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Abstract

Mutations in the KRAS gene represent one of the most prevalent oncogenic drivers in human can-
cers. Historically deemed “undruggable” due to its smooth protein surface, high affinity for GTP, and
lack of deep binding pockets, KRAS has long posed a major challenge for targeted therapy. In recent
years, breakthrough strategies—including covalent binding, allosteric inhibition, and targeted pro-
tein degradation—have led to the development of direct KRAS inhibitors, many of which have entered
clinical trials or even gained approval, heralding a new era in KRAS-targeted therapy. This review
comprehensively summarizes recent advances in therapeutic strategies against KRAS-mutant cancers,
covering direct small-molecule KRAS inhibitors, indirect approaches targeting upstream regulators
and downstream signaling pathways, as well as emerging modalities such as proteolysis-targeting chi-
meras, immunotherapy and gene therapy. The potential of combination therapies to overcome re-
sistance and enhance efficacy is also discussed. Despite the success of several agents, KRAS-targeted
treatment still faces challenges such as acquired resistance and limited response rates. Future ef-
forts should focus on elucidating KRAS biology and resistance mechanisms, and advancing combi-
natorial and personalized therapeutic approaches.
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1. 518

KHILLKR, KRAS [H5 GTP SR isE . B A SRR Z /N T4 & AR R, BOA AR “A
FIREG T BE R, AORBR I T &R IR TR . BEE 2 T AN S A ERR AR, 20
BHAT KRAS RASHEAE IR TT SRIR RS T AL, B4R BRI T KRAS SRARIKR) /Ny T4l . 4217 KRAS
B R B 5 1% T IR K B BN G 2T 8 AR FEAFEOR 1) PROTAC 201 BORHLARBUI R fe e (1
Ge eI A S RE HEDTUER J AR HE P ) JE PR 7 1255

AT IAT TR, REHE KRAS RAKIEY)ARIE R % 0677 SIS A I ALE] . F TEE0IR
SRS, BN KRAS RASIEIRIT A HE— Pk 705 I R B S (i 4 1 2 2% 5500 ) S8 e

2. Er
2.1. KR PIfERwE (Rat Sarcoma Viral Oncogene Homolog, RAS) & H

RAS B [H 44 —Fh 21 KD HJBARIEE R G R, BRAG A2 IR 52 I I IR B B 55 T e 4
s B AR R AR I 7 7P R [1] [2]. RAS EZALHE: KRAS, NRAS fil HRAS. RAS FRAGHEIE K4

i N S A 25% [3]. KRAS JZEH RAZMEAY, HFT RAS S48 85%, & F 23]tk i
i+ 45 EL i A B R [4] -

2.2. Kirsten X PIEFRBEERE BRI (Kirsten Rat Sarcoma Viral Oncogene Homolog, KRAS)

2.2.1. KRAS HI&E#aFnThiE
KRAS JE[K 9282 FEE T &R b, Bk s rh e LI I 288 2 — . KRAS JE[K 4 fis
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(A8 A2 15 21,000, 3 6 2% B 4ERT 5 2% o BREFTAL, "EHr M= a5k — M 4s
Fis(G S5F91K), bR R [X (effector lobe), HI=EX4LR%: switch I. switch Il A1 P loop, &k Ly n@ns
AR ISR E 5145, — X (allosteric lobe), 7£ KRAS JEARHAF UL M Bk R/ LA —
A C i B X (HVR), H A5 AL B I M (F 3 S5 810 LAIKE) KRAS i 2II5[5] [6] (WK 1).

