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Abstract

Breast cancer is the most commonly diagnosed malignancy among women worldwide, and early de-
tection remains essential for reducing mortality. Conventional diagnostic approaches, including radi-
ological imaging, clinical evaluation, and biopsy, play a central role in early breast cancer identifica-
tion; however, these methods face notable limitations. Imaging-based screening often demonstrates
suboptimal sensitivity and positive predictive value, while invasive tissue biopsy raises concerns re-
garding safety, patient discomfort, and sampling bias. Artificial intelligence and radiomics have emerged
as innovative approaches capable of extracting high-dimensional quantitative features from medical
images that exceed human visual perception. By integrating these advanced computational tech-
niques, it is possible to construct more accurate and reproducible diagnostic and predictive models.
Growing evidence indicates that Al- and radiomics-based methods hold significant promise in improv-
ing breast cancer detection, prognostic assessment, and treatment response evaluation, offering new
opportunities to advance precision oncology.
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FRIE 2022 LA BRIEIESL TR T, FLIRIE 0 A0 26 (11.6%) FIBE T2 (6.9%) 7F 4 EK Lo 308 P g v 7
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Gsh o N TR ANTR, JEIRHLE S S (ML) AR RE 2% 51 (DL) 7, EFUIRIE ST, 4 T4 R i
W R FT R SIS HIT 4507 TR B B RIS AI[10]. BEAh, UM 2 5 B4 2 07k (A 41
FEDAEL R R R AL 0 22, A5 AR TH RO (0 AR S v R, RS U SR (LT A7 11 (S0

SRTTT, RUEAR S TEAE BRI T AR B, TR 22 5 N T8 B 7 2L e sk
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3.1 FARREMHRERLR

FUIR X A% RE 2 X i AR e i e i - IR A R, 2T 7t e 7 LR b s R SR U U X
o Li S A[15150 4T T 182 il i35 (106 8, 76 1 RE) M FLIR X LR U 422 E, 53R, 4
B3 S AN S o RS R LE X 4320 P R (R A0 A 7 T ) 1 B 1S4 FH o3 A AR AiE RSS2 Bickelhaupt 55 A [16]
BEAT I — BRI PERE 5, AN DWI-MRI R 52 H— RPN Ge - 8 . AR TARFIZUEARRIE, W] 1
SHH AR (AUC = 0.91) R BAL T FARARRL, 17 HOKOKFE & 1 X 3 ST 5 A8 A0 (A3 738 (10 B o s S
. T DCE Ml DWI #i50, Jiang 55 A\ [17] KN 2 L B 5 -G ILAAFMB) 112400 ) ADC fH, 4%
ARSI 0.90. 2, TR AL ZAAE X 2B A R PE LR A8 7 T A IR S B, R IR TR S
AT ) R R S

