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摘  要 

乳腺癌是全球女性中最常见的恶性肿瘤，早期发现对降低死亡率至关重要。包括放射影像学检查、临床

评估和活检等的传统诊断方法在早期乳腺癌识别中发挥核心作用，但由于影像学筛查的敏感性和阳性预

测值不足，同时侵入性组织活检则引发安全性、患者不适及采样偏差等问题的存在使得乳腺癌的早期诊

断存在一定的局限性。人工智能与放射组学作为新兴技术，能够从医学影像中提取超越人类视觉感知的

高维量化特征。通过整合这些先进计算技术，可构建更精准且可重复的诊断与预测模型。日益增多的证

据表明，基于AI和放射组学的方法在提升乳腺癌检测率、预后评估及治疗反应评价方面具有巨大潜力，

为推进精准肿瘤学开辟了新路径。 
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Abstract 
Breast cancer is the most commonly diagnosed malignancy among women worldwide, and early de-
tection remains essential for reducing mortality. Conventional diagnostic approaches, including radi-
ological imaging, clinical evaluation, and biopsy, play a central role in early breast cancer identifica-
tion; however, these methods face notable limitations. Imaging-based screening often demonstrates 
suboptimal sensitivity and positive predictive value, while invasive tissue biopsy raises concerns re-
garding safety, patient discomfort, and sampling bias. Artificial intelligence and radiomics have emerged 
as innovative approaches capable of extracting high-dimensional quantitative features from medical 
images that exceed human visual perception. By integrating these advanced computational tech-
niques, it is possible to construct more accurate and reproducible diagnostic and predictive models. 
Growing evidence indicates that AI- and radiomics-based methods hold significant promise in improv-
ing breast cancer detection, prognostic assessment, and treatment response evaluation, offering new 
opportunities to advance precision oncology. 
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1. 引言 

根据 2022 年全球癌症统计报告，乳腺癌的发病率(11.6%)和死亡率(6.9%)在全球女性恶性肿瘤中位居

首位，已经超越肺癌成为全球发病率最高、诊断数量最多的肿瘤[1]。乳腺癌的生物学异质性，包括肿瘤

间异质性和肿瘤内异质性，是影响其临床表现和预后的关键因素。根据国际癌症研究机构(IARC)的数据，

20~50 岁女性占癌症死亡总数的 23%以上[2]。此外，乳腺癌预后较差，即使转移性乳腺癌患者接受辅助

化疗，5 年生存率也低于 30% [3] [4]。因此，早期病变的发现和诊断对于提高乳腺癌的疗效和降低乳腺癌

的死亡率、改善其预后具有重要意义。 
目前，乳腺癌的诊断与分型主要依赖影像学评估及活检样本中对恶性肿瘤进行组织病理学确认[5] [6]

该策略在分子分型和治疗决策中具有不可替代的价值，并显著推动了乳腺癌的早期诊断和规划化治疗。

然而，受到侵入性操作和局部取样误差以及肿瘤自身的影响，依旧存在一定局限性。随着临床需求的不

断提高，传统诊断模式在精准评估肿瘤行为、预测疗效及长期预后方面仍显不足。在此背景下，无创医

学影像技术逐渐应用于乳腺癌的筛查和诊断，并发挥着日益重要的作用[7]。尽管过去几十年，随着筛查

的普及和治疗技术的进步，乳腺癌患者的整体预后逐渐改善[8]，但在临床实践中，仍普遍面临经济和人

力成本高昂、检查与解读标准不统一、大规模筛查有限以及缺乏对肿瘤生物学行为进行动态、个体化评

估手段等现实问题，这使得乳腺癌的诊断、治疗和预后预测的精准度仍然不尽如人意，凸显了开发高效、

可重复、可推广的辅助决策模型的迫切需求。 
医学影像能够以非侵入性的方式对肿瘤内或肿瘤周围区域进行全面成像，为连接肿瘤表型与潜在分

子特征提供了独特窗口[9]。近年来，放射组学概念的提出与发展，使医学影像从传统的定性解读迈向高

通量、可量化和可挖掘的数据分析阶段。通过从影像中提取反映肿瘤异质性、形态及纹理等特征，放射
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组学结合人工智能(AI)技术，尤其是机器学习(ML)和深度学习(DL)方法，在乳腺癌的诊断、分子分型预

测、治疗反应评估及预后判断等方面展现出巨大潜力[10]。此外，放射组学与多组学方法(例如组织学、

基因组及蛋白质组学)的结合，有望提升模型的生物学可解释性，为精准医学提供更有力的支持。 
然而，尽管相关研究在技术验证层面取得了大量积极结果，放射组学与人工智能模型在乳腺癌领域

