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Abstract

Sepsis remains a major global health concern at present, characterized by life-threatening organ
dysfunction caused by immune dysregulation secondary to infection in the body. Immune throm-
bosis is formed under the dual influence of immune system activation and the body’s coagulation
pathways. Although it acts as a defensive mechanism under normal physiological conditions, its ab-
normal activation during sepsis can promote the formation of microvascular thrombosis, induce
organ ischemia, and ultimately lead to the development of disseminated intravascular coagulation
(DIC). By reviewing the existing relevant literature, this paper summarizes the research progress
on the related mechanisms and treatments of immune thrombosis in sepsis.
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1. 5|8

JRFRIEAE Sy H BB BRI R ) B, 2 SRR AP0 o5 i E R TR, Al A A E A,
BB 3000 /7 NBEIBREEAE, FETH I 20% [1]. FREFAE HIRFIE AR AR BEYL IR G 28 Js 07 7 2 2K
W, SR R] S S A A R A D REREAS (2], REEAE TR IR I A% S S RIS L RIBG X M
ERT KRR, TR AR R S8, R RE R 15 BRI HIHI BTRE R 1, L RS ROE R
VRT3 B0 R 48 A R BT UM AS , X P R PR A e B M IAR T B[ 3] o 31X — i AR Fdid 2 R G % 4 M
I INRR RN EE I PR - 2 TE) AR i A AR o EIX MR EURES R, I BEVE A I /NAR « BRAZ 40 PR B A R 4
MAHEAER, 35 A0 7 R &b, ARAEROR AR T A, AT 51 R SR B PE 1L/ 4 46 1L (Disseminated
Intravascular Coagulation, DIC), fZPHZEANFSREFWME, FHEHE R LEA1E (multiple organs
dysfunction syndrome, MODS), FESET XIS KME EFF[4]. AR SCERIR 1 M EENE A AR G M AR TP B R A
KA S Tt Fiit e, B IAUESS , R ERE AR OC 1 Bk L Th R 2 o VR IT 1Rk — € 2% .

2. REEFSREMMERENREERENS

G B P AR TR e MU AAR o S B PR 5 R ) 2 R 995 AL | ) S A R 2, AEAE LA B k453
15 S % R B R BOIRAS N, TSI AR R FE TR . RFEREAH O 1) H58 Js 8 5 gk I 2R 48 2[RI AFAE
STARIAR ELAE R, 3 P 8 s S A IfIL AR T2 8 T 440 i o JE G A 470 184 5 R b ML I35 B B e, (R
JEE TR JRE S5 IR HR 282 1) g UL R G s 2> AR A 2H 23451475, 51 MODS.

2.1. BRERESEARER M

BUATE G5 JE AP )5 5 2 R G % 20 a4 =0IR 3 5244, 4 toll £ 52445 (Toll-like Receptor, TLR),
AR 45 A 3 TRAL S5 R I8FE 2 R (NOD-like Receptor, NLR)%E, 1K 5195 i A4 #H % 43 F (Pathogen-Associated
Molecular Patterns, PAMPs), {24 K ¥ 5@ TR FFBUENUARME RS, o R =4 B4 %
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S PR 5 23 SR BT I2 10 JORE S N S A I D REBEAS (5] —MIE DL R, S RGN R 4t w] it
MU B SRR BEHIRAS, AU R ™ B g H BRI R, 90 e M AR TS B, ML
U545 552 T 15 H1 5% 2 F(Damage-Associated Molecular Patterns, DAMPs)H, {&f# rR kg, sz 4ni
SGRE SR SR, BBORER KA T, Wit E A S8 ¥ (Tumor Necrosis Factor, TNF) 1 H 40 i /1 2=
185, AN LA M R XA, PR A R ARE OB, BRORAR I T Bk I R R IR (6] [ 7]

2.2. REEFSHREEMmERK

R BEAE 51 I o1 2R SR N 22 S B M LH 24500, BRI I3 (ot Il S A1, A 4 B i
P IMAR T B, R AR St i Rl 7l /AR, RTS8 2R Tuidk, I DIC [8]. FLHrEEIMLR T\ Ii/IMK
R AAS G 72 200 B 1) b R0 61 DA B I A P 57 453493 0 R B 175 3 (1 7k 1. Th RE 3 Al DIC e 5 S EEH . %
M FR A, 2R 48 A e B A A 4E 8 1, T RORRUE I BE SR I v SR R I S5 . R AR
BT, HUATE A RGNS S A4 AT R [9], EIENLA B BURERRER, HIUEH KRG+
Y AR R RRER T ACEA S, TRENUALTE RS, SFEOL AL 48 O fmcb . Bk, 78
B R T IV S U N B ThRERRRS JRE L — 2R P AR BN AR EAE R, (R PR R Ge N 1 ifAs:
BT RR[10].

