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Abstract

Diabetic nephropathy (DN) is a common microvascular complication of diabetes, with a continuously
rising global prevalence. Its core pathological mechanism is closely related to mitochondrial dysfunc-
tion induced by hyperglycemia, excessive generation of reactive oxygen species (ROS), and oxidative
stress. Recent studies have found that mitochondrial autophagy, as a key mechanism for selectively
clearing damaged mitochondria, can alleviate oxidative stress by maintaining mitochondrial homeo-
stasis. Silencing regulatory protein 3 (Sirt3), as a mitochondrial core deacetylase, enhances mitochon-
drial autophagy by activating Pink1-Parkin and has become an important target for DN intervention.
Apigenin, as a natural flavonoid compound, has antioxidant, anti-inflammatory and metabolic regula-
tory properties. Studies have shown that it can improve renal injury in DN models by up-regulating the
expression of Sirt3, promoting mitochondrial autophagy and inhibiting ROS accumulation. This review
explores the impact of apigenin on oxidative stress by enhancing Sirt3 activity and thereby promoting
mitochondrial autophagy, as well as its potential protective mechanism against DN, providing inspira-
tion for new strategies in the treatment of DN.
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1. 5|8

R 95 93 (DIN)) A2 R PR S L 88 AR 3 B0 B 445, 2 2 BB PR W DL IR I ROIE Bt R
AWE I T E R, A SRR R AL T2 1] DN 200 B AR (b 45 15 /N BRI B (GBM)
FRIEFE NG 2 | YU F R /N R R AR 4L 2], X 0] S EUIG R b RESEMEEE A RS /N Bk I8 % (GFR)
BEATVEREAR[3]o DN BAIRHLEIARR R 2%, KB HEEF N, SR IR S 2R EA 5%, ik R
AT BENRACH ZEAL . MR Ah )20 . ROE OB AR T AL RO AL R 2, Forh, A B
DN K AR BIZ 0o [4] o S8 Nk A 5 Ao B AR, [ IO 1t RE HOIR0S F T2 BSOS S8 ML - ROETE,
fReREE A ROS) B/ 4, FRIRPUEILAE /), V53 DNA NI F AL RO 05, R S R GURIY
Wi /N R B 2 I R /N S RN D REAR AR Y SOE S AN R IR, AT RS AT 4 B 4 (5] 2k
A2 ROS I ZORIE, HERR DI RERRNG S 4R W TR, ROS AR R itk — 20 I 4ok ¢ 451473
XAy E DN B R NERNVR /NG IR AE S A0 MR T A B B 3K [6] iz B AE b B2 40 B (0 2ok A
AR SUE R RO DN R IR S

2. Sirt3 ST SRR A BEEE DN FEEEYLE]
2.1. Sirt3 ThEES o FHA

LR AT o AR R NVE S SR R AR LR 2 5 IR AL (FAO) . =FRIR(TCA)
PR ANZNL A o 74% 38 BE(ETC) Y LR AR B 1 #82 v JEE SR A o LR Ak 2 P RIS R 1O IE HEL T O3 3 K
ZHARRBE R ATV 1A, SRR T RBEML AL G A AT, A AN RE i AU 2
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RS —A FAO, M-S E00ESE G H il =B BEAR R . k4, TCA fE¥FF1 ETC ' PDHEla.
ATP50 1 CPTla 558 i ) S BEAL S BUBHE M FRAC . EAUBEIRALAIIR . ATP 2R IR TR S
FURE R ARG IN7]. BRIk, 50 CBELAE T BRI PR AR . E LAY, SIRT (LRt
LT -GN B D3 (SIRT1~7) A R, S T AP Jiig B M v — A% 1 R AR P 2H 2 1 I R 50k e 1AL T4
[FIFE A AR IX 2= [8] . AF Ay i I I KL it L ERG, Sirt3 fA7E T AR s, & dpr Ak i i dh A 4
AU E M O TERE, Z 2 MRS ER, /2325 ETC. TCA JEIR. WEEEAE. N ER A 2 a1y
ATP & R VF 2 AR BTG M 7]. thAbh, Sirt3 v DL L BRGNS B h i) CmEEE, 1 BE A S A0
(9], FES 5L KRS 115 ROS P AERTEALIEEFAAS[10]. Rt $E ) Sirt3 7] &k 2Rk A2,
PEARE BT RE S, s hEE Ik, $oR Sirt3 I IE i 4k R b A 45 ) R Th B8 i e PRI HE B 00 R
M WE Sirt3 RIAPEARET, itk A ARG, FRIR LRI 7], VP2 IR, Sir3 FEIEE
TRPARMAL P RIE, 2B EFEEEYW, M ELSRENEETZ—[11].

