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摘  要 

动脉瘤性蛛网膜下腔出血(aSAH)因其突发性和高致残率，成为神经科临床中的重大挑战，准确的预后评

估对优化治疗方案和提高患者生活质量具有重要意义。近年来，影像组学作为一种结合高通量影像特征

提取与先进机器学习算法的新兴技术，为aSAH的预后预测提供了新的视角和工具。当前研究主要集中于

利用影像组学从CT、MRI等影像数据中提取多维度特征，并通过构建机器学习模型实现对患者预后风险

的精准评估。然而，影像组学方法在aSAH领域仍面临特征稳定性、模型泛化能力及临床转化等多重挑战。

本文系统综述了基于影像组学的特征提取技术、模型构建策略及其在临床应用中的研究进展，旨在促进

该技术在aSAH预后预测中的规范化应用，推动个体化医疗的发展，为未来临床决策提供有力支持。 
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Abstract 
Aneurysmal subarachnoid hemorrhage (aSAH) poses a significant challenge in neurological clinical 
practice due to its sudden onset and high disability rate. Accurate prognosis assessment is critical for 
optimizing treatment strategies and improving patients’ quality of life. In recent years, radiomics, an 
emerging technology that combines high-throughput imaging feature extraction with advanced ma-
chine learning algorithms, has provided novel perspectives and tools for predicting aSAH prognosis. 
Current research primarily focuses on utilizing radiomics to extract multidimensional features from 
imaging data such as CT and MRI, and constructing machine learning models to achieve precise as-
sessment of patients’ prognostic risks. However, radiomics approaches in the field of aSAH still face 
multiple challenges, including feature stability, model generalizability, and clinical translation. This 
article systematically reviews the feature extraction techniques, model construction strategies, and 
research progress in clinical applications of radiomics, aiming to promote the standardized use of this 
technology in aSAH prognosis prediction, advance the development of personalized medicine, and 
provide robust support for future clinical decision-making. 
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1. 引言 

动脉瘤性蛛网膜下腔出血(aSAH)是一种突发性脑血管疾病，因其高致残率和高死亡率而备受关注。

aSAH 主要由脑动脉瘤破裂引发，导致脑内蛛网膜下腔出血，进而产生一系列严重的临床后果。早期对患

者预后的准确评估对于指导临床治疗决策、优化个体化治疗方案具有重要意义。传统的预后评估方法通

常依赖于临床评分系统(如 Hunt-Hess 分级、WFNS 分级)和常规影像学检查(如 CT、MRI)，但这些方法存

在一定的主观性和局限性，难以充分反映病情的复杂性和多维度特征，导致预测准确性不足[1] [2]。 
近年来，随着医学影像技术和计算科学的发展，影像组学(Radiomics)作为一种新兴的影像定量分析

技术，开始在 aSAH 预后评估中发挥越来越重要的作用。影像组学通过对医学影像数据进行高通量自动

化特征提取，量化影像中的形态学、纹理学和灰度分布等复杂信息，结合机器学习等人工智能算法，能

够捕捉传统评估难以识别的细微变化，从而实现更为精准的患者风险分层和预后预测[3] [4]。 
目前，多项临床研究和系统综述表明，基于影像组学的模型在预测 aSAH 患者的功能结局、并发症

发生(如延迟性脑缺血、脑水肿等)以及术后恢复方面具有较高的准确性。例如，通过融合患者临床信息与

术前、术后非增强 CT 影像数据构建的深度学习模型，显著提升了 3 个月功能预后的预测能力，AUC 达

到 0.92，优于单一临床或影像指标[3]。此外，基于 CT 影像的放射组学评分系统也能有效区分预后好坏，

辅助临床医生进行早期风险评估和治疗方案制定[4] [5]。 
此外，aSAH 的病理生理机制复杂，涉及脑血管痉挛、血脑屏障破坏、炎症反应和氧化应激等多方面。

影像组学结合分子生物标志物(如血清铁死亡相关蛋白、血脑屏障通透性指标等)研究，为深入理解病情进

展和预后影响因素提供了新的视角[6] [7]。例如，脑脊液中高迁移率族蛋白 B1 (HMGB1)和可溶性糖基化
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终产物受体(sRAGE)水平的动态变化与 aSAH 患者的病情严重程度及预后密切相关，提示结合影像组学