Hypervariable region

Figure 1. KRAS protein structure. (A) Structure of GDP-bound KRAS (PDB code 7C40). The effector region, allosteric region,
and hypervariable region are marked in blue, pink, and yellow, respectively; (B) Structure of the KRAS protein effector region
(PDB code 7C40). Switch I, Switch I1, and the P-loop are marked in yellow, blue, and pink, respectively

1. KRAS ZEHZH. (A)GDP 4547 KRAS HI4549(PDB {03 7C40). MK, BIHXFIBLEX 2 RINER ., e
FMEEIFT; (B) KRAS EAMRXLZH(PDB XS 7C40), X 1. FFX 1| R P-HoRIUEE, EEFMEIRR
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Figure 2. Interconversion between the active GTP-bound state and the inactive GDP-bound state, and the signaling pathway
of the KRAS protein
2. &M GTP HASHIEEM GDP FATSEIMHERLLILK KRAS EARESESEE
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KRAS TEAH A 1 —FF 46 LLC IS M 1) KRAS-GDP [ AFAE, Bl 7 52 R B 1 s BB (RTK) [
RN, 5 S EAS R e K 7 (GEFs)/F A, F GDP B, [ 5 GTP #4745 &, ARG KRAS-
GTP[7]. [FIRf, KRAS EAJE T ML &1 GTP BiF[8], EAMRIKN GTP /KAMEEFIIETE, /£ GTP BE#
EEREGAP)REMT, AIEE MG GR[9], (23t GTP /KM, A ifh#) KRAS-GDP. 1AL
KRAS 5 — R4 Nileidfs, MImMEg kN AiiE. EaRA R A2 ARE LA A= g 30 [5]
[10] [11] (WK 2)o SAAIR T, KRAS i oCHBE R R AR 2 2 3 KRAS “BiE ” 13T GTP 456 IRaE, M
I G (S I, 3 B 5 B

2.2.2. KRAS SRR A S5

TENFSERE T, KRAS FE[K 945 H ILAE BT 90% (1) AR o, 30%~40% [ 45 e 1, 17%0%1 5 Y
fegrh, 15%-~200%[ itifiE b . fEARZ KRAS AT, i ILIR R R AEAE SRS 1 12 15742, 90%[K1EK
FERALRAAE G12 [12]. 12 MBS HERFAL N LA, #FRA KRAS-G12C A, 18 R AL/
A (NSCLC) i [13]: H &R AR LA, WA KRAS-G12D 7, 1E R T I (PDAC) &
PRI F[14]; HER R N E RN KRAS-GL2V 5745, TEH AR | 45 B e S S AR b R A R d [ 15]

2.2.3. KRAS SR BAERATT 5 3%

KRAS 7E /T J LT 4E—BE AN TR R R #E 5 [12] [13], — T, KRAS Fl GTP KIsEA R 5, 1X
ARE T TR IR MES GTP TR RSE 4, DA AR ME R FH % e Il 3 40 14 300 750 1) SR T AR 245 14]
FH—J71H, KRAS BAMXTHMEARLSW, BAEES/ N FAYMEGEER DL, Xaeai
HI70) o 45 A ThREBE 148 S AR R XE [ 15] [16]. LE4h, KRAS A G 45 Fadsk i =y, i 1535 3 Mk AR 15 IR
e, TG IE S 8 5 - A B AR (PPI)AT KRAS #EAT 1 55 A1 F R A Pl k.

SRIM, BEAEBEFCAIRN, HAlCZ D e 7 — R5E KRAS RATRE 10697 5 g, FZAHEN
O TAMHIF. R AR TR M IR TS, I IR Z u R T SRS I AT R, A LRIR L
WIHES) KRAS SE[RRTT U AR S 5608, NASRBOEIEIRIN 2 SEIAMERS VR T e 4 oG
R TIS PR AL LA

3. RGN FZ54D
3.1. KRAS i3

3.1.1. FAHpHI

1E KRAS-G12C RAZH, P RIE R E: IR SR A ik, &I LU 12 AP a3t 45 &
DAMGSRES G o5 M A9[17], AN HR S dm e e, Rt Lo ) 70 58 i) & T KRAS-G12C R74%[18] [19].

