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Abstract
Diabetes is a common chronic metabolic disease prone to complicated tendon lesions, causing pain
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and functional impairment, with current treatments failing to achieve functional tendon regenera-
tion. Tendon stem/progenitor cells (TSPCs) are core for tendon repair, but a high-glucose microen-
vironment impairs their proliferation and differentiation. TSPCs-derived exosomes (TSPCs-EXOs)
can mediate intercellular communication by delivering bioactive molecules, showing great poten-
tial in tendon repair, yet their abnormal morphology and molecular expression under diabetic con-
ditions limit therapeutic efficacy. This article reviews the pathological characteristics of diabetic
TSPCs and the molecular regulatory mechanisms of TSPCs-EXOs (e.g., VEGFA/mTOR and TGF-
[/Smad pathways), introduces strategies like exosome-targeted delivery, combination therapy and
gene editing, discusses the impact of diabetes classification and clinical translation challenges, and
prospects the application of artificial intelligence, providing theoretical reference for relevant tar-
geted therapies.
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1. 5|8

B PRI A A BRYE BBl A P02 1 20 3 TP AP, #5505 11 i o B PR B S A s PRI 1 At 115 2024 4F:
T BE PRI B N aik 1.48 42, RFRZFEM AR 5.89 A4[1]. VRN A S RS R 2%, B R
SEIGIN T WU AR 1 R A A b e SR B —— 1 2RO PR S8 S UG 10 XU & W PR S8 1Y) 4 £
FULBE 0228 BB 22 00 XU BB i 5 3% (2] [3] SR S GUERT FTUESE, Wl FROw B WU 212 LR
UEARFIREL . IR AT O B L R R SR F O, S B R A e
PEREIN, E 2SI ROmE VRS AR . RTTE AR, P EE R S MR ] S ARV SR (4] WU g A
WU TF/#H 4 i (tendon stem/progenitor cells, TSPCs)/& 5 IEFR A 4ERF, HIEAE T A - ZA M 5
A va UGS SRS PROB 26 A0 1, U4 A TSPCs 1) 2508 W B 3 00 PR JULIEE ) Z5 A4 R D BEAR 5, IModomd JR
T3 LR PR FR) A FR AT ERRE (50 LIRS £ PR s B8 25 v i 0 I g ot 2] A 1 1k A TR A Dy e B2 B, i A 4% o)
Mg E, HFRBEMRAR, KR, Bk, uiot 7o m il 7 285 iE R & - UL 4
FVERNLEITT R AL RYT %, P TSPCs 1 1E % D g B VR & SO mE 0 oms U & & o RS i B 22 Rl 1
[6].

TSPCs = Zid 5 1 FEEF A (e BE U AN L B4 78, X0 WU e B0 2. SN A R R A
[FIZHN R/ N A L AP ZED, S A AR IADEAE, A s 7, ARt A5 (7] ik
HHWETE R, Ok 2 Ph gl M RUR 1) S MR T G 20 5 TSPCs (13 1 - 14 58 HB 7 7 /1. TSPCs >KiF H) 4
WA (TSPCs-derived exosomes, TSPCs-EXOs)1EN—F# MBI JC A i 7 56 ws, NS E R B3
W1, JCHE R THE PR B E U B B (8] AMBRAE Sy 4t i 73 WA ) A oK e 386, HAT 5 BEA AR AL
WA DEe, (B JEVE AR, RIFFERNT, 1) 70 51 4 M IR ) S M A R (MS C-Exos) £E 2 Bl B A4
SERaE , HA el e MR 2 K T A A [ 9] - 2R {Bh3 TSPCs-EXOs i 55 73 WAL 1 15 Joy # 4 . T e »
G 7 LA M RS T RE SR I S HER[10] [11]. BT, KT HERBTE 5N TSPCs 5 TSPCs-EXOs )
FRAEPESCR . A O TRAENLH] SR VEIR T SIS AT A7 AE 1 AT T2 1, I DR A A P O B 29 58 I Bt v A 1)
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. B, ASCHAERGLRE R FAE T TSPCs I BAFIE S TSPCs-EXOs HI T BE R & AR IR JT 3
W FRIRIT FUE s R R R s FILEE s FOA T R [ Y BRI 4R S W T B

2. BERRALR T ARNRIEFIES TR RS
2.1. EEERMIME LR T % Y F T AR

FEIRIB A B2 01 TSPCs WA RE, 2B 5l KNI S KM RAE E D Refhg[12]. fEm
WEZAET, TSPCs [WIEFEIE 2 216, HAa s M kA oAy, SRIAF 5 Bl AR R A2 R T e Fl
LB ARSI N [13]o RSN SEIGHT FEUESE, 28 mbEEs IR U T 20 M 2 I T BB Re 0 R & IR & B>
SERFAIE T AR, T I e S R R 0 R s LB A s B AR B UIAE O [14] . BhAh, AL R 2 5 8
IS N TSPCs ThREZ I M B ME R &K, S50 TSPCs 40 Py il ME S BB R DL K H A AL B 4 R 4t 25 18
[15].

