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Abstract

Hyperuricemia is primarily mediated by inadequate uric acid excretion. As the largest extra-renal
organ for uric acid elimination, the intestine is increasingly recognized for its role in maintaining
uric acid metabolic homeostasis. Natural active ingredients and traditional Chinese medicine (TCM)
compound, leveraging their multi-target/multi-pathway advantages, demonstrate unique potential
in ameliorating hyperuricemia via intestinal pathways. Studies indicate that these components can
promote uric acid excretion by modulating intestinal urate transporters, improve intestinal barrier
function, and reduce inflammation and abnormal permeability. Additionally, they help restore the
proportion of beneficial gut microbiota through microbial regulation, thereby further improving uric
acid metabolism. This review summarizes recent advances in the use of natural active ingredients and
TCM compounds for alleviating hyperuricemia via intestinal mechanisms, aiming to explore their
therapeutic potential and provide future perspectives.
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1. 5|15

a1 PRI 1ML (hyperuricemia, HUA) & — 43R H ik 2 A2 AR PR B [1], FCHRRAE A I35 JR B /K P RF 48
T 5 (5B P I3 R BR IR B EE AT 420 pmol/L, & PE#EL 360 umol/L) [2]. BEAk, HUA & 55K, 181 5% &
O IR () UK B 35 A O3] HE4ETE, 2000 4E & 2019 4E[A], & HUA B 8.5% ETHE 18.4%
[4], HHAE LTS JREEZE SYh ANV 1 R 2B =1, [FINH2 S2 81, At At T-4u i
B PR IE (5], HACPAERTIE . B IEAN e B 3L mE T e RE AT . X PP AT i, 8
SFECHUA BIRE. HET, PR3 ZE YT 259 (an R0 Ly B R0 ) R e . SR ] ) 3 B4 1) U A 1 R R
iz [ BOE M AL (xanthine oxidase, XOD), {HA A HIXLL2 M nl G 51 A B DhRetith etk L
R R[6]-[8], JLHRTECA B IR AN A B3 RN H . /R R IER W S HEE ) A, 7K 4H
FH NAEE H ) 30%I JRERHEML[O], 4RTM, B Al e X fiE ey 299 B . BEFERE, JRIER B AR
I 2 v PR R INURE (1) DL IRI[10], R HLEIPE & = KA O3 1T : I W RIR G I8 B 1 i Bk i)
SR e iE R A RS .

RINTEVER Sy B b 22 7 IR 2 80 i, IR IPE AR, R B ThRE . % HUA J7 T R B
MRS . filn, At BRgiE ATP 44 &f%isEH G2 (ATP-binding cassette sub-family G
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member 2, ABCG2)KiA, il JREGHRM[11]: 2540 Aetd E R BELE ), BOINA s s, Ao IEne I
We[12]; SIRERE & I v AR A AR5 %E 8 A 1 (zonula occludens-1, ZO-1)F1 1414 2 FH (Occludin), 4
R i B b D BE[13] o IX LURIF 7t 25 SR RREAL Gt 2451 Bt SR 1) g 1k AR B4t i R o DR, AR
FELER RARF= e b 245 77 7038 1 il i 42 2035 HUA (ORITFE g, 55t RSk BOIE 72 07 [ EAT R B2, LA
FF R 22 A4 30 HUA T SE ik it i S 5 5%

2. SFRERMAER BB RIS
21 BEREREEER

JREG A e HEt, O FR AR T ke LR RIRL e E N, FEAH ABCG2 FIfH & M iak
1 9 (glucose transporter 9, GLUT9) [14]. ABCG2 1ENJRER'E #MHEME 1) FEE A F A A[15], HINREREAS T
FD T IRIR I AMIEIE[16]. X —45187E HUA KR FC A 3] TIESE, BRI HUA BECR B
BN ABCG2 MRS T REFEAC, [RINFEREE RIR S S AR /D [17]. Bb4h, GLUT9 &2 5RERH I
Wk H 2 —[18]. ZEALE E AT, SRR R KERIL . SRRV, £ HUA
NERIIIE A GLUTY f H3RIA B FHmi[19]-[21], XEEH 7R GLUTO 78 JR IR I Wi HEt ip i #8 1 8
B FER .