Sotorasib (AMG 510) & 4Bk 15 MR KRAS-G12C FLA 4l 75[20] (LI 3(A)), 7E##4H KRAS-G12C
FAF (1] MIA PaCa-2 il AR il v, & H Mk AMG 510 (10~100 mg/kg)Z& 3t 7] E 4 it 1 40 i Jse
WEPE, 7E>30 mg/kg AR T AT EBUMREIEIR[21]. A 11 I RIS (NCT03600883) 1, 124 4] KRAS-G12C
RAF NSCLC HE#E Sotorasib 0T )G, H MM (ORR)ILF] 37.1%, FMifEH|2(DCR)A 80.6%.
Adagrasib (MRTX849)/& 7 — K = L] KRAS-G12C A #lifil 55(1Cso = 5 nM) [22] (WLIE] 3(B)). 7E IR HT
BRI, lk MRTX849 fe 5| i3 HAUR MR, HiT AR A23]. B LiRZ5¥ak, X KRAS-
G12C KLt 30T & 1E 2 2R R R .

A G5 A SRS BN 2R 2 KRAS-G12S R74F . Shokat 25 A [23]HIHF 70 B A 61, AT A& B
S-S TR g ) AR 22 IR AR A ok k. Hob, &) G12Si-5 (WA 3(C))REiRIE 5 KRAS-
G12S A gt &, TE AB49 4L 7 A IR AR A M 3 i) KRAS {5545 5 (1Cs0 = 3 uM) o 1A FE AR SE
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3.1.2. JEHArmsIFH

7£ KRAS-G12D AL, 5 12 A i H 2 B B o R A Z R (Asp) . 5 G12C JRAEH Bt s MR ) S ik
FHEL, RAZRRMEE PR IEERZIME B E L, SEORER AL g AU i, 4
HITET X G12D 78 (13| 77 & SR ms 32 A0 T FE AN VE L, DASEEIN KRAS-G12D TR 44 1) =i Bk

TH-Z827 [24]eid it Eh#fr/E 3 M) KRAS-G12D H1# Aspl2 (LA 3(D)). £ PANC-1 F1 Panc 04.03 %
Flt KRAS-G12D 7% i i 40 il 22 vh, TH-Z827 111 1Cs0 7351 4 4.4 uM 1 4.7 uM.. 7E Panc 04.03 F i J
Bk, TH-Z827 e M MEANHI R AR, R T 515 5 36 DS R SRE 7T T KRAS-
G12D. MRTX1133 [25];2& — M. B /REEM AR KRAS-G12D #fil7I (W1 3(E)). H
YERPLH & T IR -Aspl2 AT Gly60 F st ie e 4i&, v E L KRAS FINEHAIIEETIRES .
7 KRAS-G12D ZA5[#) AGS lffirf 1Cso A 6 nM, FEAE/N BB b B R SR RS . H Al
MRTX1133 IEALTF 11 IR IR 56 (NCT05069367), 1 Ti477 KRAS-G12D 5848 [ SLiAse i, W15
TR, ENT VPSRRI T, ORI ZR IR R 750%, o B S T MR AR /N

3.1.3. 32 KRAS #s17

HAT, F54ee KRAS AR RLHIHIFAT 7L OIS R g 3. SR, KB B A7/E 2 Fl KRAS
AN IIILAF IGO0, 345 B — S ARG PR P 0 ) 7 o DA 25 AR AR SR . Rk, I SR S TR T
RAMAGRE 2 AR A REBET 12 M 2 A KRAS ARR )72 KRAS #1551 Jin 25 A [26]R1E T —Fiz
KRAS #0155 BI-2865, ZA G mp il ). 4 & KRAS FIFEGEMIRES . BI-2865 (ULl 3(F))
REA M5 G12C. G12D BY G12V 4% W, KRAS A8 40 M (165, “F45 1Cso £1°4 140 nM. BI-
2865 1] | #Ilfn R 56 (NCT04862780) IEFEHEAT H, WP 45 R, 1EREEHZ 1T 2 208 7 B+, PR
BHIZA 67%, Hrb 14 G12V AR IR B 5 LB 5 21 -

TH-z827 MRTX1133 BI-2865

Figure 3. (A)~(C) Chemical structures of some covalent inhibitors; (D)~(F) Chemical structures of
some non-covalent inhibitors and pan-inhibitors
B 3. (A)~(C)RB M MFUFI BRI F L5495 (D)~(F) BB IR HMHIF A B Z ANHIF B (L F 454
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3.2. SEREFEBEHIHIF

