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摘  要 

放射性肺炎(Radiation Pneumonitis, RP)作为胸部放疗中常见且严重的毒性反应，限制了放疗剂量的提升

并影响肺癌患者的治疗效果和生存预后，本文基于现有临床研究、专家共识及指南，围绕放射性肺炎的危

险因素展开系统性综述，涵盖临床患者特征、放射剂量学参数、生物标志物及遗传多态性等多维度内容。 
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Abstract 
Radiation pneumonitis (RP), as a common and serious toxic reaction in thoracic radiotherapy, lim-
its the escalation of radiotherapy doses and affects the treatment efficacy and survival prognosis of 
lung cancer patients. This article provides a systematic review of the risk factors for radiation pneu-
monitis based on existing clinical studies, expert consensus, and guidelines, covering multiple dimen-
sions including clinical patient characteristics, radiotherapy dosimetric parameters, biomarkers, 
and genetic polymorphisms. 
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1. 引言 

放射性肺炎(Radiation Pneumonitis, RP)作为胸部肿瘤放疗的常见剂量限制性并发症，其发生机制复杂，

涉及临床特征、放射剂量学参数及分子生物学机制等多维度因素。本文系统梳理了 RP 的临床表现、病理

分期及诊断难点，重点聚焦其危险因素的最新研究进展。首先，基础疾病如间质性肺病显著增加 RP 风

险，而年龄和性别的关联性较弱；肿瘤部位及其对应的放射剂量分布对 RP 风险具有影响。其次，平均肺

剂量(MLD)、肺体积不同剂量暴露指标(V5, V20, V30)及靶区体积(PTV)等剂量学参数被广泛认可为 RP 风

险预测的关键指标，且近年来放射组学和剂量组学技术通过解析空间剂量异质性，促进了个体化剂量约

束的优化。再次，分子生物标志物如趋化因子 CXCL10 和 TGF-β1 基因多态性揭示了 RP 的免疫炎症及遗

传易感性机制，融合临床、影像及分子数据的多模态机器学习模型在 RP 风险评估中表现优异。最后，尽

管当前临床主要采取糖皮质激素等对症治疗，联合免疫及靶向药物的影响及合理的剂量限制策略成为未

来优化放射治疗安全性的关键。未来 RP 研究需加强客观诊断标准的统一、多中心验证的推广及深度学

习可解释性研究，以推动精准防治和个体化治疗方案的实现。 

2. 放射性肺炎的定义及临床特征 

放射性肺损伤(Radiation-Induced Lung Injury, RILI)是胸部肿瘤放疗后常见的并发症，包括两个主要阶

段：早期称为放射性肺炎(Radiation Pneumonitis, RP)，表现为放射线暴露后急性肺组织炎症；晚期称为放

射性肺纤维化(Radiation Fibrosis, RF)，是由慢性肺组织损伤引起的临床综合征。放射性肺炎(RP)是胸部肿

瘤患者接受放疗后常见的不良反应之一，通常在放疗结束后 1 至 6 个月内出现，发病率介于 15%到 45%
之间，包括早期阶段的放射性肺炎和晚期阶段的放射性肺纤维化，早期表现为肺组织发生炎症反应，后

期则出现肺纤维化病理变化，临床上有诊断和治疗挑战[1]。Radiation-induced lung injury (RILI)的早期炎

症反应称为放射性肺炎(radiation-induced pneumonitis, RIP)，通常发生在治疗后的 1 至 6 个月内，后期为

放射性肺纤维化(radiation-induced lung fibrosis, RILF)，为慢性并发症，可导致呼吸困难和呼吸功能下降

[2]。放射性肺损伤(RILI)是胸部肿瘤放疗中的潜在致命和剂量限制性并发症，通常分为早期可逆的放射性

肺炎阶段和不可逆的晚期纤维化阶段，早期检测和干预能够改善患者临床结局[3]。 
RP 的病理生理过程复杂，不同研究对其阶段划分略有差异。有研究将其分为五个阶段：早期阶段(放

疗后几小时至几天内，血管充血、白细胞浸润、I 型肺泡细胞凋亡、促炎细胞因子如 TNF-α、IL-1、IL-6
等释放)、潜伏期阶段(呼吸道杯状细胞增生、纤毛功能受损)、渗出期(临床 RP 阶段，放疗后 3~12 周，肺