2.2. BpiEREIIRE

i1 7 B 2 R 45 AT S R HE N ARG EA G EE BE 2R [22], Hooe M MLk fa e E AT S . H RTHE R
RO, HUA BB SIS iE e ki, SBUREREIIREZ M, (218 EIEA F Y5 is £ b
(lipopolysaccharide, LPS) AL ML, 51 & 4 5 VE I 98 hE R Ri[23] [24]. 5&T IEC-6 4t Al R R S A ik [
R /N B HUA SR (R SR I, PRIZZKF T s 2 fid R — 2R B e #5405 AR S R PRI 5 3 i v
% (reactive oxygen species, ROS)BE I 2, 51 R AR A Ztldt,. Bfif5, 478 A (translocator protein,
TSPO)#%iA Fif, LLK Toll #5244 4 (Toll-like receptor 4, TLR4)A1 NOD 5244 R (45 #ss A 2 5 1 3
(NOD-like receptor superfamily pyrin domain-containing 3, NLRP3) 3 [ B 11, e & 0% NLRP3 48 11 /M
RN IR B HOE IR B T8 RAE R R, HETTH 9 R SRR B0 ZO-1. Occludin LR X3 ERE A 1
(Claudin-1)%5 3k, S8l @iE Tt &i[25] [26].

2.3. BEERRES

NAR I8 N AFAERC LT T BB E TRRE, T 0 UE 8 2 BH 1 1 B B A et N AU 7 Tl B A E
PER[27]. HUA Ay —Fi W ARI MBI BRI 2 I 70 R I 5 7 8 B R 1 22 R S R S o 2
VIFEOR[28]. XELR BRI, VT8 b HE 45 4 1) SR AT ] B8 -5 PR IR /KT T A7 AE 2 35 ORI [29]

JTEAE 9 NARIEMS IR LSS S, BRI e W R R = SErS 2, B, K%
FF B 7] 23 s B N4 B S B (xanthine dehydrogenase, XDH), K444 4 FRR[30]. M - 6 20 B 4n 2L 82 B
(Lactobacillus) Flfi . g B (Pseudomonas) , U BE65 & s A A& I B Tov A BRI R BRI, B IR ER 7 il N IR K
NI FEAR R R 7K [3L] - A1, A AT 90 7R JW e i A A e 0 3 ek AR = s il i R R e 1 B A Rk
filan, @it IR A AR, 7E HUA B )iniE$, Alistipes indistinctus 1345 2 FEAK, HH 51
PREGAKE M OG . 2D AR 2 e s BRI S E B R B, B IRERVE N OGR AR =4, REis i@
o 48 5 i b 7 20 B o S A Bl A S B A 0 A2 4Ky (peroxisome proliferator-activated receptor y, PPARY)
5 ABCG2 Rl ¥4 &, {tit ABCG2 [k, BEHgnfziE JRILHIHRI32]. Fi4b, Rt s iE (short-
chain fatty acid, SCFA), & LMR. TRRMNERSE, el A ki i fr e 4em 3 20 ™Y, BAH
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W5 AT 4R R AN i e R B AR . iX s SCFA 7EAEFRThAE B HA REE Y, SRR mE %
JiE SN