£ KRAS [ C Kuij) CAXX JE7(C NI ERE, A ARIIGREIERE, X AMEREAER) T, £k
FAEREIE(FT) 1 S R R AR Sk R ek, Bl 5 AXX I, B 33 I 0 2 e R R 3
B FEIR(ICMT)HEAT LB [27]-[29]. X — RFVEMI R E IG5 T KRAS HEKYE, R EdE
TS R (5 515 FAEF[30]. Bk, #hfili /e S0 mT ik KRAS FIRE A7 5151k, SRR KRAS
AR ) EE LT NG . B UL B (Tipifarnib) g —FoR e 4 vk Je B B Bl FI(FT) (LK 4(A)), B
REAFNIGRIRIR W FTI K259, O 2 PhSeds hdt 7 vl [31]. 259 Re e S+ PE ] KRAS AR
Y2 B A (1ICs0 = 7.9nM) . 7E—Ti%F X} KRAS 58748 NSCLC & 11 11 Bl RIREE H, Tipifarnib #2574
J7 ¥ ORR A 14%, DCR A 56% [32].

3.3. BE{EAT KRAS £ 522 2P rYiE T B F M

331 {EBATREEKEFZI(EGFR)

T A K T2 (EGFR) /&2 —Fh 2 (A B R B R (RTK), S v A KR T2 44 65N
(GRB2) & S F B 22 #e[K T (GEF), ek KRAS Bt GDP H-#44k 8 GTP 4542, BEMs Fifs 5
[33][34]. EGFR fERI=MANMIMINGE . SR R A GEH, RMIRGIT I EZ . HAT
EFXT EGFR WL 254 E 200 NP RS Bsa BEHUA S /Ny 1 IR S BRI A0 ) 771 [35]

e NJEibbt EGFR IgGL itk GC1118 fEMFJT e Il th 1 75 i il i% 14 [36]. GC1118 fE7
KRAS-G12D 45 CRC-026T #A! 1, GC1118 [ fied A= KA 2 (TGI)ik 97.5%. GC1118 ) | MG IR
3 (NCT03150415)7F KRAS AR 5 v i Hh R A I 52V, MG MR 26 12%, S0 4% 26 68%.
I BY4008 [37]2& —Fu#i i @&k EGFR M FI(ILIE 4(B)), TE447 KRAS-G12C Z878 (1) 45 f e 4l i & v
BY4008 I 4 & 3 FHT b HE A A, Hoxd HCT116 F1 SW620 ZHf ) 1Cso 1843 %1y 0.134 uM 1 0.309 pM..
H T BY4008 AT 1/11 #lG AR 36: (NCT04856095), #IL % Eor, BY4008 [ 1 il Zik £ 58%,
oy A S T MR AR e I 6 N H .

3.3.2. {fEBTFIELHBEEFEIRY 1 (Son of Sevenless 1, SOS1)

SOS1 1N 4k 1 S F7 R 28 3[R T-(GEF), Ref {1k KRAS 254111 GDP 4ty GTP, MG KRAS

5 5B R [38] [39]. B FL R B, 4 SOS1 Ty Reml Al Hdk 2 il A R BHIKT HH KRAS AL R Z)) 1) e A= 4 [40] -

HET, #81a SOSI (/N T A WARYE F R LS F 250 NHids: SOS1 #iilFl5 SOS1 #izhil.

1) SOS1 kil

SOS1 #fil it T SOS1 &5 KRAS ZIRIFIAH ELAEF, GBS AW T (5 5 182 1o

Ketcham %5 A\ [41]#Ri& SOS1 ##7] MRTX0902 (.14 4(C)), %4k & W0RE M2 i 1Bk R SOS1:
KRAS A MM EAEH, HA RSN, £ KRAS-G12C 8738 [/ R AR R R A, 11 B MRTX0902
(41 A1 53 mg/kg, 4L 25 K)AT 435 5B 25%F1 50% [ e A= K] .