3.2. FLERE S FoRa9Tin

TS 2 g2 T3 T ER. PR. HER2 M1 Ki-67 23k DA K HAth Il 7 B4R bR (6045 7L R i 41 41
O AR S LB R IU(LV D)) K5 T8 53 2K o MRAE S e L2 2 i IBEOIRAS . FUIE I 4 T8 4y
947 Luminal A %Y, Luminal B &Y, AR ALK 75244 2 (HER2) P AYFI = BIPE(TN) AL, AS[R]) A
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(7L R B 2% E AR e, AT DUSOAE MG E . 2016 4 & R 1 — BB BT FR iR 1 BRIE S
i RS (MR 2R 2R k. NR B A KN 7324k 2 [HER2])Z IR AH DG PE[18]. 45 SRR,
BT MRI BRI RS ZAREBEMG, HHR R X AR EEREE . 555 A [19]1#
MM E & ADC K51 DCE EUE R4 B SCER-IE R kil TNBC, AUC 24 0.71 (TNBC 5 Luminal A).
0.76 (TNBC 5 HER2 FH£)Fi1 0.68 (TNBC 53 TNBC). B 7 filed o X 354k, Mg J& Bl X Sk B R REAE
WA REEE 7 RME B Jiang S A[20145E 1 11 ANRRAE(RLFE Mg Jo Bl X 3B HL ) 5 ANRFIE) A 2 7 — A
TNBC 73288, FEAMTEEE T IAS] T S m i AUC 18 0.72. FE45 A\ [21] BBk 7B 1 318 M 3L &
HHIMR B, S5REW, EITE AT IR IESE MRI P 5315 808 O 20 24 bR 0 /T CAE A i 700 7L A
FEHh Ki-67 [FRIL . Ak, X 377 S Wi iR i 7L R 1) VK DCE-MRI MG SRR 241 R AE (%
B KEGUHNGERFE), RN IX S HCHE 4 ) 7L M a1 e I 427 U R A 5 L K67
FILFAR[22]. 2, FEFET A MRI DL H AR B E O 2 R AE ARS8 BR A% TR0 A B B A 4
PEMIPIRE, % ER. PRy HER2 1 Ki-67, HITHM 4>+ AY, DL FLIE R 2H 232 45 SRRk 22 i
FRILIRE .

3.3. MEMAEIEHBERARE T

TS A 5 7 B E IO A P 96K 2 45 (SLN)ARES , AN NV R (R 75 R, 3 AN 06 B ik 3
45 (ALN) SEATEHEAR . Z TR 420 LRI, 45 G U 4 2% Rl PRERAE (1951 28 B o] DL ALN 8%
SLNCIRZS . Yu 25 NVPAY 1 LB 783 R 1B 3 bk E 4 B RS (X R B AR TE I A A7 A 23] B G SUR:
F 22 2H2RFE, 45 ALN IR X380 MRI 22 7 371 6 B U 20 25 R 5 s PR SRR AE AN 437 A 5
[24]. fE—TEE 1214 BIEF W Z hOost s, §FE AN R LASSO-LR #5241, kT DCE-MRI @37 [
—ANHTFARATRA ALN B RARASIIIG R - BURA2EF LB, 25 -3 7 s AUC {8 0.90 [23].
Liu 5 NMJEE T — MU SR 2 SIHHIE . T THMEA UM R S BB B, F T AR FT A5 I 55 7k B2 45
(ALNYERIRZS, 76 = ANMEIAIE RS ELS T 0.91~0.95 ) AUC {#[25]. Cattell 25 A [26]18 ] DCE-MRI
FUAE T A Gl 4 SR IR 5 2 TR B 5 ST AR AELE AN [F) 43 R 20 (R A 7 R v iz AR 7, TR A4) 7
AR A TN A R E A (O TAR A . 4 R A B TR A o) R R AR B TR A R TR TR U
MR, U RAEAF 2 e Sl R

3.4. FMFETFENATT B R B

HAR A TT (NAT)FE A Ja3 30 0 01 7L e AR | 238 BRI B, 75 30% 12 28 1 L e Lo e
TR HIRTT R, H R R KT Ek 50%. 9 L 58 4 A (0CR) A& T L AR K 1 75 I B B R %
2 B ATME— IR A AR S . SR pCR HAEETF AR IFAl, KRULIET MRI U 4 2255 E
ez whge, VENTII NAT W97 RN TEEYIbR £ . Choudhery 55 A [27]F F JE 45 2 A = 4834
FETRM T 259 15145 52 B Bhia s M FLE B3 10 7 RS B e A G fR, 45 TR TR IX SRR AE 5 7L e
A pCR FIFR AR R f4f ARG . Li SE ANTFR T —Fh BT MRI T AFAEFOUR FE 52 S RHAE () 24T
FZNTHEGRG, HTEEHESNRCBO-IIZEE 113, LUK RCBO A | 265 11 28R 111 3%, 4N
REF > HEEF]T 0.94 A1 0.92 ffk = AUC 18[28]. K, M2 ANYE R X SR B RRAE, 45 & T2 1,
SLRI R A BT T B 4 Bl A7 A AR A