BCE R R BERE DR . 4ERPAOICT AT AT BE B AR AR [33]. WRAUKIN, HUA B =4 T R #h 2
WA R, MBS T TR LA HUA /NRIBIEH ABCG2 AR, I HUA,
R TR T e (2 i PRIZHEIM[34] . ek, BT SR, SGT5 iEI JRER 26 & 44 (monosodium urate,
MSU) 5| K ) 9 RE I N AR i i T T A2 0 72 A2 B SCRA, E TS T /0N BRI R K Hh 2 I 2 3 ) R A2 12 6 0 S
JRi[35]. 21 A0 S BVEN HUA BIRZ OO BRARRAE, BIF 783K WL RE 08 75 5 il 98 RE SN, 38 n i ot e
ZE[36] 0 I IR A R BLUARE R PG B 5 S HUA /N BRUSE BB FUUE SIS, 73 1 B 2 1Y 1 o s 1)) e B i 1Y) L
AR R [37]. Flan, ARFFRRIL, EHEE TN HUA /N REEE o2 2515 10 338 4E I BR 14 R 4
il RRE SN, RIS B HUA BT 5| S i i B s 45473 [38].  [RIFE, Lactococcus cremoris D2022 B i t # &
IR O i BE RS T RE R VE FI[39] . X LLH FUUEYR R I, il b B RE 05l it /) AV PA PR R« TR 4% PR TR
HiaE O BE I bR R ANH] 5 R AR HUA PR 52 [31].

iR EEBFRERE ni& FRIEThRERERS IHEEREAL
Abnormal expression of intestinal Intestinal barrier Gut microbiota
uric acid transporters dysfunction imbalance
ABCG2 ‘
: X ’/\/} /\
GLUT9 x X
Auk Bt
S8 | (21
7 I {.\ (\v [ (.\ P acteria
h m TV S
I s NZn4:
® 2 fsora s
metabolism
———* TsPo | Occludin ‘
o o i i !
o O ° ‘ l Claudin-1 (] ® o
[ ) \ 5 [
vA . . ]H}ﬂﬁ . . . NLRP3 Inducuon . UA ‘
. . Excretion ' .
‘ E3 . TLR4 | ——
Reabsorplion

— UA > EBEHEIE
Increased permeability

@ JE# (uric aucid , UA) ©® JB5Z#E (lipopolysaccharide , LPS)

Figure 1. Mechanisms of intestinal injury induced by hyperuricemia
1. HUA 3 g #5451 R AL [E

L5 EPrIR, HUA AMUE 1 8 45k AmThee, eBOR 1 ipiEwimiass, b2l 1 R A
MRABOLE 1) Bk, PEACGE R E Z7 0T, ] BESCONZF HUA 1T EIR T 40, [
WO IRZRE RIRE ML S h 2R 71677 HUA S48 T8 mt s .

3. RAFEMER S BHAE BT EETNRE

FURT, 15500 B PR IR 245 1 B (et ' I PR IR HEME AR A A o BT D A AR S — K PRI HRME 25
o FCPRIRHRME Ry /b— T3 T 2 T BURLR AT KT R, A3 —J5 2N E SRR 7 E . R, (et fipid
R&ﬁﬁﬂﬁﬁ@fﬁﬂﬁkwA%% ST, X ﬁ%ﬁ%?ﬁ%%%%ﬁb%&ﬁ% AR
SERIERI[40]. SEUA RImARIG T Z9M0AELL, RIRTE TR > f b 25 27 #2385 i i 4236 7 HUA J7 Tl
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3.1 RAREMRS BT ELRE

WHFURIL, RENETER (U EHZE . 2m2E. LY. SH )W T e iR 2 39,
1EH 23 09 HUA Bia USRI e R e JEREER 1 RGN R 22 MR SR 1 7 S R i T8 42 20 HUA [
FOUESE T LA, XL Ry 2l = KA DL A 28—, IIRIRF IS s (e i bl
IR STHURIR); 28—, WmipiEhiashre(nskfiig . £5R. WAR): =, W pEmiaitn
FREPEE . NEER. IR, BRI S, IXERIRTEIER BN “ IRIR¥IZ - FRIIIRE - WREE”
PRVEAE 4, L T HAE T8 2 40 R AR B P R R OL S, A ROR 1 R IBKT