泡上皮和内皮脱落、肺泡塌陷、肺毛细血管狭窄及微血栓形成)、中间阶段(成纤维细胞迁移、胶原合成、

TGF-β1 表达增加)和纤维化阶段(放疗后 6 个月及以后，肺间质和肺泡内大量胶原沉积、肺容积减少)。也

有研究将 RILI 的病理过程分为潜伏期(放疗后 1 个月内，I 型肺泡上皮细胞减少、肺泡变性)、急性渗出期

即放射性肺炎(放疗后 3 周至 6 个月，纤维蛋白渗出、II 型肺泡上皮细胞异常、巨噬细胞累积)和纤维化期
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(放疗后 6 个月起，I 型肺泡上皮细胞持续丢失、毛细血管减少、胶原沉积)。早期 RP 的核心病理特征为

肺泡上皮和血管内皮损伤、炎症细胞浸润及促炎细胞因子(如 TNF-α、IL-1、IL-6 等)释放[4]，而晚期 RF
则以成纤维细胞分化为肌成纤维细胞、胶原蛋白沉积及细胞外基质重塑为主要特征，表现为肺组织硬化、

肺容量降低和呼吸功能恶化，最终可能导致呼吸衰竭甚至死亡[5]-[7]。 
临床表现方面，RP 的症状多样，从亚临床的影像学改变到严重需住院治疗的疾病均有，常见症状包

括乏力、干咳(偶见咯血)、不同程度的呼吸困难、轻度发热以及偶发的胸膜疼痛，若受损肺容量较大，可能

进展为呼吸衰竭。放射性肺炎多表现为呼吸困难、咳嗽，重症时可有缺氧甚至呼吸衰竭。放射性肺炎的发

生率因肿瘤部位、影像学变化及症状表现不同而异，胸部恶性肿瘤放射治疗患者中估计发生率为 10%~30%，

且与放射剂量相关[8]。RILF 可能表现为进行性呼吸困难，发展为肺动脉高压和肺心病，甚至导致死亡。

约 10%~20%的患者出现不同程度的 RILI，临床表现包括气短、胸痛、生活质量下降及死亡率增加。 
诊断上，须确认症状与既往放射治疗的时间关系，并排除感染、肿瘤进展、心肺疾病恶化、肺栓塞

及系统药物诱导性肺炎等。临床检查包括胸部 CT，典型影像早期表现为磨玻璃影及网格状浸润，晚期纤

维化表现为局限性实变或线状瘢痕及容积减少；CT 表现可为弥漫性磨玻璃影、实变、牵拉性支气管扩张

和瘢痕样改变，早期多限于放射区域，晚期表现为肺组织收缩和纤维化。肺功能测试如 FEV1、FVC、TLC
下降，DLCO 降低提示肺弥散能力受损，是放射性肺损伤的敏感指标；DLCO 被认为是评估放射性肺损

伤的敏感指标，与临床放射性肺炎评分显著相关。实验室检测如血清 KL-6 蛋白和肺表面活性蛋白 D 可

作为 RIP 的生物标志物，血清降钙素原水平较低有助于与细菌感染鉴别。高迁移率族蛋白 B1 (HMGB1)
作为一种促炎性核蛋白，其血清水平升高与严重(≥3 级) RP 的发生显著相关，提示 HMGB1 可能作为预

测严重放射性肺炎的血液生物标志物[9]。然而，RILI 的诊断存在主观性和挑战，因患者合并感染、肿瘤

进展、心血管疾病或慢性阻塞性肺疾病(COPD)等并发症而难以明确，且评价 RILI 的临床评分系统如

CTCAE 依赖症状和影像学表现，存在主观解释差异，基线病症常缺失，导致诊断和严重程度评估受限[10]。 
放射性肺炎严重程度的分级采用多个标准，常用的包括 RTOG、CTCAE v5.0 和 SWOG 评分系统，

依据症状、影像表现及治疗需求分为 0~5 级；采用美国国立卫生研究院通用不良事件术语标准(CTCAE 
v5.0)分级，RP 早期表现主要为≥2 级临床症状，晚期可能发展为纤维化等不可逆病理改变[11]；CTCAE 
v5.0 分级中，2 级需药物治疗症状，3 级表现为严重影响日常活动需氧疗，4 级为危及生命的呼吸衰竭。 

在特殊人群中，如合并间质性肺疾病(ILD)的肺癌患者，放射性肺炎的诊断和风险评估更具挑战，其

严重 RILI 定义为毒性等级 ≥ 4 级，中位发病时间为放疗开始后 87 天，影像学表现包括放疗区域或双肺

磨玻璃影、网状阴影进展及纤维化，且传统剂量学参数(如肺均剂量 MLD 及各剂量体积 V5、V10 等)可
能与严重 RILI 无关，提示免疫介导的肺泡炎可能是其病理机制[12]。对于接受中度适中分割放射治疗