2.2. FERRFSHALEETARRSMDERITSS 5 i HER

S IEH WU A0 BAH L, F 00 SRR AR b A 52 30 HREAR 73 A1 7t 8 B ZE e M ) 2k 38 O T RS AR
[16]o BwARMAADMERER, BERRIUE T A MG AT, 5B T-8 (TGF-B) RETHE4IIRE
KB T(FGR) A 2 R 7 (RIE KT 225 R, 02 28 81 (02 S MR R T w1710 XA b 1 1 25 e
AR BN AR T A 2RI 8 TR BE 52 AR, A HTCVR A R A A R A AR AR R (18] (E AR RIERT A,
BEPRI) 73 (1 25 2 TR ) REXS SR (K 0 WA AL A 6 22 R i, (5L H R RH SR I TE i A7 4 [ 19

2.3. XEThEEE T (30 VEGFA R B E Rkl

FH BRI UL T2 A b s e S 38 B 00 1 53 A I AR A OC Rl F- VEGFA 2R3k 21 o ilF FAIE S,
T AR A T I SR WS AR B 1 (U0 DNA F 384K 21 2R ABAH (U0 L BEAC AT B 3840 DL R JES D RNA FIR %)
55 VEGFA ¥/ P E[20]. ZBEEAMY LR S L& LIS F2, Ei#id mTOR {5 5B E
TR B IR EFEESI[11]. L4, TGF-p/Smad 15 5 IS 1) 5 B IR % 2 F 1L WE KI5 Ab AR op 7R 2 B0 70
HIFRIEAE T, BT i U 23 AL I FE 52 BH % 4 M 40 356 5 25 3B A5 [ 2 1] B4 Bl 3 i 3t — 2D e s, B R
953 VLR T 20 A A A PR FRFAEPE A AR RTS RNA RIATE P BAs, X L4 T ol E AT B2 Wby &
VRIS [22].
3. INIMEN SRR TFIBIE LS
3.1. VEGFA/mTOR {55 #ixt /LB T 4A A s 5a pl 8=

i TR LR T2 i A v VEGFA [R5 3254 OOl iE s v] B8 A i G s Re 1. W&, 1E
EFEAFIRST, SMBMEF ) VEGFA i #5E mTOR 15 5 56 VU400 8 5 . AT A
SRR R PVIRAS T, AN AT 1 VEGFA 2 EERIE, S8 mTOR & S @B EFEH0E, 5|
S U410 pe S o S A R T (23] IX P PR ) SRR IR 1 WL ZH 4R IR AR I R 45 P87 . SEIRESE, RH
W SEYEDUARBH BT VEGFA/MTOR 15 54, W45 R0 SO0 PR 5 U T 200 A i) 10 3 B A 5 432 [ 24, IX AHE R T
T AR T B AR o
3.2. TGF-p/Smad j& B 7E BB 43¢ P 694 A 4151

TGF-p/Smad {5 5 i % /& S A 2 UL 20 AL A2 0T 5% o SRIGAIESE,  IE 5% AL T~ 240 MO SRR ) A1 i A
i3d TGF-/Smad3 155 25k S WA HE LRI 53 2 11 ER 4 78 T 03 FAR 9 SR USE 4 Ml A U 2 B 1 e 2T 4 A 73
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A [25] . R AR 5 A A R BIE 7T T IESE T iR R IA ) miR-29b G L] TGF-p/Smad3 A2 47 4E 4L
oA, SRR A [20]. UM TEE RIS, HEIRPIVURE TR Smadd IR EE AL RCR FEAIG
21 40%, XA eI AL RE S 5230810 7> TR 2 — (2710 BRFCABL, R DR g A EOAR g 5 k  4 ob
WA TGF-p (& &5, 752 it LR 1401 A € 17 70 AL RE (28]

3.3. BHEFNSHEMRTEB NS TE

AMIAAHE T BRI 8 LE LIS 52 Hh T iR B O A B FR S0 5 . IR SR8, W R UL -4
HMIMAH CCL2. CCLS S5k 7 IRIE LI 2~3 %, FHURAZ EWEGHH 58 S5 42(29]. X P 3REL 1
AR AR B 0 CCR2/CCRS 5244, BEIR WU T4 i & FIERE 68 0, TEMRAMTRE S8 i HAR R I
A BT BRI RS N30T, B2 AR, IR NUET 40 AMB A E & CXCL12 &b F, R
AP A ME A B, W22 2 40 M 1 153493 50 0 R ke e e B B3 1] R PR S i 45 R BoR, FEIR
b A A D 15 Pl R TS AR () SR IE TS e A B U [27], IR AT RESE 51 R LIS B A B R
MG R . WFCIESE, RSB R S e B R 7 I Ak, v] 35 6 45 ) AU 726 1 40 3B 78
BEA[32].