311 RAREMEM BT FERREEEARIE

T IEME R 22 AR 5 2 R 3 A B (R B PR IR & 1, LR SRR AR 35 40 2 U T R 5 i
JRIBHE R AR, M2 AR]85 MGG ABCG2 B H, (Lt REEI G HEM, + BFEF[19]0]
Rednt HilgE ABCG2 R AIFRIE, JF NI GLUTO &, XL IE ) JRERHEM . AR IR 4
Bl SRR (A1) [RIFE ELA 1Y il PR IR s B A s %, mld st Billp1E ABCG2 S A A1 N GLUTO R
PEAR3EPRIZ I i HEME . BRIEZ A1, ZWESREME R iR [12] RS B2 W [42], AR T Ve 1)/
BEGR[43], ARG A S )57 R TR [44) S B4 R L AT R AP IR IRV 1, ELILE 70 B IR B A FH 5005
T il IR IR e ia B s E, B3 ABCG2 Al GLUTY.

3.1.2. RAFEMEMS U ERERIEY

ST R (1) Ji7p T8 o B 2 AR o AR AS (R B Lm0 R 3%, ORI 2 7T R BN, HUA 2B i o e 5 2 42k
HETRE HUA IR R, [RII 5 4 B 1t (R 98 i s . o 5 B30 o s 4P 52 400 1) L 4 It IR e A b 1 e
W R R R R B N R B AR B, RN RIS IR R ARTEPE 7, Q23 3R [45] . =y R 22 K [46]
Wit B [4T] M SR IR R [13]55,  #RRENE ML M #HI#% [K T «B (nuclear factor kappa-B, NF-xB) & REE RS, i
SRR HEIR T~ o (tumour necrosis factor-alpha, TNF-a). 14/ %-6 (interleukin-6, IL-6) LA & 1L-18 Z&42 %5 [A]
TR ERgIE SR ERERE OIS SCE M IE R IR EE N Ak, ZRESRIE s %R [12] S R
T Z FE[48]REMS L3 il SCFA HIAEF=, i ZO-1 & Occludin 2 A FIRIE, AMLAnts 86 M o 55
BURBR[A41 VA e 2 A2 32 205 ME B IR [49] B AH B Fe i B 45 tH, 22/ HUA BIPE 3w B
EREEREANRIE, B pEmErE, MwIs A SR MSEIi. o, XEEESR R
Ji7 38 57 B 9 4 FH 2503051 XS il 98 i ) R A

3.13. RATFEMEM T AT A ERRERA

BT, MOREZ IR, MEREDRNASREE HUA FRMBHLE RS EE2ER. %5
[12]\ HEEZHE[A2] R ZETT TR T 20 (4855 Z WIS TE U E N ai A= on, TRk n XSO 14 (Bifidobacte-
rium). FLEZFT B (Lactobacillus) 2% Fif 7 & FC B (Akkermansia) 25 25 B G 5H, 3900 SCFA HIA R, BRAR7iE
pH {E, I PR ER B RSO LA HE G 2% s By RS (SR IR IR [13] PR IR [41]) 5 s 2R (anifi B2 R [47] R
BT LR R BB TERER[50] 24 R E [11]) a8t 4 2 N v S A Tt 1k k2> PR R A5 S, [ B 8 5 B A 454
TR IATE KT, BB, AR/ PRIEE FTAA IR 22 7 B [S1] RN 22 35 3 [45] T 24 I B R 2R 0,
AN 28 R F-(1 TNF-o IL-18 S50 PRER IS A IR e o 1% s /INBEBR[43] 38 i #0 i) S A1 B0 B 1 A
W BARAS, (M PRGN AE G HHBR 491 2 5 AR U T 47, B[R] B BFAC S A3 H] MSU Ui
X B R 5@ BB TR, SR BRE R IE (04 R HEM R IR S AN R B4R, JEE T HUA IR AR
&,
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Table 1. Gut mechanisms of natural active ingredients