(hypoRT)的非小细胞肺癌患者，尤其是基线肺功能受损者，早期放射性肺炎表现为肺组织炎症反应，诊

断需结合 CT 扫描及临床评分(CTCAE)，随访期间定期进行胸部 CT 检查，早期毒性监测至治疗后 3~6 个

月[13]。此外，动态评估放疗过程中 CT 影像的放射组学特征(delta radiomics)变化对于早期识别和预测 RP
具有重要价值，体现了早期(放射性肺炎阶段，具有炎症表现)和晚期(放射性肺纤维化，表现为不可逆纤

维化病理)的进展过程中的病理变化与影像学表现的关系[14]。 

3. 放射性肺炎的危险因素分析 

3.1 临床相关危险因素 

部分研究聚焦于剂量体积参数与放射性肺炎(RP)的关系，而未直接探讨患者基础疾病、年龄、性别或

肿瘤部位等临床因素的影响[15]。在基础疾病方面，间质性肺病(ILD)是已明确的重要危险因素。一项针
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对 305 例局部晚期非小细胞肺癌患者的回顾性分析显示[16]，ILD 患者发生严重 RP 的风险显著升高(OR: 
4.122, P = 0.013)，是严重 RP 的独立预测因子，提示临床在制定放疗方案时需更严格限制此类患者的肺剂

量。而慢性阻塞性肺疾病(COPD)对 RP 发生风险的影响尚不明确，例如 Masayuki Fujiwara 等[17]纳入 50
例非手术 NSCLC 患者(排除 ILD 病史)的研究发现，COPD 与放射性肺炎的发生未显示显著相关性。 

关于年龄与性别因素，现有研究结果多显示其与 RP 发生风险无显著关联。Masayuki Fujiwara 等[17]
的研究纳入年龄范围 54~89 岁、以男性为主(40 例男性，10 例女性)的患者群体，统计分析显示年龄、性

别均未对放射性肺炎的发生构成显著影响；另一项研究虽报道了患者年龄中位数为 65 岁、男性占比 79.3%，

但未发现年龄或性别与严重 RP 风险存在相关性。 
肿瘤部位对 RP 发生风险的影响值得关注。Masayuki Fujiwara 等[17]的研究指出，原发性肺癌患者发

生≥2 级 RP 的比例(31.4%)显著高于复发癌患者(0%)。此外，肿瘤所在侧别可能通过影响肺组织的受照剂

量间接关联 RP 风险，例如同侧肺接受 ≥ 20 Gy 体积百分比(ipsilateral V20) > 44.8%时，严重 RP 发生风

险显著增加，这也从剂量参数角度反映了肿瘤部位与 RP 风险的潜在关联。 

3.2. 放射剂量学参数及其作用 

放射剂量学参数是预测放射性肺炎(RP)发生风险的关键因素，多项研究表明平均肺剂量(MLD)、肺部

不同剂量暴露体积(如 V12.5、V20、V30)及靶区体积(PTV)等与 RP 风险显著相关，并确定了相应的临床

参考阈值。在早期肺癌立体定向消融放疗(SABR)中，对 1266 例患者的研究显示，MLD、肺部接受 20 Gy
剂量体积占比(V20)、接受 12.5 Gy 剂量体积占比(V12.5)及 PTV 均与 2 级及以上 RP 显著相关；单变量分

析中，较大 PTV、较高 MLD、V20 和 V12.5 均增加风险，多变量回归进一步证实 MLD 是独立预测因子

(OR = 1.957)，ROC 曲线确定的最佳阈值包括 MLD 3.7 Gy、V20 4.6%、V12.5 9.5%及 PTV 27.15 cc，超过

这些阈值时 RP 风险显著升高[18]。 
在非小细胞肺癌(NSCLC)放疗中，多中心研究构建的临床模型纳入 V20、V30 和 MLD，三者均与≥2

级 RP 发生风险呈显著相关(P < 0.05)，且以总肺减去 PTV(TL-PTV)作为感兴趣区域时，模型对 RP 的预

测性能优于其他靶区；不过传统剂量学参数单独预测的ROC曲线下面积(AUC)相对有限(训练组约0.736)，
提示其需结合剂量分布特征以提升准确性[19]。针对 III 期 NSCLC 患者的三维适形放疗(3D-CRT)或体积

调强弧形治疗(VMAT)研究则强调了剂量分布异质性及 PTV 相关区域的重要性，通过提取 PTV 及其周围

包壳组织(如 PTV + 10 mm、PTV + 20 mm)和肺部 5~60 Gy 剂量亚区的多区域放射组学特征，发现 MLD
作为临床变量纳入模型时，结合多区域特征的集成学习模型(SurvBETA)能更精细反映剂量阈值与 RP 风