与生物化学指标有助于构建综合预测模型[8]。 
aSAH 并发症的预测研究正逐步从单一指标、单一结局模型向多维度、动态整合的方向发展。本文在

综述现有预测模型的基础上，提出应系统性整合多模态数据，从整体视角构建预测框架，以更全面识别

高风险患者并指导临床干预。 

2. 影像组学技术在 aSAH 中的应用基础 

2.1. 影像数据的获取与预处理 

动脉瘤性蛛网膜下腔出血(aSAH)的影像组学研究依赖于多种影像模态的获取，常用的包括非增强 CT 
(NCCT)、磁共振成像(MRI)、CT 血管造影(CTA)等。NCCT 因其快速、广泛可用且对急性出血敏感，成

为 aSAH 早期诊断的首选工具。例如，一项基于 NCCT 的放射组学研究利用 PyRadiomics 提取基线 CT 图

像的特征，有效预测延迟性脑缺血(DCI)，显示了 NCCT 在早期预后评估中的优势[9]。CTA 则通过血管

成像准确定位动脉瘤及血管形态，为动脉瘤破裂风险评估及术前规划提供关键数据。MRI 尤其是高分辨

率 MRI (HR-MRI)和 4D-Flow MRI，因其优异的软组织对比和血流动力学信息，常用于评估动脉瘤壁稳定

性和血流特征，辅助预测动脉瘤的不稳定性[10] [11]。 
影像数据的预处理是影像组学研究的重要环节，主要包括图像标准化、去噪、配准和分割。图像标

准化主要解决不同设备、参数和患者间的图像差异，确保后续特征提取的一致性和可比性。去噪技术通

过滤波或深度学习方法减少图像噪声，提升信噪比，从而增强特征的稳定性和可靠性。如最新研究中，

CTA 图像通过创新去噪算法显著提升了动脉瘤形态特征的清晰度和边缘识别准确率，进而提高了模型的

预测性能[12]。图像配准则实现多时相或多模态图像的空间对齐，保障对应解剖结构精确匹配。分割技术

则用于提取感兴趣区域(ROI)，如动脉瘤、血肿或脑组织区域，是特征提取的基础。 
自动化和半自动化分割技术在 aSAH 影像分析中应用日益广泛。传统手工分割耗时且受主观因素影

响较大，而基于机器学习和深度学习的方法能够实现快速且较高精度的分割从而量化形态学风险，例如：

自动分割技术能够精确提取传统描述性评分(如大小、纵横比)之外的复杂三维形态特征，例如瘤壁不规则

度、空间曲率变化等。这些通过算法自动识别的细微形态学差异，可能与动脉瘤壁的生物力学特性和炎

症浸润程度相关。研究发现，融合了此类自动提取的多维形态特征、血流动力学模拟参数及患者临床信

息的模型，在预测动脉瘤破裂风险时表现出色(AUC 最高达 0.908) [13]。半自动化方法结合人工校正，兼

顾效率与准确性，适合临床实际应用。当前，虽然自动分割技术取得了显著进展，但仍面临血肿形态复

杂、多发动脉瘤及影像质量波动等挑战，未来需进一步优化算法和多模态融合策略，以提升分割的可靠

性和泛化能力。 

2.2. 特征提取与选择方法 

影像组学的核心环节之一是从预处理后的影像数据中提取丰富的定量特征。常用的特征类型包括形

状特征、纹理特征、强度特征及高阶统计特征。形状特征主要描述动脉瘤及出血区域的几何形态，如体

积、表面积、边缘复杂度等，这些特征反映结构的大小及形态学变化，对评估动脉瘤破裂风险及预后具

有重要意义[11]。高阶统计特征通过滤波、变换等方法进一步提取潜在的复杂信息，如小波变换特征和局

部二值模式特征，能够揭示影像中难以察觉的微观差异。 
然而，大量提取的特征中存在冗余和噪声，直接使用可能导致模型过拟合和性能下降。因此，特征

选择技术成为提高模型稳定性和泛化能力的关键步骤。常用的特征选择方法包括 LASSO 回归、主成分分

析(PCA)和递归特征消除(RFE)。LASSO 通过 L1 正则化实现特征稀疏化，有效筛选对预测目标最有贡献
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的特征，已被多项 aSAH 预后研究采用[4] [9]。 
不同类型的特征在 aSAH 预后预测中贡献不一。形状特征反映动脉瘤的几何异常，与破裂风险密切