23. RERF SN ARSEHHEEER

WU 90 S 805 e Il RGAFAEXU AR, SORE IR N v A BE L R G, kI 2R Gt S — 0 UK S0E I
JRE[ 11 28 4 i BT RE TS (02 8 248 P IR - S A B 7 T TBORAR s 1, RIS M LA e bt v . 2R 2R R 1
(Tissue Factor, TF))" 32 345 T- 4147 ) N 2 40 g (Endothelial Cell, ECs)H, {EMFFAE A4, ECs & 25
WG SRMAL T, BARRIMEFrIES TF MR, 55k il E 3 RS g i gz pi02 130, i
A, AR AR ANMR T2 BCs MR C A BUNPIEEER A C, il 2R 502 R PUis v B it — 25 ik
K, SL[FIKE) T M EERE A () I A It A (R T 1 14] [15]

bR T A0 PR AL R AN, HARRIES T, WMERREBEOK. R, EUWRRE. SR
(Reactive Oxygen Species, ROS)S5 24513 ECs [ A B WE =S, M el 28 2H 240 o 22 1h1 52 44 [ IR+ () 2k
U1 TF 5B 235 R0 8 1 I A2 % 57~ (von Willebrand Factor, VWF). F5 2> ml e ik A% 4iff . ks
ST L R oS B 0 I P R AR R T, R AR T 1610 WAL, PN R RE 2 R A R 2 i 3 28 20 R
BTSRRI b, RSB IL R T, R I s [ 147

3. SeREtEmie R pcAIE) K e RYE L

TEMRERRE 264 N, SR EWRAH R A b Mk 20 B S5 Sy A0 A, DX TF IABG . ml TR s R 2
Jfa 1 B4 B (Neutrophil Extracellular Traps, NETs)&%, JFIUE (5 5 0 6 S PR Bk A DX 7~ SR 30 ) 5 5 2 9 B0,
AR, Bl R ARE SN[ 17] 6 [ I /NBR R A Rz 248 et FHR 20 (0l AR T il S 4 B A 18]

3.1. BZMmpndiEd

AL AR BRI E e RS TERT 2, SRR R E IS, A B A R T R IR 2 B
KIMZAE, FF45rih TF AR 146 5550 2 1 S 4 19], RN, PAMPs (405 2 555 ) 1 DAMPs 7]
76 TLR %%, fil R & (BRI RON, ik DIC R, 4z it TLRs R 2 HEn, SRS
T, IR shBm bt N, SEMIMAAETER[20]. Ak, BAZg M n @i i 1B &5 5165, Wik
JUR RV E RGN M1, FF 02340 PR 7= A= A gl B Tl R AH ELAE A A 55 I/ INASORIT P Bz 48 i T ) A
EA21].
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3.2. FMERIZERRATTELL

kL E M B 2 TEAZ A M E N — Ze e Al . > H SR T & AL Rl 52 #(CXC Chemokine Receptors,
CXCRs) 5#atbH 7454, J5 30 TS S8R, JF5E AT 22 20E X[ 22 [RI I, o R 4H i TR NETS,
HEZEHHAED . WK DNA MRS ABGAR, XLy n] s &I S FA EAEH, (ks
PEAR BT [ 1710 28 A0 /R IE 15 T 8t LA A- i, FLUE 25 ) DNA A0 S I R XL, 17 5814
R P U 2 A 3 A4, S R i R (KD 2 B[ 23] [24] - NETs 32 2 IS 2 B i I R 4 5 24
AN 2R-8 SEZ MR, FRLEMREREE AR DG S e PR AR T B R] A R FEME I [25]. NET W] 30 &t
IR AR AR T B, B seie s k3 NET FAF1E K& TF, A]JBOK 905 IR LK AR S P B2 40 i A%
SRR A, [ER NET A BT MR SRS B s S R A2, 3 — 28 I il B v %) 1387 P4 B T e e il it
MIRERERT[26]. HhAh, R F-«B S n] ISR 1 a0 A4 21-1 M E g =-12 5774, (2R
IiE SB[ 24] 6