险的复杂关系，验证队列 C-index 达 0.83，表明 PTV 及其周围组织的剂量分布特征对 RP 预测具有重要

价值[20]。 
在接受诱导同步放化疗的 NSCLC 患者中，MLD 和 V20 同样是≥2 级 RP 的显著预测因素，多因素分

析显示 MLD 为独立危险因素(P = 0.026)，6 个月内 ≥ 2 级 RP 累积发生率在 MLD ≥ 10 Gy 组(45.6%)显著

高于 MLD < 10 Gy 组(15.7%)，且 V20 ≥ 21%也与风险增加相关，提示该治疗模式下需严格控制 MLD 在

10 Gy 以下[21]。此外，针对严重 RP (3 级及以上)的研究发现，肺 V30 (超过 30 Gy 照射体积百分比)、全

肺体积及节段支气管最大剂量与风险显著相关，多元 Logistic 回归确定节段支气管最大剂量 23.85 Gy 为

最佳阈值，超过此剂量时严重 RP 概率显著增加，提示节段支气管剂量限制应与传统剂量指标(如 MLD、

V20、V30)及 PTV 共同纳入放疗方案设计[22]。 

3.3. 分子生物学与免疫炎症指标 

分子生物学与免疫炎症指标在放射性肺炎(RP)的发病机制及风险预测中具有重要作用，主要涉及炎
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症因子的动态变化及遗传分子标志物的个体差异。炎症因子方面，趋化因子家族成员如 CXCL10 的表达

水平与 RP 发生密切相关。2025 年，Xiao 等[23]通过一项前瞻性、多中心的队列研究发现，肺癌患者在

接受免疫检查点抑制剂(ICI)治疗后，放疗前及放疗过程中多个时间点的血浆 CXCL10 水平均为 RP 的独

立危险因子，具体表现为放疗前(HR 1.29)、放疗 2 周(HR 1.28)及放疗 4 周(HR 1.65)的血浆 CXCL10 水平

与 RP 风险显著关联，且动态监测 CXCL10 水平较单一时间点测定更能准确评估 RP 风险。该研究还指

出，ICI 治疗前患者的炎症因子(包括 CCL3、CCL7、CXCL10 和 BMP4 等)水平升高，提示免疫治疗激活

的免疫炎症状态可能促进 RP 的发生，揭示了 CXCL10 作为肺部免疫炎症生物标志物参与放疗与免疫治

疗联合诱导肺部炎症反应的机制。 
遗传分子标志物方面，转化生长因子 β1 (TGF-β1)的基因多态性与 RP 易感性相关。Qin 等[24]的荟萃

分析发现，TGF-β1 869T/C (rs1982073)多态性与 RP 风险显著相关，T 等位基因可显著增加 RP 风险，尤

其在白种人群和肺癌患者中表现明显；而携带 C 等位基因者相较 TT 基因型，在不同亚组(包括人群来源、

医院来源对照组)中 RP 风险显著降低。该多态性导致蛋白质氨基酸替换，可能改变 TGF-β1 的生物活性

与功能，影响细胞修复动力学，进而影响放射性肺炎的易感性。此外，研究还发现该多态性对 RP 危险性

的影响存在人群差异，在白种人群中较为显著，而在亚洲人群中无显著相关性，提示遗传背景可能影响

RP 的发病机制。 
在临床预测应用中，炎症相关及分子层面信息与其他临床参数的结合有助于提升 RP 预测效能。Nie

等[25]在建立肺癌患者接受免疫治疗后胸部放疗发生症状性(≥2 级) RP 的预测模型时发现，融合炎症相关

及分子层面信息、放射组学特征与临床剂量学参数后，模型预测准确性显著提高，最佳模型(融合手工放

射组学 + ResNet50 深度学习放射组学 + 临床特征)预测症状性 RP 的 AUC 在训练组和测试组分别达到

0.936 和 0.946，表明分子生物学与免疫炎症指标在 RP 风险分层及个体化治疗策略制定中具有重要的临

床价值。 

4. 放射性肺炎的风险预测模型 

4.1. 传统统计模型 

传统统计模型在放射性肺炎(RP)预测中主要依赖回归分析和临床评分系统。其中，基于剂量体积直

方图(DVH)参数和正常组织并发症概率模型(NTCP)的方法是经典代表，但其存在显著局限性：无法获取

肺组织的空间剂量分布信息，忽略个体肺组织放射敏感性差异，且难以充分描述 RP 发生的多因素交互

作用；同时，传统模型依赖的临床症状、影像学及实验室检查结果主观性较强，易受解读差异影响，而

回归分析等统计方法未能有效整合基因、免疫因子及影像等多模态数据，导致预测准确性降低，难以满

足个体化预测需求[26]。实际研究表明，仅采用临床特征、剂量学因素或二者结合的传统模型预测效能有

限，其准确率分别为 63.3%、70%和 70%，对应的 ROC 曲线下面积(AUC)分别为 0.73、0.53 和 0.72 [27]。
此外，传统 4DCT 功能成像方法(如 HU 密度变化法)存在数值不稳定、重复性差等问题，基于传统剂量学