2) SOS1 ¥Eh7)

SOS1 HBhFEid 4 A SOS1 it KRAS MM H A H %, TEMGRE T, BB A gese Tt
RAS-GTP & p-ERK 7K~F; TifER = A& T, i nl i 5 s mi bl BEK ERK Bk, I35 540 i)
T2, M TR 7[42] . Liu [431558 AU T-5r B4 ng| e 8 ¥t SOS1 B, it 25wtk
IR ENE LS 11 (W& 4(D)) (ECso = 1.53 pM). ZAL & 1E £ Fh KRAS 15 5 1 o83 4 it 2 b 1
R eI . 7F HeLa (KRAS-WT). H358 (KRAS-G12C) 1 A549 (KRAS-G12S)4H ffi, H: ICso
EIET 10 uM.

DOI: 10.12677/acm.2026.161317 2570 Il PR 2 2 3t


https://doi.org/10.12677/acm.2026.161317

3.3.3. {fEMF RASON EH

Cheng [44]155 N &3 LINC00673 W] gt — i 284 25 111 )5t RASON. % H g LR fl ) 454 RAS, I
JEIEBH I RAS-GAP {15545, 4 RAS 8l T GTP G5 & TG MRIRAS, M FREaus (5 5 8 B (e k4
M5 . B FEUESE RASON J2 80U RAS 5 56 2 i oG R, 2 KRAS AT ML 16 YT
R, HATERXT RASON (1 AT 8 IEAE T &

3.3.4. fERTFE src iR 2 40188 AR & B2 #iE4EE(Src Homology 2 Domain-Containing Protein
Tyrosine Phosphatase, SHP2)

SHP2 jf&— it 1 PTPN1L 5 [ g (13 52 14 1 (A I PR B R g, ' Pl I I 2 TR L 1 5 KRAS 5 RAF
(45 A RE ST, BETEGE MEK/ERK Rl {5 5 B8 [45] . SHP2 [ ThAE K 1 2> 5 5040 iU 5 15 431k 57 H [46],
IR % R (1 CLRRON R v 7 R B T 0 I B 55 . Hou [47]5 B B RUR L S 4htthtk, R H—2%
FT MR ZEH) SHP2 ARk 7] . JerhAu& 4 23 (ILIE 4(E))0 2 KRAS KA IR 40 il SR 5 2 L e ) %
HEE,  HAM O I AR . BATCA 24 SHP2 i fIgE Nk KR5S, 1 TNO155
(NCT03114319)7E KRAS F¥A2 SEAAJR J# i i) | B1le o, BREGIRTT BRI HI 308 41%, 5 KRAS-
G12C TR BRI IR 2 ) %28 3 78%.

A B
HN’OH

Sh
i

<hel

BY4008
c D E
NC NH
HNN‘ O-nH .
cl SN
H,C = \ I ”\%
O™ HN“CH, N N— N/m
A = Ay
Z I\N W (o)
AN \@[ ~
H, CN
MRTX0902 a1 A\ 23

Figure 4. (A) Chemical structure of the representative farnesyltransferase inhibitor Tipifamib; (B)
Chemical structure of the representative EGFR inhibitor BY4408 with activity against KRAS mutant
tumors; (C) Chemical structures of some KRAS upstream effector inhibitors

E 4. (A) RIFEREFEBEBHIHIF Tipifamib BLFLEH; (B) BB KRAS SREMEEMER
KM EGFR HIHIF BY4408 (LF45H; (C) BR5r KRAS iR HmHIBL 4540

3.4. BTERTF KRAS FHBIEHE 2@

3.4.1. {ERTFRIEMRL L BB (RAF)- L BURE L E R HES(MEK)-AREIME S BT MBS (ERK)iE

RAF-MEK-ERK @ #% /& KRAS T KBS T % T 1% . KRAS UE f5 1T )3 2 RAF Bl, it 1 i
RIS MEKL2, SZRfl ERKL/2 BERR1L, 1R FEDH3RE KA i s . 1 S5 F2[48]-[50]. Hi
T HAE R A R R RO AER], RAFIMEK/ERK 38 1% CL RN — LR 5 HIHOR G T ¥ b5. F
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JE4EJE (Lifirafenib) & —Fi e 61 8 RAF ZARMGIFI(LIE 5(A)), | B3I FLPEAS 7% 2575 KRAS JEAR L
gg B I e T2 ST R [51]. FIEIEIG I BRR, B H —IRGAE<30 mg FIE N2k
RIF, M>40 mg B2 1% T B fERTE KRAS RAZEFH, 2 Bk 2N Z M (ORR = 3.4%), 32 fi
(54.2%) i Fa 7E