= 1 RREMR S BIBAEE AL

RIRTE R 2 5 SRR ELIR S 3CHR
Natural active ingredient name Structure type Mechanism Ref.
ABCG21;
TR ” MAPK/NF-xB|;
Punicalagin R Firmicutes/Bacteroidota, [11]
Prevotellaceae_UCG-0011, Muribaculaceae?
Z0-11, Occludint;
Eop il s sk ABCG21, GLUTY;
Inulin FHR Akkermansiat, Ruminococcust, [12]
Bifidobacterium?t
IL-18{, IL-6;
SRR R S ZO-11, Occludint;
Chlorogenic acid R Bacteroidest, Butyricimonast, Prevotel- [13]
laceae_UCG-0011
TR ;
Mangiferin HE ABCG21, GLUT9| [19]
KR ABCG21, OAT10}, GLUT9;
Ferulic acid L& Lactobacillust, Ruminococcust, [41]
erulic act Bacteroides|
f{*%ﬁ EZ S Blautia|, Muribaculaceae/, [42]
ucordan Dubosiella, Lactobacillust
IINEET - ABCG2t, Galectin-9];
Berberine IR Bacteroidetes|, Lactobacillust [43]
0 ELTA ABCG21, GLUTY|;
iu ) L. ) :
IR ES ZO-11, Occludint, Claudin-11; [44]
Oleanolic acid SCFA1
S Z0-11, Occludint, Claudin-17;
c Mg TS Escherichia-Shigella |, Ruminococcaceaet, [45]
urcumin Bacteroides|, Lactobacillust
ETES S e .
- 1 A -11, ; 4
Galangin TS ZO-11, Occludin?t [46]
Mtz 2% " Z0-11, Occludint, Claudin-11;
Quercetin S Blautia| , Lachnospiraceae [47]
S , Z0-11, Occludint;
: EE W THT S5 . ES BN Firmicutes/Bacteroidota |, [48]
Plantaginis Semen polysaccharides Proteobacterial
- TLR4/NF-«B|;
Folic acid i Z0-17, Occludint, Claudin-17; [49]
olic act Lactococcus|, Muribaculaceaet
KEETILHRREE TR A Lactobacillus|, Faecalibaculum?, [50]
Epigallocatechin gallate N Bifidobacterium?t
I Lactobacillus_sp._ ESL07911,
3 EQUES Lacticaseibacillus_rhamnosust, [51]
Resveratrol

Bifidobacterium_colobit

T AR B JRORfER N e, .

3.2. HEEHRTMIEINEE

2GR TR PR B LD b 22 I R <R B A A mC AT R A R T R LR 2 )
Z AL fLR P AR AT LA T RE, SRR MDD L. Bk R A NIRRT 25 ET5EIRTT HUA
MR ARIL T “ 20> - 2R - 2B AR IILS, FNEREI 7RG E D
REAIARARR IR o AR 2 TGN 2 b 25 52 J7 I8 1 i TE R A2 20 HUA B FEUESR KRG, Az O AR IR &
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BAEPALE “ RIS - PRIRIhEE - RREE I X — MR A R R o A LB AR R AR T R 7y,
ST ZH GRS, RENEAE —E MR LIRE A M AR . eAh, ZRHEIE A A —E
R PSE DG B — 3 P90 S KR I A R K S5 B4 A Sy T R A RIS, L 6 B e T P X9 79 R0ORT
K224 E[52], 8 HUA [ia 7 24t 7 SRR Ra I r %.