参数的预测性能亦受限，即使结合逻辑回归等传统统计模型，其预测效果仍不及整合新型影像特征的机

器学习模型，且受限于样本量较小和标准化验证不足等问题[28]。 

4.2. 基于影像组学/剂量组学的机器学习模型 

多模态机器学习模型通过整合临床参数、影像组学、剂量组学及深度学习特征，显著提升了放射性

肺炎的预测性能。2025 年，Xun Wang 等[19]构建的深度学习放射组学及剂量组学列线图(DLRDN)模型，

整合了临床独立预测因子(V20、V30、平均肺剂量 MLD)、从肺-计划靶区差异区域(TL-PTV)提取的放射

组学/剂量组学特征(经 LASSO 回归筛选出 7 个 RD 特征)及深度学习特征(3D ResNet50 架构提取的 10 个
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DL 特征)，在训练、内部及外部验证队列中的 AUC 分别达到 0.891、0.825 和 0.801，显著优于仅含临床

特征的模型。 
同期，Yao Ai 等[29]基于 PET/CT 影像组学(CT、PET 及融合 PET/CT 特征)、剂量组学特征及深度学

习特征(ResNet 架构)，采用极端梯度提升(XGBoost)构建了多模态融合模型(R + D + DL)，该模型在训练

集、内部验证集及外部验证集的 AUC 分别为 0.93、0.92 和 0.89；进一步结合性别、自适应放疗(Adaptive 
RT)及 SUVp90 构建的列线图，其外部验证 AUC 提升至 0.94，且 SHAP 效应值分析显示深度学习特征在

总体贡献中占比最高。 
针对体积调制弧形放疗(VMAT)数据，Wanyu Su 等[30]的研究显示，融合放射组学与剂量组学特征(R + 

D 模型)的预测性能优于单模态模型，内验证中 AUC 最高达 0.84 (支持向量机、XGBoost 及逻辑回归三种

机器学习方法中)；基于 CT 图像(DLR)和剂量分布图像(DLD)构建的深度学习模型中，DL (R + D)模型内

验证 AUC 达 0.86；而集成放射组学、剂量组学与深度学习特征的 R + D + DL (R + D)模型在外部验证中

AUC 为 0.81，准确率、灵敏度及特异度分别为 0.81、0.84 和 0.67。 
在多区域特征集成方面，Daisuke Kawahara 等[20]提出的 SurvBETA 模型，创新性地从 40 个解剖及

剂量分层区域(含肿瘤体积、周围壳层、正常肺亚区及 5~60 Gy 剂量亚区)提取 837 个影像组学特征，生成

4 个区域特异性 Radiomic 评分(Radscore_Tumor, Radscore_Lung, Radscore_Dose, Radscore_Shell)，并通过

引入多头注意力机制的堆叠元学习器动态融合五个基础机器学习模型(随机森林、梯度提升机等)的输出，

联合临床变量后，SurvBETA + 临床模型在训练队列的 C-index 达 0.87，外部验证队列 C-index 为 0.83，
显著优于传统临床模型(C-index 0.54)及普通集成模型(C-index 0.65)，且高、低风险组的放射性肺炎累积发

生率在 Kaplan-Meier 曲线上具有明显分离(log-rank P < 0.01)。 

4.3. 多模态融合与深度学习模型 

多模态融合与深度学习模型在放射性肺炎预测中展现出良好的应用前景，不同研究通过整合多种数

据类型和优化算法框架提升了预测性能。2024 年，Zhi Chen 等[26]对 9 项研究共 1406 例肺癌患者进行系

统评价和 Meta 分析，发现融合多模态特征(包括临床数据、基因组信息、影像学特征、细胞因子及剂量

学因素)的机器学习模型在预测中重度放射性肺炎方面表现优异，其综合灵敏度为 0.74，特异度为 0.91，
诊断比值比(DOR)达 30.73，曲线下面积(AUC)高达 0.93；研究还指出，通过选择多个机器学习算法框架