的临床转化仍面临显著挑战。从回顾性、小样本研究到真实临床实践之间，仍存在一条亟待跨越的“从

技术验证到临床实践的鸿沟”。本综述将围绕这一核心问题，梳理放射组学与人工智能在乳腺癌研究中

的主要进展，并分析限制其临床应用的关键因素，进一步探讨未来推动其向临床实践发展的方向。 

2. 人工智能和大数据在放射组学中的作用 

乳腺癌临床实践中常用的影像学检查方法包括乳腺 X 线摄影(MG)、超声(US)、磁共振成像(MRI)和
正电子发射断层扫描/计算机断层扫描(PET/CT)，这些方法也是放射组学研究中最常用的检查方法。目前，

磁共振成像(MRI)被公认为检测和分期乳腺癌最敏感的影像学技术，尤其适用于研究复杂乳腺病变或具有

较高乳腺癌家族风险的患者[11]。近年来，构建多模态放射组学模型的趋势日益增长，旨在利用各种成像

技术的独特优势，整合单一技术的多个序列或结合不同的模态，以提高模型的性能。 
目前，随着人工智能技术的发展，基于深度学习(DL)的计算机辅助诊断(CAD)系统效率显著提高，并

越来越多地应用于乳腺癌筛查的临床应用中[12]。深度学习的一大优势在于其基于多层人工神经网络，能

够解决高度复杂的问题，并能自动识别和学习影像数据中的复杂模式。深度学习特征的提取不依赖于传

统的手工方法，而是通过深度神经网络直接从原始图像中自动提取放射组学特征，从而提高了预测性能

[13]。同时，可以将基于图像的特征与临床、组织病理学或基因组数据联系起来，从而促进精准医疗。此

外，通过成像数据和基因组数据之间的映射，可以发现目前未知的表型和基因型之间的相关性，从而为

改善疾病的早期检测和更好地管理提供可能性[14]。 

3. 人工智能在乳腺癌诊断和预测中的应用 

放射组学在乳腺癌临床实践中的潜在应用主要体现在两个方面：(1) 肿瘤分类，即区分良恶性病变、

分子亚型以及其他临床病理指标，包括前哨淋巴结状态等；(2) 预测新辅助治疗的疗效和临床结局，包括

生存期和复发率。 

3.1. 乳腺良恶性病变的鉴别 

乳腺 X 线摄影是区分病变性质最常用的筛查技术，多项研究已确定了乳腺中最具特征提取意义的区

域。Li 等人[15]分析了 182 例患者(106 例恶性，76 例良性)的乳腺 X 线摄影放射组学特征，结果表明，结

合病灶和实质的模型在区分恶性和良性病变方面的性能优于仅使用病灶特征的模型。Bickelhaupt 等人[16]
进行的一项回顾性研究中，从 DWI-MRI 成像中提取一系列统计数据、体积、形状和纹理特征，表明了放

射组学模型(AUC = 0.91)的表现优于其他模型，而且大大提高了区分恶性病变和良性病变的敏感性和特异

性。基于 DCE 和 DWI 模式，Jiang 等人[17]发现多变量模型结合形态学和动力学参数以及 ADC 值，将整

体精度提高到 0.90。总之，放射组学在区分恶性和良性乳腺病变方面具有很高的价值，并提高了疾病诊

断的敏感性和特异性。 

3.2. 乳腺癌分子分型的预测 

放射组学也被广泛用于基于 ER、PR、HER2 和 Ki-67 表达以及其他临床病理指标(包括乳腺癌的组织

学分级和淋巴血管侵犯(LVI))的分子亚型分类。根据免疫组织化学分析的激素状态，乳腺癌的分子亚型分

为 4 类：Luminal A 型、Luminal B 型、人表皮生长因子受体 2 (HER2)阳性型和三阴性(TN)型，不同亚型
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的乳腺癌具有各自的生物学特征，可以反映在图像上。2016 年发表的一项回顾性研究探讨了定量特征与

癌症受体状态(雌激素受体、孕激素受体、人表皮生长因子受体 2 [HER2])之间的相关性[18]。结果表明，

基于 MRI 图像的肿瘤表型与受体状态显着相关，并且异质性是区分不同亚型的重要特征。谢等人[19]使
用从定量 ADC 图像和 DCE 图像中提取的纹理特征来检测 TNBC，AUC 为 0.71 (TNBC 与 Luminal A)、
0.76 (TNBC 与 HER2 阳性)和 0.68 (TNBC 与非 TNBC)。除了肿瘤内区域外，从肿瘤周围区域提取的特征