321 FHEHETHERBREZER

BRECATNURIR([53] [54] BERE M THIR[54] 5 U HI56] [S718ReAT Rfe it e PRI HEHE,  FLAE AL
15 KR il PR e 18 SR A R . T FUAR N, X e Tyl 1] PR R BRSO IS R (B GLUTO),  Jik
/D PRIRAE By TE SR BRI - (RN 3A RE L1 PR BR AN HERE IS 14 (i ABCG2) %, AT XN ) e i2f PR R )
FiE HEME, D9 HUA BIBR IR Bt 135 T T8 PRER HE 6 207 %

3.2.2. PHESFNERERIEN

HUA (1) & A2 RS @@ M 3 0. 4615 - BIHR[58] [59]. Bk B A Mt /N MR IK[53] [54] A%tid 5
P [60] B B oG R S5 WU R R 245 7, By mdid B = i b se B vk . PRIpIEIEIEE, i Bhia
J7 HUA. EAERERE, XV E 7o F 2aE: (1) LEpEREEREANRE, W Zo-
1. Occludin % Claudin-1; (2) #il}iiE 28 5 /) S, o4 TLRA/NLRP3 i@ #%, [ TNF-o. IL-18 & IL-
6 V1t
3.2.3. PHEF A HEERFRE

AR, B WA HUA RJEERE 1R &2 000, SR EK[55]. DYabEk[s6] [57]. % E -
EHR[58] [59]. #EMUEBZ[60]. BiAHIERBRI[61]. B AS[62]. %ihiz[63]. KEAFHZ IIR[64] LA inik
KU [65]55 JUF A J5 I Re it i 1 1 i B ARAS, THl HUA R . XS J7 il i fa w4k
FE(UFLERAT 1 « XA B o 2 IR %), {23k SCFA AR, b L BRAT 18 55 25 B IR e (R it IR IR TE
RiE i) 53 iR [66] . BhAh, IXEEE J5 IS REMS IE I 3 Lo 48U 14 JE (Bacteroides) . AR 9 E (Desulfovibrio) 5 2%
PEEOR T 2R K, DD B i AT W5 0 2R (0 LPS), G2 izl 4 RE S8, 7] B 001 bR R 75 i 1) A2 i o

Table 2. Gut mechanisms of TCM compound

® 2. PHEHHAEIERIE

25 T7 44 TR F*7 1B L ZHE R
TCM compound name Principal herb Mechanism Ref.
TLR4/NLRP3;
R R SRR R R ABCG21, PDZK 11, GLUTY; [53] [54]

Z0-11, Claudin-11
TLR4|, TNF-a|, IL-18];

Z0O-11, Mucin-31, Claudin-11;
ABCG21;
Desulfovibrionaceae|, Ruminococcaceaef,
Enterobacter |, Helicobacter |, Desulfovibrio|,
Streptococcus?t, Clostridium sensu stricto 11
IL-18/NF-xkB;

ABCG21;

9 bk A Parabacteroides johnsonii|, Corynebacterium [56] [57]
urealyticum|,
Burkholderiales |
Occludint, Claudin-11;
TNF-al, IL-6;
Bifidobacterium?, Erysipelotrichaceaef,
Helicobacteraceae |

BRI R Ly [58]

(58] [59]

DOI: 10.12677/acm.2026.161310 2486 Il PR 2 2 3t


https://doi.org/10.12677/acm.2026.161310

b
4
G
Blid

NLRP3|;
IL-18], TNF-al;
LESLiblib 7] E8 Z0-11, Occludint; [60]
Muribaculum?, Butyricicoccus?
Lachnospirace A2|
I BN g b A S Prevotella SGB1615 1 [61]
52 e At —— Roseburiat, Enterorhabdus 1
HREr SR lleibacterium|, UBA1819] [62]
TLR4/NF-xB|
S o Firmicutes?, Proteobacteria,
i L% Lactobacillaceaet, [63]
Bacteroides|, Bifidobacterium?
J TNF-a, IL-6];
NI vk K Lactobacillaceae?, Bifidobacterium?t, Escherichia coli| [64]
kS s INFeal, 1L-6), 1L-81; [65]

Enterococcus?, Bifidobacterium?