LRk B EENE BRI — AR, BT H AR A TERZRAA T E LKA DR, EEM R
SR EEEH. EWASIYT, Pinkl/Parkin 2/ SRR AW REIIERE[12], WEMRER Z
LRLR B RIR 1S . ZIRAE 2 B Parkin (K IEZ R A S0, @& =N FEJofF: Pinkl (EE#EE). Parkin
(B3 12 &2 0) A2 R BE[13]. Pink ] AA7E T4 T, G0 I e 0a 8 1 608 B Ah i N 5. 7R R %A1
AhifE AN I LIHFFEME Pink 1, DRGTE IEH &40 FEkifaH Pinkl KPEUK. Pinkl-Parkin &5
g, fEZEEgh, Pink] RIUGAEEES, RINZOR AR NGBS K S8, MERRZH. T2
I, ZRRiAR I AL FEAIC, BRI Pink 1 38 % AN Re 5 ehifh MRS &, (e IR T LS Rk RS &, T
PR KR Pinkl HHFR BAELRAASME [ 14]. Pinkl 78523 KA oM ERasE Rk, BERRIL AN b
() 3K [ 5 AN Parkin ({32 R FELEF8(UBL) A I #4035 Parkin [15]. Parkin /2208 7, FlZ Rk #FMEbric 32
TR, SR8 S R4 & 2Rk B W S2 A 1 77 51 5 AR L 22 AL 2R ik, FdEid H
WG AR R B AR IE R T PR R LR [16]. Pink1 A1 Parkin 455 2 B8 K 1 52 A2 2R WK 1O RR S M 95 B, AT A8
LRI 265 Ok B RE AR

Fox K& —JH Forkhead box Z5HIII AT, S 51 ZMAY S d R, HE4HH A
AT PUEALRIEL . AR T A ZRR B WSS . Foxo3a JB T Fox FWEM O WA, ZArT Sirt3 Fif
(LSRR T Sirt3 ] 5 HAH AR R TEHEER, S 540K, AR, SRR E . Bdok
Ui, Foxo3a /& Sirt3 MIEEHERR, Sirt3 IS I 51#C Foxo3a 12 ZWitk, &% Foxo3a MIRIAKT.
W&, 5NN, 4 Foxo3a 5 Pinkl A8 T-45G 0, EWE4IIEH Pinkl mRNA FIRABE 0. 1M
fEmEBERERE S T, Foxo3a LMEALMFIRT, Pinkl FRiA R EFMK, FHIE Foxo3a 5 Pinkl BalF454, M
M98 /D Pink1 415 [ ZR0 AR W 48 I 28 P2 /MA SIS « Foxo3a Bt ABEAL I AT YK E T Foxo3a 5 Pinkl J&
BIFIILE G, AT T 2RI F AP R JORE NMAKUR[17]. 59— DU R 3R B, ZRRifA Sirt3 i FIA AT g
T Foxo3a, JEHK Sirt3-Foxo3a-Pink1/Parkin £k 4 B WG R85, (R ELRRR BRI R AE[18]. — TN
KT R AR RN 7R 0, RURER AT 51 AT Sirt3 3 MBI K P FRK, T Foxo3a FRiAHY
hn, HETAE SRR B A SG{E 5 Pink 1. Parkin FIA7KFFHE[19]. tb4h, Foxo3a RJ DL [a] 4ok 4 F14H i
%, FIEPEAERRIE, PIREEEAR S E, REPUEIER . A8hik i S SRR R, A
FIF Uk KA 2 R IT B B A EE, BERRZRA R IEF Thag.