并进行竞优组合可显著提升模型可靠性和准确度，且在 IMRT 放疗模式下模型性能更佳(AUC 可达 0.94
以上)，表明此类模型能更全面捕捉放射性肺炎发生的复杂生物学机制，为个体化精准医疗提供了强有力

的风险预测工具。 
针对接受免疫检查点抑制剂(ICIs)后胸部放疗的肺癌患者，2024 年，Tingting Nie 等[25]创新性地结合

临床/剂量学因素与手工设计(HCR)及深度学习(DLR)放射组学特征构建症状性(≥2 级)放射性肺炎预测模

型。该研究在多个感兴趣区域(ROI) (包括肿瘤粗体积 GTV、计划肿瘤体积 PTV 及 PTV 减去 GTV 的区域

PTV-GTV)提取 107 个手工设计放射组学特征和基于预训练 3D 残差网络(ResNet)的深度学习放射组学特

征，构建了 HCR 模型、融合 HCR 模型、融合 HCR + ResNet 模型及融合 HCR + ResNet + 临床模型，并

通过 5 折交叉验证评估性能。结果显示，手工设计特征模型的 AUC 范围为训练集 0.740~0.808、测试集

0.740~0.802；添加深度学习特征后，AUC 提升至训练集 0.826~0.898、测试集 0.821~0.898；而融合 HCR 
+ ResNet + 临床/剂量学参数的模型性能最优，训练集 AUC 达 0.936，测试集 AUC 达 0.946，提示集成多

模态放射组学特征和临床信息的预测模型可为该类患者提供准确的放射性肺炎风险评估，支持个体化治

疗决策和早期干预，具有重要的临床应用潜力，但需通过前瞻性研究进一步验证。 
Jang Hyung Lee 等[31]构建的 MergeNet 深度学习模型则专注于整合影像与非影像数据，该模型通过
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融合卷积神经网络(CNN)和全连接层，同时处理患者治疗前的三维肺部 CT 影像数据(基于 3D ResNet-10
网络结构)及 27 项临床、剂量学和实验室特征，实现多模态信息的综合利用。经四折交叉验证评估，

MergeNet 模型的 AUC 为 0.689，显著优于传统机器学习模型如支持向量机(SVM, AUC = 0.525)、轻梯度

提升机(LGBM, AUC = 0.541)及仅使用 CT 数据的卷积神经网络(AUC = 0.550)；模型采用多层 Dropout 层
防止过拟合，并通过调整输入 CT 体积大小(从 32 像素立方体扩展到 96 像素立方体)优化性能，结果显示

较大范围的 CT 体积可能保留更多与放射性肺炎相关的结构与组学信息。尽管 MergeNet 表现优于对照模

型，但当前性能仍未达到临床应用要求，研究提出未来需通过积累更大规模数据集、引入预训练权重和

增强计算资源以进一步提升模型的预测准确性和泛化能力。 
在放射性肺炎(RP)预测的机器学习模型发展中，多模态特征融合(如剂量组学和影像组学结合)显著提

升了预测性能[32]，但模型的“黑箱”特性可能限制其临床转化。为此，引入可解释性技术对增强模型可

信度和临床适用性至关重要。在 RP 预测领域，部分研究已采用解释性人工智能(XAI)技术，如 SHAP 
(Shapley Additive Explanation)，用于解析机器学习模型的决策机制[33]。具体而言，SHAP 通过量化各输

入特征对模型预测结果的贡献度，能够直观揭示关键剂量参数(如肺的平均剂量、受低剂量照射的体积)在
RP 预测中的重要作用，帮助临床医生理解模型为何做出特定风险预测。这种技术的应用不仅提升了模型

的临床可解释性，还为个体化放疗计划优化提供了依据——通过识别对 RP 风险影响显著的剂量特征，

医生可针对性调整放疗方案，降低高风险患者的 RP 发生概率，推动精准放疗的实施。 

5. 放射性肺炎防治策略及个体化治疗展望 

5.1. 临床干预与药物治疗进展 

目前，放射性肺炎(RP)的临床治疗仍以对症支持为主，常用治疗手段中，糖皮质激素是主要药物。然

而，现有研究显示，针对糖皮质激素的具体使用方案(如剂量、疗程等)尚未在文献中详细描述，其应用更

多依赖临床经验性对症处理。 
并发症管理方面，随着综合治疗策略的应用，多种联合治疗方案可能增加 RP 的发生风险，需加强临

床监测与管理。免疫检查点抑制剂(ICI)联合胸部放疗虽显著提高肺癌患者总体生存率，但会增加 RP 风

险，尤其是 3 级以上 RP 的发生率。抗血管生成药物与放疗联合使用时，不同药物的肺部毒性风险存在差

异：贝伐单抗联合放疗可导致严重 RP 及肺部不良事件发生率过高，临床不推荐此联合方案；而恩度星和

安罗替尼等药物联合放疗的安全性相对较好，但仍需密切监测相关不良反应。此外，联合 EGFR-TKIs (尤
其是第三代奥希替尼)治疗的非小细胞肺癌患者 RP 发生率较高，临床应增强监测和风险评估，特别关注