4. NIERERA SIGRSEEATH A
Lr LTI, R UL AT LA B R 2 SR, {ELK 2 SO SO R, IR AR 7
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wBE 5

FI TSPl RSB o IX R WIS AT AR M e 7 22 Bl AR & Ve L TR P A i P L P B 12
4.1 EEH

JES A 20t U S PR AR TR B AR v, (E E AT LAE AR A B RN 28 T 50408 e w1 R B S AT AR
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FORH T AR R ILBAFI(N = 234), FEiit T4 E& B RIERE, AR ATIETERUEAZI(N =
81) K — MAMBIAEBAFI(N = 723) 0 LR G IRIUELE T IR, T2 LE A [F] A A A 3533 B0 o 4 ey ELAS e 1) 7l
PERE, HAEFEAF . SIS IEBA S K AT HE 1 56k BA 81 iR Af 26 (ACC) 4377 4 0.93. 0.90 A1 0.97, 7843 1E
B TR R e S RAF 2 ARE JI[29]. SR 2 FhDR 2R PR 1020 O A AR Y () AL v e, (REARE
B, BRI 2 (R T UE R GOVl HE R AR AR AR, AT TR S HAEAS [F) 5080 SR A PR 37 5t
H iz AL RE

4.2. AIFRFEE

SPL e UG T 75425 6 ) A M A Pl B A H BT SO A B HIAI . — o T AR A R U 4
FAE SRR NI T BRARAE RS, FE5E T F TR U A0 e, 1 W BENLAR AR (RF) RO B 42
TH U 55 B LA 2 o S AT DL A &N AR L T 285 R (9 DR [30] o [RIIRF, 56T AH DG 14 Bl o 2 1
BT L RHE IR, A — B AR DA B TR M mT e . SR, b BV AE AL B AIE 3 2
PEANTR E BN — B0 1) I 547 7E — € R PR

TE R A BRI n R 0, T AR RIUR 5 2 S RRAE 3R 2 AR ik . TS
W) Shapley it A B (SHAP) J7 7 ] & Ak 5 AN T 40 2 5 A0E o 7000 &5 SRR R AR 4k i ok, I vl
DeepExplainer ¥ & IR FEE SRS, FEFLIRE O 2 e h A3 202 A [31]. i —J7 T, REaE
KI(CAM) S AT AR 7719 (n Grad-CAM)H I I BB R [X AR RE 45 o 52 T A 48 I 28 (CININ) [ A5 284 BT
IRHR[32]0 EAN, A3 T S5 it S5 46) J25 T 10 c ot 1 et A m e, 910 Barnett 45 [33]42 H i mT i
FE CNN HESL, I8 256 2 T S0 Rk B 7 vk X 7 LR R AR AR AR, AU ARS8 H Won S5 R AT J5 4
Joa BIARABA ) RAAR X 35k, 38 T [R] I H 2 26 0P 20 B IR VP AL o AT 5, AR ST IE AT K R,
B AT R M RO B T AT A ST 4 27 e FL R VR B 5 ST H i 5 R SR 2R 1) S 1)

4.3. IR A (R4

BB NE BEAS B IR SR PR A, TS 2 S AR TR A S B PR o AR ISP (AR AN A2 5 0 7 AT S [ M R
JS7FH i kG 2 — o HAT, O 2R T 3UBRE T & A T SO LA B2 BT (CAD) S Se gt v N2 FH T R
VROV RHE A A B TR, eI g8 E i A Im R TAE A, H 3l nl Bem kLAt BE— 2B 0%l AT
eI W AR SRR TE . AL, FRE A2 T8O A 22 AR TR (R B T L85 22 ST IR 22 2T RO
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BEANMRFE H RIS R AR, TTRRAR 7 % . BItL, JPA ISR . (858 B2 Tl AR A8 A R8s
AR, O6F T PRI HL I PR 52 B AN N YA A B 2R S
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