4. IGRFELHB S Bk

A H AR S5 AT TT B 3R R RIRIE PR 73 b rh 25 52 77 Tl 3 T SR A 5O e PR IR MILAE »
HILARRIG R A I 2 . Ho—, W2 28, WM. SR MG, Blca RS E AR
R E SR, (RN REE SR ERAR. L, BHERmaESARE, HMEAHRE L ER
BOR, FIEMRBIE. RICERGIE S8R Z RGEE Y, BN TTHIFRLE B Rtk n — 2ot 5 B &by
EYFE . K=, SRR R IEARE e, MR E R, HIAT 2 T
B, K tECUHXT B ohae . BRI, ARV IRAR S R A SR e ) IEE A 2, BAEG IRk w
TRAERG R NI I8 75 5 HLSE 4 (0 22 e o DU, HADs T N C S B em A IR, % 2 REA
BEVIII. RS & T 2Pl A L S Remi, 2 Kl LA BRIR A D9 B — 28 i, i LA At ek “ i L)
AR, RN AL RIBRBR AN D7 B 5 JAESE bx ULL A SC A QM (K 3 SR 28 mi B AT
b, SEEIRARIGST T ARG, AR GTiayT 25%) 1 B SRl PR IR 2E B (XOD il 77) By 3t B HEHE (e HE
29) MR, (BAERTH DIRERE B e P S R A N PR R PR RARTE I e S b 25277 [
Ho 2 - ZHER BOME FIOCSS ST e DL 2 Gl B HEA TR AN Y, RN A BIE AL B AR T ST T
BRI BRI PR AN 52 m e XU N A PR DB A T 24777 58 LIYIIR AL SR 25 0 D SRR AAS RSO, BT
) U T8 A2 25 Z AL S VAR AE B S I RE T R MR R, H B3R TE A 75 R R R e 5 sttt
FWt Rt IR

5. BESRE

KL RGLFR T RINEME RS Ko 2455 77l i oG HUA Tk R o FITai N R FE35E S, R
SRIENERL Y B 255 T AE i i B B E I . A TE AR RN 2 AR e = AN SCR A 70l IR R
IBHE AN ABCG2. GLUTI)TY . piEbrfEthRe e = 54k DU IE B0 5 DhRE I 4 . 8
REREME, I 90% WA K T I w4k, X — BT Sy HbiE B T 118 B R LR R SR M R a)
K 2552 7551 HUA R8T s i O AR L f (. H RTRT R, i AL 22 38 1R S w15 32 nEnd
R FREEHR (IS ABCG2 [#IR). i Brls sa Bk,  JF7 A BA A Wid v i AR =4 (. SCFA)
LLXIBR, WMONEREHES HUA SGE R EENFRE29] [31]. A IEHR RS IR IR e E A Wil
Jif B 5 P AR S AR AR ST., T T ER B A A A e OGRS DA LR S R AR A, a0 2 pE
BRI BEM LI 35 I A I EHR = SCFA JKF, SCFA BE AT 4015 NF-xB &5 J5E [ BEAK TNF-a LA IL-
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Gt

Par
&

6 SRR, NrEA EE RIS EEE . i ZO-1. Occludin. Claudin-1 55 5% %42
T, N EmEEER D> LPS A FWRAAALNML, BE0 S 28 5 MR 55T ABCG2 55 JRIFR4MF
IZRMANS] R Ak, AR R SR SCFA i85 PPARy 825 SAHC, AT ReA4 B4 1B H2 i 45
IS E A RIBHIMGE . B SCFA 4, WL ] feil it /-3 IRV BR AL 7 AR IR MRV R, Fdid FXR.
TGRS &2 R I e 5Bt fasds . BRUIIEXMEIA T, HUA TR “ BB R — RSk =
i — BE B R —LPS/TLR Z8RE S — 3 18 I — R T m e — BB w7 BPEPEER, Wit b3
BIRTT 2 RERTE M oy S P 252 7 (AR AAE T RT RIBAEH T6ia . bl 5 BRI 2 A1 A BASE
2 B0 R ) O v R IR ILAE