用药时间重叠长度对 RP 风险的影响。对于免疫检查点抑制剂(PD-1/PD-L1 抑制剂)联合放疗，尽管总体

治疗安全性可控，但治疗的时序和间隔时间是影响安全性的关键因素，延长治疗间隔(如超过 90 天)能降

低 RP 风险[34]。 
当前 RP 治疗手段存在一定局限性。首先，传统剂量学参数(如平均肺剂量 MLD、V20、V30 等)虽与

RP 相关，但单独预测性能有限，需与临床参数、影像组学特征等联合使用以提升预测准确性，从而优化

放疗剂量设计，减少肺组织暴露。其次，精准识别高危患者并早期干预仍是难点，而基于外周血 RNA 测

序数据构建的基因组规模通量分析预测评分系统(如一致性达 81.25%、相关系数 rho = 0.915 的模型)或整

合手工放射组学与深度学习特征的多参数模型(AUC 高达 0.946)，虽能在放疗前准确预测 RP 发生风险，

为个体化干预提供工具，但目前尚未广泛应用于临床治疗决策中[35]。此外，在药物预防方面，尽管胸腺

素 α1 和吡非尼酮等药物的临床研究正在开展，有望成为未来防治策略的重要组成部分，但目前仍缺乏成

熟的循证医学证据支持其常规应用[25]。 
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5.2. 预防措施与剂量限制优化 

放射治疗剂量规划中，组织保护策略的核心在于通过优化剂量参数限制正常肺组织的辐射暴露，而

剂量约束指标的制定则依赖于对剂量学参数与放射性肺炎(RP)风险关系的深入分析。针对早期肺癌患者

的 SABR 治疗研究显示，RP 发生风险与计划靶区体积(PTV)、平均肺剂量(MLD)、肺部接受 20 Gy 剂量

体积比(V20)和 12.5 Gy 剂量体积比(V12.5)等多项剂量学参数显著相关，其中 MLD 是预测≥2 级 RP 的独

立剂量相关因素，建议将 MLD 控制在 3.7 Gy 以下以降低风险；ROC 曲线分析进一步确定了关键剂量限

制阈值，包括 PTV 27.15 cc、V20 4.6%和 V12.5 9.5%，超过这些阈值时≥2 级 RP 发生率显著升高[18]。在

非小细胞肺癌术后放疗中，V5 (肺容积接受 5 Gy 剂量的百分比)和 V20 被证实为≥2 级 RP 的独立预测因

子，其最佳截断值分别为 V5 > 23%和 V20 > 8%；研究同时发现，当 V5 < 30%、V20 < 13%及 MLD < 751.2 
cGy 时未观察到 3 级以上 RP 的发生，且右侧肺切除患者对放射剂量的耐受性较左侧更低，提示术后放疗

需根据肺切除侧别制定更严格的剂量限制[36]。 
然而，传统基于剂量–体积直方图(DVH)的参数虽常用于 RP 预测，但其仅反映剂量的累积，忽略了

空间剂量分布的异质性和局部剂量梯度，限制了预测性能。为克服这一局限，新兴研究引入放射组学、

剂量组学及深度学习技术以获取更全面的空间剂量信息。例如，有研究构建了联合深度学习、放射组学

和剂量组学特征的综合预测模型(DLRDN)，结合 V20、V30 和 MLD 等关键剂量参数，实现了对≥2 级 RP
的高准确度预测[19]；针对接受体积调强旋转放疗(VMAT)的肺癌患者，通过从 3D 剂量分布图像中提取