22, ZRFERSEAENBHXZEER

S R AR AT AN T AR Z ] AN P 512 (1 ROS S EAR R, T EU SR S 5 .
ROS 43 A4 1538 5 7 LLIEHE , (EGEE B O T R IVE I A . ROS Al 2 S B D) e A vl il
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FI 5 ECAE T [20]. ROS WA 5 1 i E LA (HL00) —EMENO). F3E [ i it PR AR 26
BT B ARG, SRR A, SN A SIS AR R AR AN R Al
HReHE £ ROS [21]. ROS [RZYR 3= 2ok H A RAARFIREE, fEAHRE T, LbifRARE “eE L) 7,
AL LA A B P P B3 L S AL B R AL (OXPHOS) i R L AE 7 ATP. 4L kiR Th AL FAgG i, DRI
FHOGER (AR P 3AARTE PE BRI, R IR AR R ROS 7= 4:[22]. &1 ROS it & (A5 i ik
ST EAL T DNA 545 S8R A 825, I s 2 PR IR A% R BT . MIMIP (7 A2 JIE Fi 57 ) 3 2 AR A
TEIEMER N, IS EREDRA, EHE DN i E.

i & ROS I& Sat B 0 FH AR, HI0E 7 200K B R . ROS Ji- 3 (10K 73— FH 40 A 25 1 1 S A B0 2
S N ORI F WA, L PR RSO B P S AR DR ST AN T e 2R R 18 200 i 2 O A1 4 o 8
WA, DIERFAI AR AR [23]. 1Al ROS ATHIME AWERIE 550 T, Pl 5 IR S e i s
FHEF AMPK)BERR L F0H 75 I 2% 2 #E 8 (A (mTOR, — Rl 8% () ABGE A VA Unc-51 FEBLEE 1
(ULK1)RMG I B W AA T R . B FER B, AN AL Z T DAY I Hela 481+ Beclinl H11 LC3 (fE AH
KEA 1 BEHIFRIE, NS 8w 14].

ROS i FEAR B 51 k2 1) S8 A0 SIS UGS 1B Wi DAk S A5 0, I 38 3 o g S 40 1 4 L 25 =) 0 240
JoR R AR5 20 M ) 8 A RS . DA SLOSZ I I B AR AT I8 IS Pink 1/Parkin S B /1 3 SRL A H g
WA OGRS, it 574 ROS [14]. DU/ECSRER 2 PIEHE SCRF Sirt3 7832 il S A0 R 1 B ZAE
PARIE, RS 2 (UCP)TEMIHI AL = E 7 T 2 o0 2L, Sirt3 Al 39N UCP2 MIRIA, MmTE
PrAAL N B b= AR . Sirt3 7] LLER R A VIV R 28 R ETC 3R, LLSD 7
WA ROS 1742 . IeAb, Sirt3 fdE ALY BALEE 2 (SOD2)M L BE kI 58 SOD2 HIPTELIETE[8]. Sirt3
I A] LGS Nef2 (% 1 E2 AR 1), R0 480 H Bl P i 14 7= AR S e T 4R 4 S A I8 S5 AR A [ 14] . £E
FHICYN M 5256, Huang 25 AR B, 7578 &1 B (HG) 2614 R, RPE (LRI € 2% _F )b Sirt3 (18 IA FEAIE,
Foxo3a/Pink1-Parkin /5 £ 0K FH Wi 20855, HEMmiE SN ROS AP . 24 Sirt3 i Fikw}, 8
it Foxo3a/Pink1-Parkin & B fish & 2k 4 5 ek DLIN I S0 S, ATTE HG &4 N fR47 RPE, {H Sirt3 % 3
(RS 4% Pink 1 ()L RIVTERFEWT[24] . Rlt, FIRZEIRE, Sirt3 Al AgiEId Foxo3a/Pink1-Parkin i ¥4 fil &
LRI R 1T ROS 7 A2 AT R FE T AAE F, DUAEFRRH I 9 SR 4 (1) B 2 DR F 48 i 6 32 S A Y
BRGSO, EACIEOR B VAT DU B . RIS R, TR AT LGS A e RE, B
Wik B I VA oA B2 451 (0 200 B AN PR A 2 P SR AR, D RS AR, R R IR AR