3.4.2. {ERTHAEEEEANES 3 MR (P13K)-EE MBS B (Akt)-BMRERLER(MTOR)IERE

RAS FIHUEBERRILEE 3 WG (PI3K), i 1LH% AR LEE-4,5- — B B 10 v ik IR IEJULRE-3,4,5- — W IR
(PIP3). PIP3 kM IS & FIEE B(AKT), Jo & Bt i1 Nir K72 594K Rl 5EE5d i
[52]. UbAh, AKT iSAliEd 455 e R E A (MTOR)EES, /SN 58 A A (53], T2
A1 PIBK/MTOR #1575 GSK-2126458 AT 5 HALIRTF I MCX RAIMLEY), ——FKEak. EHEn
JI PIBK/MTOR XUE il 7#I[54]. o MCX83 (ML 5(B))Z It A 7 (R SMR i A e R 5 R U i 254830
J12EHEME, 7E NCI H-1975 (KRAS-G12C)41 i, MCX83 &7 H 4N EE /R e it s i M (1ICs =14 nM), £
A T R NP 56 A SR 77 .

4, FEHEFRPE#E(Targeted Protein Degrader, TPD)

R 5L ) AR A 2 R R P PRI Y SR, Hp B K AR ) ik S 1R (PROTAC) AR R iz - A
R RSB H bR AR BEVERE AR, O RO I AU #2271 [55]. PROTAC wlilid 5548 E3 V2 ik
BEAR A 1 P, AT BB [ AR Ge e AT TR0 2 B3R i 1 ik 4t . PROTAC NMINRESr T, HERET
MBI E S — MRALSE BRES, A MEEESE B3 ZRIEEN. —HILFEEK E3-
PROTAC-POI =t E &), #miEidZ & - HAMA RS HE S HEsE A2 5705 2: R AR [56] -

LC-2 [57]2 EH AT i T N KRAS-G12C F#f# ) PROTAC 73T (LI 5(C)). %A1 LA MRTX849
£ KRAS &5k, JE5E4E B3 12 BN VHL, M seBlPoE HEF4EH) KRAS-G12C HE A . 1
YA, LC-2 XF YR KRAS-G12C HIREMRRUCR % : B KPR 2 (Dma) & 80%, Y- K PRI B (DCso)
49 0.59+0.20 uM . ZZ151 [58]4& —Ff &k ¥ SOS1-PROTAC FEM# (L4 5(D)), %7 TEHH 2 fl KRAS
A5 (4% G12C. G12D. G12V. GI12R. G12S Fl G13D)4m i GEA 2% S SOS1 B4, DCso fH/T
F 8.41~41.4nM 2 Ja], F IR F P TETETEE(1Cs0 A 6.97~105nM). LA E45RE N, 2Z151 &—Ff
HA RUFIF R AT S HIHE A KRAS SRAKI 56 S & .

A c D
- X
o ,.“lH "“U Q EF
Co A < A
" N— ¢1 2 NH Nj\/\/\/\/&N\EQO
Lifirafenib ; OH N2 H HN

e T e

\oj%‘)/@:/ a HN O SF)\

O_ NH \‘ - ZZ151 <‘N‘

Lc2
\s-
0 >\: HN Q\ﬁ
<

MCX83

Figure 5. (A) (B) Chemical structures of some KRAS downstream pathway inhibitors; (C) (D) Chemical structures of some
KRAS degraders
[E 5. (A) (B) B4 KRAS TiiFBERHIFIFIALFELEM; (C) (D) #B49 KRAS MERETIMILF LM
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5. REITE
5.1. KRAS R JEFER H