4. SN ThRERF MR SEIR IR 2R
4.1, FSMRE: SHESA TR TERNILET RS

AL % R G PR TURE PR LI T 20 L S A ShRE R PE IV 27 6 o e B 558 2 3 JULARE 1400
MBI A ATy, R R E SR R SRR R, REUL L BN PR LR 4 0 A A AL A2 A2
SOMA33]. BEAh, SEREIR RGUE T H T ARl SR WU AR ARG 5 3R AR B A A A I RORE[29] o

4.2. TIRE . FERRTSALRIR (AR IS E MR

B S 2 BOAIE ML A VA T RUR I CHE AT o AHSCHIE T R FH Sprague-Dawley B4 A SRR R B 4 7 4
PRIGIUBB SR R, DAVEAS LR 20 S AN AR BB 7 R RE[33] . AR R, AMMMAR LB 5 5 2 s T UL
IZHEA 250 5 1R [34]. FERE RN AIERL . T JUL e 448 i SRt 1 & s A 38 ot g of A A it
N B UAR B ks> 98 RE S B A2 1t L U FRIAE (351

4.3. BHMRAFSEBREFHSEFIIE

LU ER AR SN RE T IR T RGN RAE T B, Ho, PN F R AR R T AR kb P
T J JULRER 40 L ) 57 5 ME AR AR (36, T2 1915 42540 B DU e 1) Hh AN A Hh 1 G B D B 2R 1 [ 29 TR
B, WU MR & 2 AR K PR T, JEid 4% mTOR 1 Smad 15 518 2% o MU IE 2
RERE[21]. ZHEEERGE B UEST,  BE R VL 20 i A A R () 1 R RS T AN R AR AE 22 (37
UeAh, SR A ARG RS RNA SRS S5 R U T 40 AR 0547 0 (38], IR EE R BN K T4k
MR IR TT SR B T BIR BE A

5. BIT R ZSHARRH
5.1. S ASBENEE ARG R

HNIBARAE N T ARGK BARLEIUAZ S b R DL AR AL 35, (BRI PR AT e IR~ B 993 1 4L
[ PEAS L SFBRAR([39]. LR F SCAME N AE B VEDE R B0IEIE R GE, AT IEA AMIAAAE 453 03 7 PO 3 B It
[E][40]. BT, A 155 WUET20 S Ib AR G 8 T 4R 4 2 1 SR J5 TR 23 R HRp SRR RS ) v 2k 14
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TR, Y57 RE PRI UL P JB2 S TR S B AN 7 5 R FEE P B[40 o S50 AR AL SR i i R 171121 RGD Ik B,
R A MR 5 UL A0 R R e e Ve s A, (SR SRR T 3 5 [41]. X B 3B - AMIBMR” A RS
AN B8 5 R B A0 I 5 W R B BR IR, 38 BEASLAUL AR JUURER P = 4EPRA B4 [42] [43]. BBt FEUESE, 2R
TR 7P 5 TR (ECM) 2R 4E 22 3 8 T (RSF) S AL e IR SR UBE R AF e HE B 50, i b e s 2 44 5 1)
FAE[44][45]. H& ARG IBRERAAE KB T(I0 TGF-f). miRNA (41 miR-144-3p) 255501, ¥ M2 B
I 200 AW A R I 3 A RS JUL R 240 B 384 B R E A2 (32

5.2. BxRIRTT: SNk S FE R T 4R AR R R

] 78 53 41 il (mesenchymal stem cells, MSCs)-5 7N RIS R 7= A2 B [FE R ALS[37] [46]. FERE
SRR U SR AGAR R A, 1E % Fig 5 18] 78 J53 T4 ffd (adipose-derived stem cells, ADSCs)He 5 4M b4 7 b ¥ (1) A
i MSCs, H: VEGFA 733800 2.1 %, [RIN Sl e B A 52 S A I 72[47] [48]. IXAEREIRIT
T OUE AR FHALHISEEE: AM A ) miR-21-5p 4ERF MSCs 361, 1MiELI MSCs X ilh'E & TGF- 1
A At I LB T 1] o3[ 14] [38] WG IR AT FT45 S S, BRA VR IT 20 B UREE 5 K 87 A 7K 32 s B T 4k
AR 5 38%, HLMUE A i85 BERG N 2 £5[17] [48]. (HARERKIIE, Bl MSCs 5AMBARIIA & IR
TSR BT AR PE, R 2 BRI PR LR 1 4 B A R -6(1L-6) MBI A SE K - (TNF-a) [ 7K~ [36]
[36]o UbAh, W F0IE R I IE B i 1R) 78 0 T 4 i R R (14 S A (BMISC-Exos) BE WS 42 = LR - - S 1 & &
SRIZ[21] [40], AKERI UL AL VR T 3R 408 78 i 78 77 190