相关[11]；纹理特征则揭示了血肿及脑组织的微观结构变化，能够辅助判断血肿扩散和脑损伤程度[14]。
强度与高阶特征多用于反映脑组织灌注及缺血状态，关联延迟性脑缺血等并发症[9]。这些影像特征的生

物学意义在于反映了病理生理过程中的组织结构和功能改变，为临床预后提供量化指标。 

2.3. 机器学习与深度学习模型构建 

基于影像组学特征，机器学习(ML)和深度学习(DL)模型被广泛应用于 aSAH 预后预测。常见的机

器学习算法包括支持向量机(SVM)、随机森林(RF)和梯度提升机(GBM)等。这些方法能够处理高维特征

数据，通过构建分类或回归模型，实现对患者预后状态的预测。例如，一项研究中，SVM 模型结合影

像组学特征及临床变量，构建了预测延迟性脑缺血的纳米图，验证集 AUC 达到 0.831，表现优异[9]。
随机森林和梯度提升机因其集成学习的特性，能够有效减轻过拟合风险，提升模型稳定性，也被多项

研究采用[15]。 
深度学习模型，尤其是卷积神经网络(CNN)和循环神经网络(RNN)，在自动特征学习和预测方面展现

出显著优势。CNN 能够自动从原始影像中学习多层次的特征表示，减少对手工特征提取的依赖，提升预

测准确率。一项基于多模态特征融合的研究中，深度学习模型通过处理 CTA 图像，成功提升了动脉瘤破

裂风险和临床分级的预测性能，AUC 最高达到 0.908 [12]。RNN 适合处理时间序列数据，有助于预测延

迟性脑缺血等动态变化的病理过程。传统预测模型多依赖于专家筛选的有限临床特征，深度神经网络

(DNN)在预测 aSAH 患者术后不良结局中表现突出，一项具体研究开发了一个可解释的机器学习模型，

旨在精准预测 aSAH 患者血管内弹簧圈栓塞术后 6 个月的不良结局(改良 Rankin 量表评分 3~6 分)。该模

型整合了入院时的多维度数据，包括人口统计学、临床评分、实验室检查(如反映炎症与凝血状态的指标)
以及动脉瘤形态学特征。首先，模型自动处理并学习这些异构特征之间的非线性关系与高阶交互作用，

避免了传统逻辑回归等方法对特征独立性和线性关系的严格假设。其预测性能显著，受试者工作特征曲

线下面积(AUC)达到 0.905，超越了常规预测方法。更重要的是，研究通过 SHAP (SHapley Additive exPla-
nations)值对模型决策进行解释，增强了临床信任度。SHAP 分析直观揭示了各个特征对个体患者预测结

果的贡献度与方向[16]。 
模型性能的评价通常采用准确率、AUC (曲线下面积)、灵敏度和特异性等指标。AUC 反映模型区分

能力，是评价预后预测模型的关键指标。例如，多个研究中基于影像组学的机器学习模型 AUC 多在 0.75
以上，结合临床变量后可提升至 0.85 甚至更高[4] [14]。交叉验证技术(如 10 折交叉验证)被广泛用于模型

的稳定性评估，防止过拟合，保证模型在不同数据集上的泛化能力[4]。 
此外，模型的可解释性逐渐受到重视。采用 SHAP 等解释方法能够揭示特征对预测结果的贡献，帮

助临床医生理解模型决策过程，提高模型的临床接受度[15] [16]。 

3. 基于影像组学的 aSAH 预后预测临床研究进展 

3.1. 早期预后预测模型的研究现状 

近年来，基于影像组学构建的动脉瘤性蛛网膜下腔出血(aSAH)早期预后预测模型逐渐增多，研究者

通过从 CT、CTA 等影像中提取丰富的定量特征，结合临床变量，构建多种预测模型以评估患者的神经功

能恢复、再出血风险及死亡率。例如，一项纳入 252 例 aSAH 患者的研究利用计算机断层血管造影(CTA)
影像提取破裂动脉瘤的影像组学特征，并结合临床变量，采用 LASSO 回归和多变量分析筛选出与预后密