LRI HWEE ORI BT T, BEFUREH, ZoRifk B WRAE 4R /N ERAN BN E RS TR R ARAE A, X
N BRI A A6 B0 o MR 5 3 1 0 2 A QU 3 L 3 U U v 7 A K B A A AR A ST
Whn, HEWAFE DN BIRAKR IR B B I 0 B R YA AT DAY 2 B A AR R A
RS, AT CASKE B AT AN M A S B (ECM)UTRR . SORERNET4E4L, JfFHWTERAELE DN R fE[25].
KT, BOE LRI VAT DL AR S /N (S 4R 4R 4k, FRI80/0 B R3S PR 55 o i 4R 445 45 A ROS A=
B, X RS E R [26]

2.3. Sirt3 7EMFE{KS DN iR A <BX

WHFRI, TERERPIRA T Sirt3 MIZIA N, mTRERYJE RALHE EAb RABE N 28 RE K1 FR 1 FH DL &
FREHA R TAE o B0, S8 A N BOE I EOE NLRP3 AR R NF-«B {5 5385, 0 Sirt3 fIik. 4,
I MUPERAEE T, CD38 1 L33 NAD+/KF R, HEmii] Sirt3 RvETE[8]. FEKE R B B
Kirb, Sirt3 mRNA ik FH[27], Sirt3 ]33 Foxo3 & LBk, FHAS Pink1/Parkin /5 £ R A4 I
BARHIROE, JH IR R Z R B 2 58I Z bR R FE TR . —Tioe T Sirt3 5%
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PSR B ANAORT 7T (28], R ATHEES IR0 B 4UMI(INST 4Ry, b v I S A N
Sirt3 MR FIRIEAKT 5 TR, HiX RS S SEOKF 38 N IAH G . 76 db/db B8 R /S RS
o, Sirt3 MFRIA MR E K, XRPERRIRE T, Sir3 9 R — MM R . sk, Sirt3
S5 Foxol W LBALACFIE N, M 7 HEE RS, MR Foxol HISEZRER (W MnSOD Al CAT)F ik
P/, X G DR G A 1) P A A B D i — R TSR R, ) ROS #E— 24 Sirt3 (3RIE, M
MR IG5 B E R IR . 53— T T Sirt3 5 B 425 70 AL (IHIF 786 W (2971, 76 i i i Bl 461
Sirt3 [FRIA B2 K. 75 db/db BEIRIE /N RO+, Sirt3 8 KPR B T3 R . 75 m i & b
FR IR INST diffart, Sirt3 MERIAH B K, #E— Purse 7 E MpExs Sirt3 HIHIfEM . tkAk, Xian
ENHE LR IL[30], 75 T2DM it fEdr, Sirt3 7ERCE A i, MifiFHAF Pink1/Parkin /i 5 {12k
FLAA S BUH T B o T Sirt3 FRIXBOE M VKR S 0 T ARR B R, AT ZE R T T2DM (R
ExR.

