 R H[35].
Western blot 725 Il HSPs Fik 22 751, wlad i R S P HUARAS AN [7] 42 1) HSPs YE4Y, 41 HSP27.
HSP70 f HSP90 %%[3]. ELISA W E A7 End & & REBUE RS, & T IIE I8 SRR A h HSPs
(& BARI30]. S UL HC) W] FH 4601 HSPs RN b (g fr S ik, #Bh B HAE TBI
(20 Hur SRR S]. B, HSPB3 fEIZ M & o R ik, Houd ik nf #1455 T g a4
TG TI[5]. qPCR AT F-F AR HSPs JE R K156 5% K, B RE R MLHI[3]. dhab, B R
WS 3 BT (MS) A28 8 T HSPs BRSNS 1% 2047 v] F T %€ HSPs MRS 1E10, Wb R
(7] SR, H AT HSPs A ARANAA(E—SL /R B, Western blot & THC M#AERONEDL, H
G552 I S AF R s ELISA HAR REUE &1, (HAFTEAS SUR B KUK s qPCR M JG 2 /= W8 115 1) F
JE B P AR 52 7351, DRIk, JFRSE REL REFEM HSPs Ml H AR AR RV R T 2 —.

23. BlfAfEmBEIR A P AR T BB R G FOH

PAR T H (HSPs) 2B E S W HEoR F Z A FERILIR BAR (MR 1E & 05 W Z 3 #5(PET) A& ol
F RS H ML ZHH#(SPECT) &, XL AR n] H T HSPs 7ER L2 (1) or A 5 3RiA,  H BhvEAS TBI
() R B R TS [35]

MRI J& TBI 2 W (105 FH A, L mT 3 S A6 0 i 28 23 1) &5 #8111 432 e ik HSPs (3635 . 91, TBI J&
HSP70 [17ik S5 M6 AR R EMI5%, MR AliEE T2 IIAUSAG K 3R BB R G (D WIS i 44 47 14 F
[36]o UbAL, MRIUER A T-ALI HSPs AHIC I 707484k 1, SRAEEHE S (pFUS) RS Tt v] 75 3 I i o7 i
AR, SETEE HSP70 HI3KiE, MRI AJ L 5 25 X6} L 3G 58 (DCE-MRI)AS I 1fi i 57 Bz (14 38 335 14 25 0 [37 ]
PET A4 Al i o S MR BRI HSPs HIERIE, HAT i R S KR SRR [ 38] . —FhE T HSP9O
FIHIFR A3 2040 58 e EREH(GSAO) AT A TRl TBI J5 HI4HMIZET:: GSAO 7] 5 HSP90 454, FriciT: k&
INTOAHR, 8 5 i FE S B AN B FE T RE R [38] 0 fE/NER TBI B, GSAO H% (5 5 SitiiafR %
A, HAERUG G 3 /N BRI AT RS2 [38]. SPECT B H v H T A5 HSPs [F3RIA, (HIL RS e 7%
# PET EAK.

SR, HET HSPs ISR = 2 W AR ANAAAE — e R R % . filln, PET #R4HHIF KRB NN, BAETESR
R ER I XU MRI EARTCHRNT, (HXF HSPs I E A GE A IR o DL, JFAR B %24, Re i) HSPs 5%
BERE RAKR I AT 17 22—

3. AR EBESAME MR BT RS
3.1. A AREEBERGTEINGIM L

AR T B (HSPs)TE TG YT #E s 25 A 3 B8 72 HSP70 15555, HSP9O #4il7%) & HSP27 i
IFEETT I, X ELZWAE TBI s A v R I AE PR 2 R TR H