也可能包含分类信息；Jiang 等人[20]结合了 11 个特征(包括从肿瘤周围区域提取的 5 个特征)构建了一个

TNBC 分类模型，在外部数据集中达到了最高的 AUC 值 0.72。梁等人[21]回顾性分析了 318 幅乳腺癌患

者的 MR 图像，结果表明，通过常规执行的未增强 MRI 序列获得的新放射组学标记可以在术前预测乳腺

癌中 Ki-67 的表达。此外，对 377 名诊断为浸润性乳腺癌的女性的 DCE-MRI 图像提取放射组学特征(形
态、灰度统计和纹理特征)，发现从这些数据中提取的乳腺肿瘤的定量放射组学成像特征与乳腺癌 Ki-67
表达相关[22]。总之，主要基于从 MRI 以及其他模态提取的放射组学特征的模型能够预测单个重要生物

标志物的状态，包括 ER、PR、HER2 和 Ki-67，用于预测分子亚型，以及乳腺癌的组织学分级和淋巴血

管侵犯状态。 

3.3. 腋窝和前哨淋巴结状态的预测 

放射组学研究旨在预测前哨淋巴结(SLN)状态，从而减少侵入性活检的需求，并减少不必要的腋窝淋

巴结(ALN)完全清扫术。多项放射组学研究表明，结合放射组学和临床特征的列线图可以预测 ALN 或

SLN 状态。Yu 等人评估了早期乳腺癌患者术前腋窝淋巴结转移的识别和个体无病生存期[23]，随后又采

用多组学特征，将 ALN 和肿瘤区域的 MRI 多序列关键放射组学特征与临床病理特征和分子亚型相结合

[24]。在一项包含 1214 例患者的多中心研究中，研究人员使用 LASSO-LR 模型，基于 DCE-MRI 建立了

一个用于术前识别 ALN 转移状态的临床–放射组学列线图，该列线图获得了最高的 AUC 值 0.90 [23]。
Liu 等人构建了一个包含深度学习特征、手工特征和四个临床参数的列线图，用于术前评估腋窝淋巴结

(ALN)转移状态，在三个外部验证队列中取得了 0.91~0.95 的 AUC 值[25]。Cattell 等人[26]使用 DCE-MRI
比较了传统放射组学特征与基于深度学习的特征在不同分辨率的独立测试集中的泛化能力，同时构建用

于术前预测前哨淋巴结转移的预测模型。结果表明基于深度学习的特征模型在准确率方面优于传统放射

组学模型，尤其是在不同分辨率的独立测试集中。 

3.4. 预测新辅助治疗的反应 

新辅助治疗(NAT)作为局部晚期乳腺癌术前患者常用治疗手段，在 30%的侵袭性乳腺癌女性中取得

了良好的治疗效果，并将复发率降低了高达 50%。病理完全缓解(pCR)是预测乳腺癌长期预后的重要因素，

也是目前唯一被验证的生存生物标志物。然而 pCR 只能在手术中评估，因此基于 MRI 的放射组学特征

被广泛研究，作为预测 NAT 治疗反应的潜在生物标志物。Choudhery 等人[27]利用形态学和三维纹理特

征预测了 259 例接受新辅助治疗的乳腺癌患者的分子亚型和病理完全缓解，结果显示这些特征与乳腺癌

患者的 pCR 和残余肿瘤负荷显著相关。Li 等人开发了一种基于 MRI 的手工特征和深度学习特征的多任

务人工智能系统，用于将患者分为 RCB 0-II 类与 III 类，以及 RCB 0 类和 I 类与 II 类和 III 类，在外部测

试集中分别达到了 0.94 和 0.92 的最高 AUC 值[28]。因此，从多个维度和区域提取的特征，结合预分型，

共同构建有助于预测新辅助化疗疗效的模型。 

4. 人工智能应用与临床实践的挑战 

综上所述，尽管放射组学可以辅助临床分类和预测，但大多数研究都是回顾性的，这些模型很少应
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用于实际临床实践。这表明放射组学仍然面临诸多挑战，包括其普适性、可解释性和临床应用便捷性。 