TRV 2 — ORI VR YT SRIG .t KRAS RAS G AD KIHT i H & R e S 1R 5 o 2 S e,
DR 71 A A SRR Y A8 7 P PR AELREAT VT A SO TR S B L

5.1.1. BKEH

BET AR F K bR e R R PR (TSA) IR B 22 28 EAH UM A ME B SR (MHC) 70 7, A5
A EUA R R R I A B P T 0 S T 4B 7E— 00 1/ BRI H, Gjertsen 45 A [59]
PR T AE R E KRAS RAZH) 2 R G KB mi ) e e 5 5 Atk . 8RR, 18 5 Bl o,
A 2 BIMEEE] T T A TR R

5.1.2. mMRNA &

BT HOB R R L FRREBIE o R R AR A, mRNA HAR T A i 12 1 & 1) H
5[60]. MU G I EEEE Vo4l RANR AR I3, miSlUFhE K KRAS R45(G12D, G2V,
G13D, GL2C) b ol il RB X LR, VAR A P T k2 4H M (CTL)AidZ
T A, TR Y 1R 500 e 27 A3 455 i Kl I 2358 (1 e e 4 L A9 36 0 LI RS 77, — 00 1 3 75 (NC T03948763)
CEsh, BEVHE Vo4l 2y s A M IRIBR T, 7E KRAS 848 B 1A SRR 8 3 v ) 2 4 T 52
[61].

5.2. iTHRYABATT %

AR YT VR (ACT) 2 — Bl AE G2 10T SRS, LR B A2 JB S O Y ) S e i (R 2508 T 4l Af) 7E 44
HMEEATIRE . WS AR, ARG [ R R A DL MR [62] . BT KRAS AR 2w LI SR B B it
J5, FERRIE 25% e FR2RIA, AR ACT IEEARSE 55 . Lu 25 A\ [63]9i% H 5 B4 7 14 155 KRAS-
Gl2Vv FAEHUE M) TCR. fEME) NCG /NRAEA b, HydE . HhAIE R TCR-T 4 ke S 3 30 e A=
K, ARSI, UE T 97 AR . AT AR N IT A KRAS-G12D [ 47 V23 4t
TRBE S YA, WFEET T AR RIS T S B s 5 .

5.3. RERE S HIH

WK, KRAS AN SR AL AT RE M 3G 22 Ak I g S oA sse . ln, IR/ NuffitE . B
JEERET M, 5 Gl2v WAIAHLL, G12D FARH (1B AR K R 9848 £ faf (TMB); 117 G12V U A g5
R PD-L1 Rk S G ia AR S [64] 0 IXEE 72 4R RRF . KRAS Z8748 AU T 5200 G i 4G 2 5 410
FIFIAC) IR T 2. IRRRTIEFCIESZ, KRAS-G12C #Iil57 AMG510 (Sotorasib)5 ICI BtFH, w] 7R 7Y
HA i 5 PR VR P AR R AR R AR [65] . X [FAE F D v AR R 2T 2 3R T AR SR VR T R AR
BT OCEE T

6. EEITE

RNA T3t (Ribonucleic Acid interference, RNAI) & —Ffi ik [r] 40 g p 32% JE S AL DUEE RNA, 7 P15
FEVEEME RNA FEAE, AT SCILHE R JTER 13 AR [66]. Ross 55 N[67]MIRF TR, & X EZATIRZAY)
AZDAT785 e B Hak F b PR 4 iE  KRAS mMRNA R /K, M6 KRAS 52840 i i T =
S S EITE . 75 KRAS RAZE/ N il 1 S PR AEAS A vhr, 4 By 24 AZDA785 mI il gl 9 KRAS
RiE, Fr-EPuR G . AZD4785 1) | ARG RIS (NCT02110569) 7F KRAS F848 SR £ 3% b iR H
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w