剂量组学特征，联合放射组学特征的机器学习模型表现出优于单独使用任一组学特征的预测性能，进一

步结合深度学习提取的影像特征后，模型在验证队列中的 ROC 曲线下面积(AUC)高达 0.81，显著提升了

RP 风险评估的准确性[30]。此外，基于多区域影像组学特征和注意力机制集成学习的 SurvBETA 模型，

通过对 40 个解剖及剂量分层区域提取特征并构建区域特异性放射组学评分，采用动态加权策略整合多模

型输出，在独立外部验证中表现优异(C-index 0.83)，表明考虑肿瘤邻近区域及不同剂量子区的异质性，

有助于制定更精准的个体化剂量约束指标[20]。这些研究结果共同提示，结合传统剂量参数与新型空间剂

量分析技术，可为优化组织保护策略和剂量限制提供更全面的依据，助力实现放射性肺炎的个体化预防。 

5.3. 未来研究方向与技术挑战 

未来放射性肺炎(RP)的研究需聚焦于关键科学问题与技术瓶颈的突破，以推动其防治策略的精准化

与临床转化。在客观诊断标准方面，当前 RP 的诊断仍面临标准化不足的挑战，现有诊断方法如剂量体积

直方图(DVH)参数缺乏对肺组织空间组织学信息的捕捉，且不同研究中预测事件的诊断标准存在高异质

性，导致模型间可比性差，亟需建立统一的客观诊断标准与特征提取流程以提升研究的可重复性。深度

学习技术结合多模态医学影像特征与剂量学参数的多层次融合策略，有助于更客观、准确地捕捉肺组织

的空间异质性与炎症状态，为 RP 的早期客观诊断提供了新思路。 
预测模型的多中心验证是实现临床转化的关键环节。尽管多模态机器学习模型在 RP 预测中表现出

优异性能，如结合遗传学、影像学及细胞因子等数据的模型准确率可达 75% (AUC 0.93) [26]，但目前多

数模型仍处于研究阶段，其泛化能力需通过多中心验证进一步确认。现有研究中多中心验证的数量有限，

且部分外部验证队列样本量较小，难以充分评估模型在不同临床场景下的适用性，未来需推动更大规模、

跨机构的多中心合作，以完善模型推广的统计学基础与技术适用性验证。 
精准医学在 RP 管理中的核心在于通过个体化风险评估实现分层干预，多模态数据融合是实现这一

目标的关键技术路径。研究表明，整合 PET/CT 放射组学、剂量组学特征与临床预测因子(如性别、适应

性放疗、SUVp90 值)构建的列线图模型，其预测效能显著提升(AUC 0.94) [29]，而规范化影像组学流程及
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模型开发标准，将进一步促进预测模型从实验室研究向临床实践的转化，为实现 RP 的个体化预防与治

疗决策提供有力支持[32]。同时，需关注模型“黑箱”性质带来的临床解释局限，未来研究应探索可解释

性更强的算法框架，以平衡预测准确性与临床实用性。 

6. 总结 

放射性肺炎作为胸部肿瘤放疗中的主要剂量限制毒性，表现出复杂的病理阶段和多样的临床表现，

早期以肺泡上皮及血管内皮损伤及炎症因子释放为核心，晚期则表现为不可逆纤维化及肺功能衰退。临

床诊断依赖影像学特征、肺功能检测及生物标志物，但因并发症及临床评分主观性影响，诊断具有一定

挑战性。 
危险因素分析表明，基础肺部疾病尤其是间质性肺病显著增加放射性肺炎风险，而年龄和性别影响

不显著；肿瘤部位及侧别通过影响肺组织剂量分布间接关联风险。放射剂量学参数是目前预测放射性肺

炎发生的核心指标，其中平均肺剂量(MLD)及不同剂量体积(如 V20、V30)在多个研究中为独立危险因素，

且剂量阈值的细化有助于剂量限制优化。此外，分子层面炎症因子(如 CXCL10)及基因多态性(如 TGF-β1 
rs1982073)成为潜在的预测生物标志物，促进了风险分层的个体化发展。 

预测模型的构建趋向于多模态数据融合，集成影像组学、剂量组学、深度学习特征与临床信息，通

过机器学习及集成算法提升预测准确性和泛化能力。多中心验证的初步成果支持该方向的临床应用潜力，

但模型的解释性和标准化流程仍有待加强。新兴影像技术与分子探针为放射性肺炎的早期无创检测及动

态监测提供了补充手段，结合多模态信息构建的诊断模型表现出较高的灵敏性与特异性。 
防治策略方面，仍以糖皮质激素为主的药物治疗结合对症支持为基础，针对联合治疗增加的放射性

肺炎风险需强化监测和管理。放疗剂量规划逐渐从传统剂量–体积指标向结合空间剂量分布特征的多组

学融合方向发展，有望实现更精细的个体化剂量约束，降低正常肺组织毒性。未来研究需在客观诊断标

准、多中心大规模验证及多模态融合模型的可解释性上下功夫，促进精准医学框架下放射性肺炎的风险

评估、预防及个体化治疗策略的科学发展。 
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