HSP70 #5352 H it Fide o) iz 2528, HonT i s HSF1 3@ (23t HSP70 HIRiA, it
RIFARZARTEF[39]. 65140, 17-AAG & —Fh HSPOO #lil7), Rl @it ##1) HSPOO Fi% 1 [a) 3223805 HSF1,
iRt HSP70 [13RIA[34]. 5 IL[FIRS HSPOO #ifil )t H AL I 2R3 E R - HSP9O & —Fh 88 (1) 70 ¥
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B, HaliE2iE S EARREE, 1 EGFR. Akt & NF-«B 25, 7E/N TBI B 1, HSP9O i
A 17-DA A 5 Z FEACHN A, Jsk/> Evans W2 H, ORGP LI 57 55 52 B2 [17]. b4, 17-DA & ] ROS
e % caspase-3 WU, IRAAHE I TI[17]. HLEIRE R, 17-DA vl i 5] HSP9O/NF-«B 18 i#% ik />
PE R AN IR R, BEMIREARE JORE[17]. HSP27 15 77 tH& 8 sl A 7844 5 . HSP27 Rl @] actin
A RT MRS, R i o 57 B e B (1710 i, — PPt i 77 & P HSP27 fil & & H(TAT-HSP27) nl il
Tob o i g B N AL 2R, I S VR R I R A 4 S T L B R AR OR[17]. 7E TBI #84HR, TAT-HSP27
AR E YD I A AR, AR ThRETS[17]. UkAh, HSP27 [MBEERIL AT 70 PKD #i) 751th w] @ ik
VT HSP27 (MR RAIRAS BRI AR E 18],

SR, H AT HSPs #E A 2590 MR & A5 T e — Se Pkt : HSPOO IR E R BK, WFsEM LB
i ) N A5 HSP70 5 3R R S AT AR EE i, mTRE S AR M@ B . R, PR R4 Fi 5
(1) HSPs # [) 254 & A SR 0 52 75 7] 2 —[39]

3.2. AREEBELGIEHRRGREFHER

R T E 1 (HSPs)E QI3 P i 45 45 (TBD M R I AR vp R I HEE A, i@ (e gtz g,
1) 9 SN B e AN RN T Re A RURHE R B [31]. 1BEIEEE R TBI BEE KW 5k, Hal s s
HSPs MR 2B R B, 75 KR TBIALA A, EahIghmT B354 & 5 &2 5% i+ HSP20. BDNF
J TrkB fIZ6ik, W/ ik m, e mThae[31]. FLIBTT BT, HSP20 At % BDNF/TrkB i
FRAC AR 2 TOAF NG SR AT 8, ET G RN T RE[3 1], LAk, @shlZRit rlidid bifl HSP70 ik
1) /0N 2 J53 200 MR, kIR % 4 i R R TR 32

9P RS BT8R 4% HSPs (R 3E TBI A . B, HZi&/KnliEid Fii HSP70 ik /b i
o CAL XAPLTTIHT:, S AEIThAE[13]. 7E/NR TBI AR, 253 /RyA T LI R Thfig 525 00 %t
HEZH, H HSP70 KX BZEFm[13]. dbAl, —Fo B IE T K (HSP70 75 577 PQ-29 Bk & GAPDH
SRAEHMHIF RX624) n]# i i 4% HSP70 % GAPDH HIZRIA, /D& eI T, 203 TBI J5 A &N ZhRe[40].
TERR TBI R, BRAVRIT AL MCIZThRE 2 3 DhRe B L T S — 1R YT 4 [40].

BeAh, E IR Rt HSPs fI3Rik, HEmi{eit TBI iR . MG B fEmoNE F2CFE T,
T 42 ) W T 2 3 PR I HSP27 i /KT, Jsk> BIBUR Ri[41]. £ —TBEALN BB TT e, P2 b
PRI ZH () & Y I3 HSP27 Fud 7K1 4 2% T4 R 511 20 (CGC) (0.47 + 0.27 mg/dl vs 0.60 + 0.15
mg/dl, P=0.03) [41]. XKHIEFFFFr@E T 3% HSPs KRB e TBI FEE .

3.3. Rk EB S 1EmBRIR G RIER &IATT RE%

AR5 B L (HSPs) 5 G5 P U A2 073 (TBD B A V8 )T SRS £ AR A MG . A5 FAKESE,
XS AL E 2 A . 2R RIE AR ER40]. ZYIBEA VAT H BT RIS . i, HSP70
797 PQ-29 BEA GAPDH FAEHIHIF RX624 Al M5 & A FiAa s LA IE T, b JeoET:, %
# TBI JG FIARI TN RE[40]. 7ER B TBI 8, ISR 4LAe 12 Th B K2 sh thie 0 T —iRyT 4,
L3475 P AR I 2 9N [40] o LI TR B, PQ-29 FIE I G HSP70 RIA(E R A H T &, T RX624
A GAPDH R4, W/ E MR [40]. 2995 FRECG BYT M H T8 TBI a7 #lin, %
B IR AR B HSPOO il 57 17-DA T 525 BRI TP s, CR4P 10 o 7 e 52 B 4, el i 8 THRE TS [19]