SR, ARG R AAE R R . B0k, X TIHEEEHAMRESRELRMEAR, HifZ
B ST BB (7] B PP B GEI R JZ T, 520 BT RE B A . HAr e A a2 (n
MR R TR AR ) SO T R BN R R R ANIZ AL o [FII, X T B 2 25 5] ik 2
PIRAERKING, SRZ AR IGAE . ok, “ZHLHIE” RN B = . A UESE R, RIRTENE
By B R T A B B R AE T, i R 2 A, R “HEEE - bR - W
FEMRUY” A EAE IR 2% Rt . — 71, @5 ABCG2 45l R ia s A&, BEHIG R
MAME: ERESNR, X—dBEESEEAS TR SKR) NS PPARy 5 5@ BAHH. K
B, TERC RV k- s & A7 PIRBN[32] [59] [67]. 53—J51H, HUA RZ T )iz b s
155 LS B LPS/TLR BB MM 98 hE, 23 dt— B4 PRIR ¥ 18 8 1 1) 08 RO IE IR B IEAR S, TR R 1T
THORAET - BEREREIR - #I(RA0” BN . HATCEM AR SR, WHH . 2825 1 DA A 2 My Kl s i 2k
BT BRI AE— B R PAB SR R R RORE NI IR R 2 A, AT PR — B IEER, RS
PRIZ M 1z 4% 7= A= U [RIVE FA[12] [39] [68]. s A B FUEdE or, SR A 7 R SRE T
By B P2 T “ 2R - 2l MEAREE . S EFERY, B AE T R, a8 AR BT TIAE
RILRER 5T B —w#h, ERRZEEER . 15 EMAE R ULV AN, SRR
=[69]. fJiE, EIRKE NS0 ARSI IE O 2 UE B R IR TE R R A3 St 2555 7 e il i T R IR i is R
. BEmiEkE. HEBIE RS2 BV IERIRERIER, (HIXEest B A 2 DL B 3 P FIm R B
o HBUAEE 25 BEaERK =B, Bt M. BEHUG IR AR IGI0IE A dtE 5 24tk . KRR
TR IR A T O 2%, ERIRT 2R, ARIABFER G 5. IR S LA A 50 77 A7 AE
ZErt, FEUTTREE R RN, A HTIE R S AT LB — I R ER TR A5 A VPN ¢, MERLA TR R
< Z LR R SRE R i .

ETUAMAAL, RREMERFEIRIO S, NigHERERAY: . RREsHEY . 7%
Z AR, IRNFEAT 2500 10T W38 R A 1Y) D e 2 DR 3 A 1 | AR U5 308 2 v 1 2 R B AR U P ik R AR A
[FIS, SRR R OE RIGUE, KA SRR S . JE R R (18 R RE) . W MIB B SEH AR, B
TE R AR AN SRS SRR 2P L B . FLR, RIHES) “ ZHLHIYNE B oCERMERF AT, R
AN A S PR ST B, BT Pl — AL (W FH T ABCG2), WS T FHARATL I S ek 24 20 52
Wi, AT s AL ) PR R SR DR R AN BRI BB o B fm AR SR Iim PR AT 8 2K I35 PR IR /K - 5 HAth 2% piF8 Al
g, ISR IR HEM & BB AR KT R0E K& SRR T RE SR AR, DARRARAIER . FEE
HRRAKING RS, DL ST I8CR . BN, RARE S 29 IBCE N B80S 5 R
TR RS AN 25 52 7 RE R AR RIE 22 A 1 I T4 T PR 2570 B el D AN RSB, 4 2 HUA R AU
BT IRALRT I $E . BRt, HEShZ . KFEAS . KIHBE DT P BENLA BRIRES, AR IR R IR 1
B IR 25277 “ 288 5 - 227 AE LI A0 BEIRTT, 0 SIS0 R I e I R S FH B A iR 2 22
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