4.1. 普适性 

放射组学研究的普适性依赖于模型的稳健性，但目前其在外部队列和公开数据库中的可重复性仍然

有限。这一问题主要源于两方面因素：一是方法学不足，如样本量偏小、研究设计不规范、质量控制不

充分及过拟合风险较高；二是不同医疗中心的成像设备和扫描协议差异所导致的批次效应。因此，提高

模型稳健性与泛化能力已成为放射组学研究的重要方向，相关研究正致力于流程标准化、数据一致性校

正及严格的外部验证。近期一项针对腋窝淋巴结(ALN)转移预测模型的研究提供了较为积极的范例。该研

究采用了相对较大的发现队列(N = 234)，并设计了结构合理的验证流程，包括两个前瞻性验证队列(N = 
81)及一个外部验证队列(N = 723)。综合验证结果显示，该模型在不同队列中均表现出较高且稳定的预测

性能，其在主队列、外部验证队列及前瞻性验证队列中的准确率(ACC)分别为 0.93、0.90 和 0.97，充分证

明了模型的稳健性与良好的泛化能力[29]。尽管多种因素限制了部分放射组学模型的泛化性能，但值得注

意的是，越来越多的研究开始系统评估并优化模型的稳健性，从而不断提升其在不同数据集和临床场景

中的泛化能力。 

4.2. 可解释性 

乳腺癌风险预测方法的可解释性和可理解性是目前研最为不足的领域之一。可解释性是指放射组学

特征或模型对人类的可理解程度，在基于手工构建特征的放射组学研究中，诸如随机森林(RF)和梯度提

升决策树等集成机器学习算法可以量化各个特征对模型预测结果的贡献[30]。同时，基于相关性或重要性

进行放射组学特征筛选，也在一定程度上有助于提升模型的可解释性。然而，此类算法在处理特征重要

性不稳定或不一致性问题时仍存在一定局限。 
在放射组学模型的可解释性研究中，针对手工特征和深度学习特征已提出多种解释方法。基于博弈

论的 Shapley 加性解释(SHAP)方法可量化单个放射组学特征对预测结果概率变化的贡献，并可通过

DeepExplainer 扩展至深度学习模型，在乳腺癌放射组学研究中得到广泛应用[31]。另一方面，类别激活

图(CAM)及其衍生方法(如 Grad-CAM)通过追踪感兴趣区域解释各种基于卷积神经网络(CNN)的模型所做

的决策[32]。此外，部分研究尝试通过结构层面的改进增强模型可解释性，例如 Barnett 等[33]提出的可解

释 CNN 框架，通过结合基于案例的推理方法来区分乳腺良性和恶性病变，不仅能够突出显示与既往原型

病例相似的影像区域，还可同时输出诊断概率评分及恶性风险评估。总体而言，尽管相关方法不断发展，

模型可解释性的提升仍是放射组学尤其是深度学习研究中亟需持续探索的关键问题。 

4.3. 临床应用便捷性 

除模型性能本身的局限外，放射组学模型在实际临床中的应用便利性不足，也是其从研究走向临床

应用的重要障碍之一。目前，已有多种用于乳腺癌筛查的计算机辅助诊断(CAD)系统被批准应用于临床，

作为放射科医生的辅助工具，它可无缝集成至临床工作界面，自动提示可疑病灶以供进一步评估，从而

提高诊断效率与准确性。相比之下，可解释的基于放射组学的模型(包括基于机器学习和深度学习的模型)
尚未被应用于临床筛查或其他领域，这可能部分归因于大多数已开发的模型是单功能的，需要医生针对

每个特定目的使用不同的模型，从而降低了效率。因此，开发更加集成化、便捷且易于临床使用的放射

组学模型，对于提升其临床接受度和应用价值具有重要意义。 
因此，在未来的研究中，我们需要：(1) 采用优化的验证方法，例如多中心和前瞻性试验，以获得更

高等级的循证证据；(2) 进一步深化深度学习放射组学研究，并结合放射组学与多组学数据来增强模型的
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可解释性；(3) 开发用户友好、一体化的多功能系统，如建立一体化人工智能辅助放射诊疗系统，以提高

便捷性并促进临床应用。 

5. 结论 

医学成像领域的最新技术进步，特别是应用于图像分析的人工智能领域，有望解决癌症检测、治疗

评估和疾病进展监测方面的临床挑战。放射组学和人工智能的出现提高了乳腺病变的检测、分类和诊断

的准确性，有利于乳腺癌精准医疗的实施。放射组学可以从单一或多种医学影像模式中提取多种定量特

征，增强医学影像的检测和预测能力，从而改善癌症的诊断和预后。然而，放射组学在模型开发过程中

仍需提高其泛化能力和可重复性。因此，放射组学需要进一步与人工智能相结合，并利用深度学习来克

服其局限性，提高模型性能，同时应不断进行研究和挖掘数据，以更好地应用于临床实践。 
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