% &

/1
;_J_Q

RUFHI A e, POt Zeh 450%, FHr 1 s s sel e mite e g 9 M H .
7. BR&RTT

WFAIESE, BEE 2560 512 T KRAS SRl 76T AU [68]. #illn, AMG-510 54k 254
KA, X KRAS-G12C SARii e . 1s th S S O UM RE 1 [69] o L4, AMG-510 5 MEK il 7] it 55
Je K BT = BRSEmS I R /3[70]. fEAR I SEER T, ot KRAS-G12D KAL) CT26 HAYIL & KRAS-
G12C A5 LLC AL, BRA VAT 41(MEKI + RT 8t AMG-510 + RT) 0 Jitsg A= K 915 3 e A 2], ik
JAR S R/, IXSEEE R, A EE AL A FEARSNFIAR Y5 7 AE A T A4 F PR U o R
TR 23R T ) SE AT

8. KRAS #ERTH;IT MBI SRR X
8.1. TP53 15825 fy S

TP53 J& Ny th i o WL R A Rl 2 —, TP53 58484 S5 pb3 & ThAETE s, a4 i f 1134
. T DNA $iGE 5, dEif s R shia s 7 M BURIE[71]. 7£ KRAS #E[aEy7 4, TP53 hRAR Y
BERNRITA R TEIRKIREEH, Sotorasib ¥577 KRAS-G12C R4F NSCLC B # 1}, TP53 BfA: 7Y it
BB MERZN 45%, FAOEFIIN 15 S F ;5 1 TP53 RAFM B R ME MR A ZE 31%, FAAAF
WIZRRE 2 10 A H[71]. fERZIRITH, TP53 ILRAZM M T NG 4. £ — Tk % KRAS R4 NSCLC &
R AE S, TP53 %748 H. PD-L1 B 5 H:52 PD-1 #IHI| VAT I 2 WG i 9 38%, HAr A4+
W12 M H, BEMT TPS3 By AR R . H 5 — I 7o K I, 76 KRAS-G12D KA 4, B i &+, TP53
RAF G VR T T 2555 [72]. IXFh 2 AT AE S TP53 RABNT s, R RAY R o L ARG A 56, Tk
— 5 F R AR i A P AT ST

8.2. STK11 HZETF Y=

STK11 (BFRA LKBL)j& — M2 Z MR/ 75 2 B E, £ KRAS RAZ NSCLC Wi R AEFRL N 30%, 1£
48 T e AR e v 2 A BRI (2 5%~10%) [73]. STK11 A8 4> S 304 i B AR 0 . s R I 401
fil, A& KRAS RAZ RV 25 M BB IKAN R 3K . 7E IR YTH, STKLL IR 2 BAff 7 R4 £ i) T
7. Z0ilE R R Y], KRAS %48 NSCLC &, STKI11 RAM #4252 PD-1/PD-L1 il Fi6s7
(1) 2 WL 2R fiff 208 IR T 10%, FRAL AR AF AN 2 6 AN H 5 T STKLL B A= B 885 11 2 WL % i 256 1] 1k 30%~40%,
s AR AR 12 S A 73], 78 KRAS #E 7RI H, STKLL HL AR FIAE 55 Z 197 %A 5% . 7E Sotorasib
YEIT HAREG Y, STK11 2825 Fe 3 1 2 WL 2 R 2R N 29%, 1 STKAL B A 78 £ 35 (1) 2 L 2 A Rl 41% [74]

ARk, BEA R IBA 1) BRI R 7 B RN, 7 G S T 2 4 FE AR b B I 54 Tl s
B, 4G KRAS RAZWA, SLRARRE . RIEMIAERAESE, NEEH I MEIBTT 7% AR, &Xt
FEE LA A (W KRAS/STKL1. KRAS/TPS3) #E B AR TT RIS, 2 ieTt KRAS SRASSEREIRITIT
KA E BT ]
9. i ERE

KRAS HR[F)JETT CLSEILA AR RZ " BIRS v SE R (1) EE B O8MY, 75 28VR T TR Sy S8 i 78 2 7y oK
B, (HICIG R AIHNIGSE ) KRAS-G12D MEFE R, Mt ZGHLHI S 2% . TR fo s S PR 5% S o 1 W 25 46
LR A S PR . R R AR, AR TR E S =7 et —RETEERLWA, LR K
T PERHE, H 8 AR HERR GV IT 7 %8s R KFRER AR AR ik DR 4 55 TV B R B R )7 v
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