DN 35 75 52 219 B [H 2 R Je 5 20 PR U(ROS) 2k i B AR B AL RE /). WFFTIER], DN 1 ROS 1
FEY SRR (MDA R E AL A B (CAT) I LIS 7K P 8235 v T — M, A e H IR(GSHY /K FR3E T
B, IXHE—BAESE T DN AR BIBE[31]. R, B RAB/K T X T 240G% DN it g B fE R
Y. 7E DN (RS FEd, Sirt3 il B304 ki fA GSH W% 1t R4k 3 DN 287 A S0 I JiR A 745 171 410k SR A 2
B BEIUAHSCHTRE LB, Sirt3 it 2 Z B R SOD2 F1 Foxol SRARA B F 240 i % 52 AL N, IR 4R
TR T R D Re R, I H. Sirt3/Foxol {55 18 B 7E 14 I A4 M5 T4k S0 23 20 il oD 48
iE S ME[32]

UeAh, EREIRIFE AT, Sirt3 Ji/b S Dh RS BErS E £F 4R R B M G B TR [33]. 24 Sirt3 78BN B
Y1 (GECs) /b i £ S BUEAL A K T 1 (TGF-1). I3 2 JEMaEINHI 5 1 (PAL-1DS{E L 4 AL A 1
(P IEIE N, XL PR e A B A R i FE DA, S BUE /NERTEAL AN S INE R A 4L, e 38
B W25 A AN Th RS AN AT I 43 45 [ 34]. FE—THRT Sirt3 W/ 55 P4k 56 RGBT [35], KRG B 27 4
/N o Sirt3 B A KE B K, @it siRNA RGPERUIT Sirt3 200 S8 R /N R - 4L =3,
MPKE Sirt3 7K P 1] DR LT 4L R AL 57 — Tk T Apelin Jx HAC AT Sirt3 3% DN R 7R BH[36],
Apelin 8390 Sirt3 22 1A RIS P SRAM ) B /NBK P 52 412 (GECs) H 41 i 415 5 (ECM) A5 J A T 0 1)
MELT 4l . EIRTEFE B T Sirt3 78 B 21 4R Ak o 21 i o B A 1 o

3. Fr3CHR7E DN FHERI IR R
3.1. FAREAmE Y

SRR FR VS M S (ROS) B M ZU(RNS) 177 A I B i 2 [l AZ AEAS T 15 150« ROS 2 5 % Fh 4 fil
RE, WA AT A I B . AL RNBET[37]. [AIRY, ROS A& H M, A EAmEm, g
KEAFAE, MIEEREXT DNA. RNA I (S i . REEE N KRG, BAA Zmaiig, o blsis
AR EA AR . B B R B SRR IR S T R BT E A AR FH[38] 0 MM RIBUR A I, SR B
FMIBTEM &R E AT G B EETERRF, T A1 AT DL i e A 00U R 5 ] it f T ok e R EH
e, INMFEYRAPEMF[39]. FEERGD,5,7-=FHIEFE, Apigenin, APG) LY A IS5
iz —, R ZHNmENEYZ—, BT HEIWE. & FEAE TR, 5. KREFEDIR
BE[40]. R EAGZMGEER, FlinprEth. sy . Pik. PuEm . BRILERPT#ES[41].
H, TR NPUEARHER BT IZ .

Jiang 25 NIOWF R R AR T APG EHUENBKSHAEIEIL T BT AL S LA . WF AR, Ao
1] NADPH AALEFNOX) i 1 F i A AL B (SOD1/SOD2) Rk, I 3 BRI P Z(ROS) M4
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BB 705 )P, M S A A5 | PR I N B2 D RE Rl . fESE4F CSTBL/6T /NERAEALT, JraesR
(0.5 mg/mL) T 6 J& )&, 35k HIpE AL 22 7= (AGEs) RN 208 /b, 7] A 3 ek 00 Nef2 S BRI 5 7 141
FKAEAE-1 (HO-1). BER - K& RIERER(GCLC/GCLM)IEIE, $#2T+ T 40 AP LB aE 1.
Ah, RANZEG R IR, 40 uM TSR AT R Y B2 41 ROS ZE A, FRIRTA —EBE(MDA) & &, i $i fg i
AL B (LOX)FE I A AL M BE(MPO)VE 14 S50 i o i 8 A« X B8 R IR 7~ 1 72 3t 22 8 s i 4 A iE
T, B A [42]. BT T APG HUEAL N B SEE 5 Z I 9, (EBE R A o,