BRAL, B4R TT S T R RS AE S A HSPs 5 SR IZ 8 N T TBI Mya97 . Biltn, 55 HuK
A2 (tsUCSMCs) B & AR IR 16T T B 38 s T AN AFyE 5, (Rt 18 B [42]. 76 KRR TBI AL,
tsUCSMCs BA AR MG IT I sh E IR TG B 0T —vayr 2, H R 35 08/ 42] . HLIB
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FLRY, AR TIES S HSP70 SRIA RS T4 G 52 S AL N IR, 1 tsUCSMCs 1] 4L N #I 4 T )
B amp, fEkmiEE42],

4. AARER SR FRRIR ISR FI =
4.1. AREEBEEHRHRG PR RIPERFI

AR T B 1 (HSPs)ZE A5 P 453 15 (TBD) H AR A FHAAAE — @ G+, EB /i iR B HSPs i
FILTREINE TBI Ja M8 [43]. Flan, 7EASERNFEAIF, HSP70 (i B ik ] 5 804 740 i
JHT, H0HI A T RE[43] . X &7~ HSPs [3RIA ] REAFAE — NI AERIAVE I, 1 B IA TT R = AR R vEAE
7£ TBI fAirh, HSPOO ()i i #iA il it 0 NF-xB BBk J0E S B, InEE AR 451455 19]. Ihah,
HSP70 [1id FERBE P e S B E AT ST, MRS ERER, B mE & oiih16].

SRIM, Z B FE R W] HSPs 7F TBI HRAEME LRI {EH . HSP70 (13 3 IA 0] 5 35 PR AR #4005 R AR,
WL, SRR DIRETIS[17]. M4, HSP27 (3 3R v ORG LA B % e B 1, b /KA [17]. 31X
LEff 5T B, HSPs (R4 HI AT REEL T ILRIAIKF . 4 e 7 S 5 b B 745105 -3, & B2 %) HSPs
FIE AR R TS S SE IS M E A T, B HSPs FRIA W] RS T EUE A SRR
RAERLANE14].

G ) — AR S HSPs IR S EAE o i, HSP70 FEAREE G H 13RI ] R AR 3 F
B, T AE /N B 57 2 r ) 2 35 T REAR HE JORE SOME[39]. 7E/NEL TBI KRR, 17-AAG 25/ 40 i
o HSP70 IA, THZ 6+ HSP70 HIZRIAAAEL/N39]. X HE7 HSPs FRI4H MR 7 14 2508 1] e s i
TRIFYER o DRBL, BRNBEFT HSPs 4 ARR 5 A FH s V2 ML) A2 Al e 4 150 1) S

4.2. ARREERIEKT S GHEFRIRG TR X R

PR T (1 (HSPs) 13I8 K F- 5 G 05 MU 42 45 (TBD) (I T G o8 RAFIE— € 4+, F W FR B HSPs
ik S RIFTUG S, 1% — i 5 2B HSPs & #9554 R UG M5 [30]. Biltn, —IX5ikk%f 84
Pl S EE TBI B E MW 5T R I, MIE HSP70 /K- TERIU G 28 3 RIERE(E, H HSP70 /K5 EE L
T-REZHR(OR =2.3,95% CI: 1.2~4.5, P <0.05) [30]. iXFH] HSP70 HImEE TR 5 ARFUGH <. R
M, BT R, HSP70 (A RIA AT B3 03 TBI A MIAFIThAE, W/ F&eIHT:[13]. /N TBI
PRI, HSP70 #3E RN R A SN ThBE B & L THAE RN, i CAL XM ol 175 B 2 K[ 13].