切相关的特征，分别建立了临床模型、动脉瘤影像组学模型及二者结合的综合模型。结果显示，临床–
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动脉瘤结合模型在训练队列和验证队列中的受试者工作特征曲线(ROC)下面积分别达到 0.893 和 0.869，
优于其他单一模型，表明该模型在预测 aSAH 患者不良预后方面具有较高的准确性[4]。 

然而，目前这些早期预后预测模型在不同患者群体中的适用性存在一定限制。首先，由于 aSAH 患

者的临床表现和影像特征具有较大异质性，模型在不同机构和人群中的泛化能力仍需验证。其次，许多

研究仍停留在回顾性分析阶段，缺乏大规模、多中心、前瞻性验证。再者，影像组学特征提取过程中的

标准化不足、特征稳定性和重复性问题，均制约模型的临床推广应用[4] [9]。 

3.2. 多模态影像组学联合临床数据的综合预测 

多模态影像组学结合临床数据的综合预测策略愈发受到关注，旨在通过整合影像组学特征与临床指

标(如年龄、格拉斯哥昏迷评分 GCS、血液生化指标等)，提升 aSAH 患者预后的预测准确性及临床决策

支持能力。一项针对 377 例 aSAH 患者的研究，基于非对比 CT (NCCT)影像提取放射组学特征，结合临

床重要参数如动脉瘤类型、治疗方式及入院时 Hunt-Hess 评分，构建了放射组学与临床融合的预测模型。

该模型采用支持向量机(SVM)算法，验证集的曲线下面积(AUC)达到 0.831，显著优于单独的影像组学模

型(AUC 0.696)，并在准确率、敏感性和特异性方面均表现优异，显示出较强的早期延迟性脑缺血(DCI)预
测能力[9]。 

通过多模态影像数据(如 CT、MRI 不同序列)联合临床特征，研究者能够捕捉疾病的多维度信息，实

现对患者个体状态的更全面评估。例如，结合 CTA 影像中动脉瘤的形态学和纹理特征与患者的临床评分，

构建的联合模型在预测不良预后时表现出更优的区分能力[4]。此外，多模态影像组学还可以融合时间序

列影像特征，动态反映病情变化，进一步增强模型预测的时效性和准确性。 
具体案例中，某项研究通过提取多模态 MRI 序列上的放射组学特征，结合患者的临床参数，利用机

器学习算法构建了预后预测模型，不仅提高了对患者神经功能恢复的准确预测，还支持了个体化治疗方

案的制定，具有较高的临床转化价值[17] [18]。 
然而，多模态联合模型的构建也面临诸多挑战，包括影像数据的标准化采集和预处理、特征融合的

合理性、临床数据的完整性与一致性等。同时，不同模态间信息权重的合理分配和模型的可解释性也是

亟待解决的问题。未来研究应注重多中心数据的协同合作，采用规范化的流程及开放共享的数据库，以

促进多模态影像组学与临床数据融合技术的成熟与应用[19] [20]。 

3.3. 影像组学在个体化治疗中的应用前景 

影像组学预测结果对 aSAH 患者个体化治疗方案的制定具有重要指导意义。首先，基于影像组学的

风险评估可辅助选择手术方式和血管介入治疗策略。例如，通过分析破裂动脉瘤的影像组学特征，模型

能预测出血风险及预后，帮助医生权衡开颅手术与血管内治疗的利弊，实现个体化治疗[4]。其次，影像

组学在康复方案制定中同样发挥着潜力，依据患者影像特征预测神经功能恢复趋势，可为康复医生提供

量化依据，优化康复计划[9]。 
此外，影像组学辅助的风险分层可以实现动态监测。通过多时点影像数据分析，实时评估病变进展

和治疗反应，为临床及时调整治疗方案提供科学依据。此种动态监测能力，特别是在延迟性脑缺血等并

发症的早期识别中，显示出较高的敏感性和特异性[9]。 
尽管影像组学在临床应用中前景广阔，但仍面临若干挑战。包括数据采集和处理标准化不足，模型

的可解释性有限，缺乏多中心、前瞻性验证，以及临床工作流程与影像组学工具整合的技术障碍[20] [21]。
同时，医生对影像组学技术的认知和接受度也影响其临床推广。为此，开发用户友好、集成度高的影像