PR 2 3 RIS M A(ROS) LA (MDA /K, [ L i A 8 LB (SOD). 1 S AL A BF(CAT)
A2 H BRI S A R (GPx)iE P, IR 5m T AL ZE R (W1 ScSOD1. ScSOD2. ScCAT. ScGPx)HJ#
KB A N AT . E R, RS (40~100 pM) AV FEARSEAL R B2 R HIFET %, iR B R
F+ SOD1. CAT. GPx ZEPiE LI IFRIEAKTF[40]. BEAh, Wu ZE NI FCRIL, RIRERIRIL &Y
S F (APG)JE I H I U RLORN 98 RE ., T I 3 SR B 8% 32 (DOX) 15 T /N B s . b, APG idEid
RTHEEALY B AL EE(SOD)YEYE . BN B H Ik (GSH) & & 18/b 15 B (MDA)RE 1 E(ROS)E L, M
1A 2 H DOX 5l MEMG[43]. LR FEMAFE MR R T APG U REIE LS, A
TE AL IORE B0 Hh (0 R S AL T BB AR

3.2. Fr3E&EN Sirt3 A SRIZAIVEIEHLH

LR ZGIM H ROS M EZRIFZ —. STRRARII M S8 ROS S 3N, @i B sk
EIEMENAE, FEMMP BRI [44]. BbAh, ORI AL PR R B T 2Rk DhReRsAG, &
ArReE—D I ROS ARG, T RCEVENEIA[12]. BRER 2 FIFE R, A8 &R il ROS FLER, (it
LRI Sirt3 V&M, HIN Pinkl & Parkin HI3RIE, M RIEXRT LRARTIREM R ER . AREFRRIL, 78
FAEAA PRI T O T AR AR 2 Al G 2 (] AN, FEREIR SRR M5 FEAL IR FRAIC,  BAYEZD> ROS B &
H I LRI o ZHF TR RIN, o R A AR DA R Ay s T AR DGR B DL
Pink1 Fl Parkin & 1RI&, #0& 1 Pink1/Parkin 5 5@, MM 2B ORMME B EMERA B E, M
M B 0 R AN M ) S A B 0, SERR A IE HOIRAS TN RE[45]0 0 —MIRHF LRI, 1R8N
B WL 2 3] Sirt3 i Mo K 2Rk A 1 W 1 T Pink1 A1 Parkin MOZIAIGIN, RN, FESEEA ZOBIG M
TEMKRED 185 3 W (LC3I/NELE, XK B WA SRIIIE R, P 2ok i B R S Al R Zoh
IRIIBEAR . AL, RS EIE AT SR 57 NAD+/NADH H#, fRdkgkifk Sirt3 WETER ATP P24, DL4ERr
RS BRARTEAS I RE . 7E LT BB S8 751 31 TRUAC B/ B K Sh AR I, Rk IR R D, 2k
WA PRI AR 38 B 2 3 [46] . — WU SE 3 iE T AR 4 Ri i v - v 4 - 2838 B B-NLRP3 J@ %
(mitophagy-ROS-CTSB-NLRP3 pathway )i 3 2% fif JFE T S840 REBAR 0 (A S8 B, 72 i IR MR TR/ B KR
FR(PA)CEE ) AMLI2 4R, A3 2l I B80E Pink 1/Parkin /13 2R RiAA B W, 15 BRI LRI
I SRR E 1 S (mtROS) K ML P9 ROS I BEAR B8, e Al S A B e P A AR T T 7 A8 FH 2 ik
H WA 73R 38 A (CsA)E LC3-siRNA J5 A1 5% /73 2000 ROS IS ER], 2 — Bk fr g RiEid 2k
LA Jo 4 | 5 AR R AL AR [47 ]