Gl PR R AT e S HSPs R0, Kl ) o S 8 MR 22 5 06 HSP70 FIRIATESI 5
HHA(1~3 KT Re 5 2R SRS R AN T2 ARG, ARSI 5 JH(7~14 R) PR S #HE B EAHO[11]. TERMK
SE/NER TBI AL, HSP70 WIRIATEIMfE 7 RIAFNEM, HE5WEEEEEMK11]. thoh, HFM
FERE MR B R AT RE I HSPs MIRIA S5 WG I8 KR RN E#E TBI 5 HSP70 HIRIA R E &
TR FE, BWEEL11].

IEAh, HSPs fR37 ALt w] RE R I 5 15 95 &R . HSP27 (I£IE 5 TBI J5 I F ShAEVK &2 & A6,
T HSPOO (1335 U 5 98 i S5 K I fisi o B A AR AL 5[ 17] [19]. 7E K ER TBI B, HSP27 (i F£IiEF &
FHUEEINAIDIEE, T HSPOO it Zik MMM &2 45405[17] [19]. Bk, ERAWFFEANE HSPs VA 1) F A 15
KE WG IRRRARMF R T —.

5. AAREAS A MBRIRGFRIRRRE
5.1. #IREEBE 5 MBRIR AT 5T T AR AR
HAPR S 2R 1 (HSPs) 2 G 3 1 P 23 (TBI)BE T o (R 0% B R 2 B OLARSE N bR . Pl P
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AR BIAIKFAREE, X EEEAR Ny HSPs B FH2 it 180 T B [44] BRI R 41 CRISPR-Cas9 #] H T+
% HSPs (714 : il CRISPR-Cas9 il HSPOO J& (A W] 2 3 4K TBI J& I 40 R B Kt & i [44]. 1E
K5 TBI B, HSPOO el [ 4 1 Fuk 448 4 A4 AR J 25 /N -5 R AH, HLA 42 D e Tl 5 BE 47 (44« 641, CRISPR-
Cas9 & W] H T2 HSPs I EIPE B0 55, a0 S mEAL  BEBR AL SE , IR ABIE T ThRENLHI[ 7] /)% CRISPR-
Cas9 TEIEAHBT T I BRI 70, (B HIG IR AL G KRG . 526, ik 5 22 A v BB
[45]0 UM KE St R AU 8 A S P I 0k 28 PR PR R H bR B (AP 28 e B R 4 D), [ B ik 4
JIE A 2550 N R G 88 S SRUSE, A2 Db AR R () AR

PRI 2 AR W] T ST HSPs B 240 BRRS e 1t kol i PR RNA Il 7 (seRNA-seq) AJ il TBI
JEANFI SRR v HSPs (38484, Wk 28 76 s /N5t A i S 2 TR I B 4 D 55 46 77N B TBI A A o,
scRNA-seq 73BT &I HSP70 7E/INE 5 41 H (1 3R IE B3 T 0, HS 300 RN B UIFHOE[46]. 1AL,
SR I ARG W T ST HSPs 5 HA BRI R 3L TA I 2%, SR N e BH LI A LRI [46]

YR FAR ] FH T JF & HSPs B0 259 380% R 45 . 9K BURL o] d ik ifil i B et HSPs 75 5 71 sl il 77
HIERMELR, PEEAWIIT R Z A [47]. fE/NR TBI A, $138 17-AAG FIZAKOR i) 5. 2 4
FA LT 17-AAG BIREE, WD IR, SEEMADIReTiE[47]. Ak, 5T HSPs IR IRET
FEFFR A, Blan—Fh LT HSPOO #7116 FREH(GSAO) LT TBI G 4 AL T FIAS I« [39148 KA A4
TEZYNIRIE T AT S0 Fa, ABFLINRPR N FH AT THI G 2 bR A S8 1 B, 40K EHE
A P K U9 B AT R P AR AR N EIAE (48]0 RUBLAGAE 72 (GMP A P2 I T 2 b LA G —, bt ) 22 55 ]
RESCMRIT 20 WhAh, ANOKITURL 27 3ok If i 57 5% (1) 0%« 76 M 2 23 b 19 90 A7 DA S ) R S VAT 75 gk — 25 Al Ak
DA IE G oF 1 5 M £E 23 Fr) Jd 5B [49]