5.3. ERRIERAREBINDERTTHEERRER

CRISPR/Cas9 F K 4 1 AR SN AR T RESRAGTT R 18T 842 [41] [49]. WFFCRIA, 18I bR g i
H ) Dicer il 1] 5 45 5 £645 52 1) miRNA (21 miR-29¢) , {4 4 J #0 ib P (2 3 WL 3 3 2 B AR BB J1 3T 60%
Tl SR W A AN R T B U VA SRR (B T BT BK), A5 BhIE B A s BRI e HH K BT B MR I A1k
e, AR R R AR T IA 85% [42] [50]. SRt L I AR R R ReAMIMA” R HREEA
FEDR e NIUIEE T 400G , A3 WA B A il VA m] i 7 30T 21 A6 SE B Ak A K [R-B3 (TGF-B3) T 45 B, - AT
SEHLA ZRE S P IRAR [41] [42] 0 0K S8 TR MM TERE JR7E R BRA AL o Jig o 1 RAB A2 B8 7102 R AR AN A 11
3f5, HARMEER G HE R R[39] [51].

6. HEIFU SRR
6.1. FERRIS B A ThERAMAY = Rt FIY

BUAWETCR], BRI 7 R 5 25 R T AR AN AR B Th RSV . A2 1 2N 2 RUBE PRI P, i i
() 78 5 T 240 LR K A1 AR (BMSC-Exos) & B HY B2 U DI fEZE 57 - e, 2 BURESRPIRIR ) BMSC-Exos
FEAR U - B @ J7 T A 80K 22K T- 1E % BMSC-Exos [49]. IXFhIIRE2E 5 0] B8 5 & MR 5G40k
A miRNA FRIETE A AT K [52]. EERERRE, AFERERP 7 BTSSR miRNA RiL 2S5, H]
RE I I 5 W) P 2T A 240 i ) e a3k 171 5 3 LB B2 R R (520 KT H 5 T-W8 PRI 73 B AMUA R Ty e 5 (1)
Iy THLEI AR JUHGR R XS 1 85 2 BURE PR SMUA A D e S SR B AT AN 2

6.2. IFKRFLHEIEHNEYI I HBE RS

S SN IARIR YT AE WU A 2 b R I Y R A A S P Rt (B PR e A e R 73 T W Kb 1)
FEAE T AN ISARTE A Y B L) 93 AT RR IR M A 58 A B I (170 BFFUSR I, ARERABM ) /A A 7E A Ja s JE AR I
BRI BT RCRA IR, IX AT RE S L A A AT R[50]. BEAN, KT AN AR ] 22 A PR PP B 58
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B, Rp A P AE R PRI R A7 11 S5 R 2 AR A T B 2 st R WA 18] 3 — bR BLAE MUAAL
Az R R SR P 1), FAR LR AMBAR S | W K DY REVE TR —BE[50]. HAT, A IEERR
T ROFEAEH 3D 97 BSOS AR SR Ik R 48, AR mr HLAL 1 1% 5907 RUR (28]

6.3. ALEREFMIMNDIEFEMR I HIFER

N LR GEEAR NINBART T RE T 3815 . Bt Fie 7 “RBESMBAA” (Smart Exosomes)ME &,
B 7E I I G A T BRI AN PR 1R 43 Wb 4 9 28 T T RE[40]0 2BV s A5 BIMLES 2 2] B0 A8 T IME R
TR (miRNA). £ H 7 S T 4LAE N AN IAAR 22 H 52 5088 R 47 20 M, DATBUIN D BE 12 ol 70 A HLAH LA F IR
28[53 ] £ )8 MVLHESR GBI 0, 22 N TR Rel B vH (0 Zh i ik O FR 3 HH 38 9 7 AR B8 ) 0038 J[42]. 4L,
TRBE % SRR ] T TR0 AN [E] SR s A WA A (L AR 7 T4 B B 8 1) 7 o 240 PR ) 6 0 PO UL 55 b ) e
B G T7 %[21] [38]0 X PR IR SN BB 78 5 50 B R AL il SN S R B, R BT S AR 18T
M T HSCHE .
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