WEAh, DA IR R B, SR R AR 2 W 25, 1R v] R e ik AADL #h i BR ) (CR) AR IR AS i AMPK
G5 I0%, JFrTREMEDN Sirt3 PR RTTA], JLF(EHE Sir3 MFRIASThEEREME, AT RCON T IS 2Rk g
BWRA . B, 1ERNZEBZRPI, el LA BRI (CR) AR R e 38 ik I AN 0 ) 2 o A I
WEER A1, HSRERENE, MIMHET4IH A NAD+/KF; il NAD+EN Sirt3 0% F k7, H
W T e T B0 Sirt3 HREIETE. Lk, XA S5 AMP/ATP HE B TE, SEI A8 K0S B &
fERAE AMPK:; 516 AMPK BB IR A I 0S4 K A - PGC-1a Ml FOXO03a, E#454 T SIRT3 £ [
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JBET, MIMERE )2 IR Sirt3 A RIRIE. Ak, BERIRR SRR IR BEIE AN Sirt3 A IS 7
(STAC), it HiEL AW TR MR, £4 3 NADHKF Fit— b sm b e . Kk, s
i “HAL CR-$EF NAD+” o “BUE AMPKARIE " 5 “WEARMIER” =EHH, MWk 7 —457
. BRI AR R4, MR AS LR T HLoR0MOE Sirt3 . 3R S5O R R 0 v kA W AR S
(157 F A -

3.3. FRFRRTLNEFEEER DN BISMIERAS

Vg —Rh g (AT AR B S, B RTIGYT DN IR, B2, 124 81k, R
CUBEIE B X0 DN R A B3 5 [48] . 7E LRI RARML G4 R, KSR BRI 1 2 1 F L g
B3 1k & G s T (R R AR B 7 T 52 B 00T . B 2 My S5 W I S A6 & 0 A A R 1 e A R ¢
RRtE, ATHRTH AL RIBORT JORE, CREFE BRI SHREM 5B . R RAE N — R W KRR KRB A,
AT AR SORE I SR AR B M A B = R AR i . AE IR AL RO T, Bk PR, R
R AT E R R ROS F=2E L A . S INnPAAR) B M S BT B B R Gk AR 1T Th g
[49]. BEAF, 7E DN EEH, mIpEeTiE SR JREEMIRRZES RRES . ERERIEAE NERE L
AEFHOC ) T RE A VIbR EDIGIN, XK TRER BRI & . T SRR ACBEREAE_FR TR AR KT B K
SAEH, RAPBE FRIF K B B R[50

FEIAF T, DN 41K R Mg Cr A BUN B2 & 1 NC 4, i7E APG Msem ~, Bk fads i35 1K,
KU APG 1 DA DN KRR B DhRE . Ak, 75X K BV IEEAT 3 B AR A0 W82 B, 5 NC ZHAHLE,
DN ZH K BRI H B R 1B /NERAE R B /IR RS BT KA 2 /N 2840, DAAE B /IR BN
A] LR R R A DT, (BAE APG EH T HiR A0 B 35 2 (5 1] [FIFEH, Malik 6 NMIRF T4,
(20 mg/ke)iAITIRES T HE IR KRB B 4 AL i Lt AE K IR T-p1. SFERAR
IV B B (D), 36 52 I R E AR T, AU B A B OR RS R T R AL R &
i R BEITRFN ' ANERRE AL IR [52]0 BEAN, B /NEBU A 2 B DN BoCHE R 2, 5 DN IEE &
B DIREBAAE O, X MR R B NS E R AR — e RS T DAAESE DN [k f& . — RSN Fi R i,
YE N MFE 545 DN B84 1) HK-2 400N BN B AR, 76 = f 4 B A58 R 40 s /1 & SOD. CAT
(e A L) T M PR, MDA (N B & & LDH (LR Bt 0B BRI A 40 M R T2 %38, 2 R AR #E(100
H1200 uM)IFE B T 40M0E 3 35400 7 840 RBL53]. LA ERFAR AR A 3R T APG 0B B AR 41
., F£WHT APG X DN KRR REAA TT RO

4. ISRk

FERFAE R BAT 24 R HUR T R IR SE IR A1, LI R A 2 Bt D5 — R B S
R Pk S AN AT IR AR S ek, R L SBIR PR AT AT I R S R
Wi AR . FH 22 R AR 4 o