组学平台(如 QuantImage v2)以支持医生主导的研究和临床应用显得尤为重要[21]。 
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4. 影像组学技术面临的挑战与未来发展方向 

4.1. 数据标准化与多中心协作 

影像组学技术的临床应用面临的首要挑战之一是影像数据采集标准的不统一，导致模型的泛化能力

不足。不同医疗机构在影像设备、采集参数、图像预处理流程、分割方法等方面存在较大差异，使得同

一影像特征在不同数据集中的表现不一致，从而影响模型的稳定性和推广性[22]。这不仅限制了影像组学

模型在单中心数据上的良好表现向多中心、多设备环境的迁移，也阻碍了其在临床中的广泛应用。 
针对这一问题，多中心大样本数据共享和标准化流程建设显得尤为重要。通过建立统一的影像采集

协议、图像预处理标准以及特征提取规范，可以有效减少数据异质性对模型性能的影响[23] [24]。此外，

构建多中心协作网络不仅能够汇集更大规模的高质量数据，有助于提升模型的泛化能力，还能促进不同

机构之间的经验交流与技术共享，推动影像组学研究的发展。 

4.2. 模型解释性与临床可接受性 

影像组学模型，尤其是基于深度学习的黑箱模型，在临床应用中普遍面临信任和解释难题。临床医

生倾向于理解模型的决策依据，以便结合自身专业知识进行判断和决策。然而，复杂的模型结构和高维

特征的抽象表达常常使得模型决策过程不透明，限制了医生对模型结果的接受和信任[25] [26]。 
针对这一问题，可解释人工智能(Explainable AI, XAI)技术在影像组学中的应用日益受到关注。XAI

通过可视化、特征重要性排序、局部解释等方法，揭示模型对输入图像中哪些区域及特征敏感，帮助医

生理解模型的推理过程[27] [28]。例如，局部可解释模型–依赖性解释(LIME)、SHAP 值、Grad-CAM 等

技术能够直观地展示模型关注的病变区域或关键纹理特征，提升模型的透明度和说服力[29]。此外，基于

原型网络的模型通过学习可解释的“原型”特征，促进模型结果与医学知识的对应，进一步增强了临床的

可接受性[30]。 

5. 结论 

基于影像组学的动脉瘤性蛛网膜下腔出血(aSAH)预后预测技术，已成为临床决策支持系统中的重要

组成部分。通过对大量影像数据的深度挖掘，这一技术显著提高了预后评估的准确性，为患者的个体化

治疗提供了科学依据。从专家的角度来看，影像组学结合机器学习模型的应用，不仅丰富了传统影像诊

断的内涵，更通过算法挖掘出影像数据中隐藏的复杂特征，促进了精准医疗的发展。这种方法突破了单

一影像指标的限制，使得预后预测更加全面和细致，有助于临床医生制定更具针对性的治疗方案，提升

患者的生存率和生活质量。 
总之，aSAH 并发症的管理正从被动的反应式处理，向主动的预测性干预范式转变。本文系统回顾了

影像组学的特征提取技术、模型构建策略及其在临床应用中的研究进展，从临床评分、生化指标到分子

标志物在内的多种预测因子，并指出当前研究多聚焦于单一并发症预测的局限。这要求我们摒弃孤立看

待并发症的传统观念，转而通过动态整合多模态数据，并利用先进的多任务机器学习算法，来模拟和解

构并发症之间复杂的时空关联网络。未来的研究框架应致力于开发能够处理时序数据、融合基因组学、

蛋白组学与临床动态信息的智能系统。只有这样，才能实现真正意义上的个体化风险分层，在并发症级

联的早期关键节点进行精准干预，最终改善 aSAH 患者的整体预后。 
综合来看，基于影像组学的 aSAH 预后预测技术正处于快速发展阶段，其在提升预后评估精准性、支

持个体化治疗方面展现出巨大潜力。未来，应在多模态数据融合、模型解释性提升、数据标准化及多中心

合作等方面持续发力，推动技术从理论研究走向临床应用。通过加强跨学科合作和技术创新，影像组学有

望成为神经血管疾病管理的重要工具，助力实现精准医疗的目标，最终改善 aSAH 患者的预后和生活质量。 
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