5.2. RIARERS B FRR AR MELATTRIR SHE

R T B A (HSPs) 7E 473 P 300 453 425 (TB) AN AL 6 7 R B T R (0 A 5%, 5 m 3 i A6 il 28 2 1)
HSPs LK BRI R BRARAE, il MR IR ST 77 %E[30]. HSPs R /K A & AN A TR T 1
B MWER BF, MIE HSP70 /KT &1 TBI B35 T HEXT HSP70 il s fUsk, MKk i) B
MITTBE TR HSP70 W5 FF¥GI7T - 7E—DUEH%s TBI B #F PIWt s, (i HSP70 7K T HR A 8 s
H 17-AAG J897 G TG B 0T R, 1 38 HSP70 KPR A A 2501 8 2 ) I 3% 22 57439

R DR RS 0t R AN A VA T Y B R 20 . HSF1 JE PR 22 25 T 820 HSPs fZRIA /K-, -1 520
TBI HIFA[50]. E—TEF%F TBI B W5, HSF1 R rs1061581 47 51 C 2547 JL R 4515 % HSP70 %
KPR T T S RRERE, HAUSELF[50]. A, HSPs I 18R T R 2 A PME(SNPs)Ib i] 5%
WA 2597 2% B, HSPO J:[A rs10873538 fir rift] A S5 JE KI5 3 %) 17-DA VR IT B M EEF[19].

o ERAFAE PP AT 48 ARG YT . TBI Ji5 I 280 S R B ] 50 HSPs SR 25 4% 11]. 7ER
i S S R (1) BB, HSPOO IR T REE A 2%, PRI HnT H| NF-xB 8 i ek D (72 26 48 i A1 BE I8 [ 19]
TMAE A RV I B, HSP70 SR REEE A &L, By Hn] {2k & 1 0 4T 8 S A 42 T A7 1E[39]

SRIM, SEILEIE R MR T8 B A . HSPs Rk /K F52 2 RN R im, HAE N e A Wbr &9
(AT S5 5 KA G RO A3 s B 2 A S R A S RAEA R AF R R p it — 20wk, BT
2 SRR IR T PR AR ) A R AN 5E 3

5.3. #AEEBE SRR R PR EERR T =

TR T 1 (HSPs)E B3 1 i 453 105 (TBI) BT 7 (98 £E S R807 1] 2 2% HSPs IR R 210 4H
PR S AT e 22 HE Bk AR YT S 7T 1HI[7]. HSPs (#5212 R RIIWEFE i : ARDI /1% Hsp70
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CTRATE LR S R PE R BEAE ), IR NI S FC R ML o] F AR IR YT B L[ 7] 7E TBI AR, Jl it
T3 Hsp70 B LIRS T B3 52 m 8 (A 7S S 4 12, b img ol s e 2 ThRE TS [ 7] R4k, HSPs 1)
BERRAL . 72 AR 5 18 1 th B A TR OB T (B[ 6]

HSPs (40 5 5 VR 2 SR SR B 78 07 1]« HSPT0 AERRLE 7T T R IE W] R IEF AR VE R, T
/NI T3 A4 6 () T8 T R a3 98 RE SRE[39]0 PR ANHIEFT HSPs FEAN I 4H f 28 284 b (1) hREAL ], AT FF R 4
R TP ROIR T SR B R O S B B T IREh HSP70 HIFRIA, T 16 R FE 4 48 (R0 6 T A4 TR ) a4
iE SN AN EE[39]. b4, HSPs fEMNZ 2 Hh i ik o BT W E OB S (B : #h 220 1) HSPs #]
PRBEIAZIE Ko tt, e e 2B = 42].

Z LSBT & HSPs B FUI 53— NMEAE R I [H) . HSP70 5357 P a7l J8 e i 42 5
AR KA, KD R R EH[40]. 7 KR TBI B, PQ-29 BXA RX624 JA7T 4L II4f
SINRETE RER TRy, HRRG AR RN 40]. kb, HSPs $E 25 WA HAb T IE I R
B AR PR E o 9, 7EMRIVR YT, HSPOO #HI B A PD-1 Hidk O R/ i [FIFE FH[47]. 15 %t 8k,
ZIA S AR B ] N 4 TBI G A4 90 .
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