4.1. EPFIRAERR

PR MR PR AR 1, S DR R A2, X2 Fm R AL I o 2 as . DUiRJA
TT3RAE B I E WA B, FF2 DT 2 0 TR AR (32 ZEAE B MU i), 3 A PR RE IR AL . ARR
WA AL, 2B RICIETERIACE . BECRY, PR i D IREVIA BB AR T 10%, FEH
M S AR LA (1 T 245 W L ST AR AR ST 0 v A R iV B BE AT, KRR 1 L B
NIRRT 3
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4.2. [EHBREBERGHIBIF: FIRSGEZHR

N T SRR EHERR,  BF 7T IER R BB L 20 25 Mg, L P R 1l U858 R Gt 2 1 i BR
RO FE R 1% AR GEHIE TE A2 IR SR B BB T oK Bk b, AT DL 25 G LA e AR
EMEREN . BT, BIRREZ KRG IRRENK RS, AN BTN AR 9K S5 IR 5T 44 R
ek EATRER TR A B BB, IRk SR o L RO, R AR . R
EMIIKHL, WIERFLER - F Ik ZRRILIEM(PLGA)I AL, T SEIL 25 R RAL [ 1% . B AR EOR
ARIL . EPPRRA Y FL BRI S AL R S, X R G REdR = SR VR IR . RV I PR AT
WETEEE R NGk, (HPURBGR LA R th . R R ek DR B AR T2 3B
AR, S L 1A i PR A 2 1 R T SR B A o

43. BENGYHEEER

UbAh, TESRBRIISI S, SRR R S H AR AR I F M EAER . AR RSN AT 2
Fl CYP450 BE(41 CYP1A2. CYP2CY), i b Al REJNS 281X e Fg AR 1 25 TE PR (W Ak . 250, &
BF), 380 FG I 24 % 5 RN M XIS o SR, X RORE BT FH P I R Sk 35 12 vy PR AR T4k P 2k B 1 S Bk 2
78 H HT AR FEAA BRI H0 N T REAN B S o (HE AR I I v 771 v 28086 08 R 48 K 92 iy LAk N 2
&, M BB A 2, 75 LR I PR Hh 725 W

44. BltEREMEE

JRAE TR ARG R 2R, (BRI i, s E N, e BR i A
ARSI FUER IR, FERIRIE N, 3R i RERIL IR RN BOR AR, I F 5 AR b 4 S A g 104
HIFIRITE A K. SRTMT, 2R HAR N AR N, AR B OO P AR . It
b, TS E B S A ERCER S I, O R R PR (U LR 8 e ) RO i 5
HE PP o

5. g5

IR ER I, Sirt3 A NE KA % 2 ARG, nIiEd 4% Foxo3a/Pink1-Parkin 5518 B i 52 51 4%
B e BTG B, R TETEE(ROS) IR B, AT 22 A i W 5 (0 8Lk N R B I £ 4k . ESER
(Apigenin){E A RIRTEEIZRACEY), IBITBEE Sirt3 /SRR B VOB, E LRk Th RE M A ik
5, AT 7E S50 B FR D 5 0 (DN) S8 AL B P e I R i eV I T B . LA B AV 7R T sk il it
Sirt3-ZZ KA H Wil 2535 DN S ST 231 Rl 9 FF R [a) R R AR AR 28 BT VE SR i T BB AR SR
METHT R L SRR TSR, B IR YR . BhAh, FESE R MEYR R, RN
KA RKIAR 222 AT 7 RGPl « AR 7T TR AE NG IR gt — DU IIE /T 38 3 2% DN R A R R AL
HRIFR AR RIBIE R B EH DS S L M k. RN, TR AR R A A7 SGLT2 411
HIFD I HR BN 7T, A DN ZEErR 97 SR LT Bk .

HEEmE

2022 4EFEHRIT A B 25 R T R IH (No. 2022ZB363): 48 2% 17 T A {8 B R 4 %1 350 B (No.
2023SKY032).
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