3.3. I/MRESEH

ML /NRAE Ay I J AR TE O AR i — 36, Heoe 2 5 G5 iR I e Ve AR T i A I/ AT 36
15 TLR. AMASZAR. Fo 52058, & BOFRE ORI HUAR S B T 73 7 [27]. HUARIERGY S, i 5 e
VAT O ML/, 5 RO BRI AR TR i . DIC, SEUZ 28 B DIRehans, mAFEUREILT28]. I, I
NSRS 98 97 S5 IV B AR s TR T AR BBURK, /N AR S P R T 6 kLA A2 25 As (Thromboxane
As, TXA) 5 R IR 1 (Adenosine Diphosphate, ADP), {Z#EML/MRAGESE; RN, HERER o Pikis
RS & ADP FRUKL, JFiEIE G & FRICE B X R 1) ADP 2 A& — IO /MRS A AE 5 [29].
AL, P- R A A E BB RAEN EA, 75 PR FE R BEE AR A 1 (P-selectin glycoprotein ligand 1, PSGL-
V&G, IR ARG Hh R 40 i S I P R 4RGP, B ERREIRAS T 18 2ORE B2 2
PRI /NAR — BRAZ 41 0 5K ZE 4 (Platelet-Monocyte Aggregate, PMA) K ML/ — A P4 40 41 il 5% 45 4 (Platelet-
Neutrophil Aggregate, PNA)TE, FFid@id P-4 3 J Hodth 7 R FFES S RAS[18] [30]. TLR4 JrF I
/INBR 5 R PR B [R] R AE ELVE B 2 82 m NET BIIE S 2B A7, HEM 51 R A 34540 S S AR T A3 1] 1L/
AR Pt TP T A I 8 I S B S 2R IR 3R, ik — R RO Bk I S 2 S AR i NET T %[32]

3.4. ECs BBUE

IEEAHARE T, ECs Al RIAHLR LBk 7r FAERF MAEFRAS[33]. W EIMAEIRG S, 1B v
T3 SRR B R A BT 55— LA, G T 08 SR S AR 01K PAMPs ELERUE, W] 4% NETs M2 FL 40
-6~ FIAMIAR-1 SRR A T RIS 34]. SR REAAISEML, ECs #id TLR K2illl PAMPs, IR
S el FRE . p-IEFEE M VWF 55, (RRELAAR RAE SN, I 5 BREEAE IR 7™ B R B AH 5K [35].

ECs ZRIHIF A BE 2 41 R 45 3 1 58 BEVE AR Y B i i (i B 22454, HL R 2R OBt 24l
o FEMRERREIRS N, $PEE RORE B S SE S S AR A P R W = e i, ELAE PR e 4 5247 760 48 i i) o 2 e
WA EAR RS, 8 0 a5 M 3 I A 2R B B AR B AR, AT S B SR, IR a3E F1 4 B A I /)i
VR, AR SR EEAR TR il S L8 N A ()T BB 26 F o A B2 A 2 B0 5 T VW 2R I/
BRI IE 7= A AR i, ELRG B PR R 2 08 W2 a1 4 1) 2 0 PP O XIERER 4R, Al BT A4l L SR AR A
BT TF XOn] gk — PO EE MR B, IR AR T B [36]. LeAk, ZHZR40 =25 1) ROS. (R IH T-/ i & n)
BE— A A R AR, AER TR P R e B E R N, W T RN A TF SRR, M E e
AR F &2 04 (Tissue Factor Pathway Inhibitor, TFPI) & & AK, HE—D MBI ML N, HES) AR %
FEM G MARTE A, i S A B ThRERERG[37]
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4. SRR A R4S S B

G A LR P 7 A0 R [RDAEFE S 2% A PR ELAE FH IS S8 5, i S s S 1 s SORE IROBE, 2
S EIIReREAG Ao, HFEHRIEARE S @SN S, ORG24 ED 3 Z4E%NOD-
like receptor protein 3, NLRP3). Janus W85 5 5% 3 5 ¥ 30 K118 #% (Janus kinase-signal transducer and
activator of transcription, JAK-STAT). %K T -«B. MWL S - B & Al - P02 58 RS e i %
(Cyclic GMP-AMP synthase-Stimulator of interferon genes, cGAS-STING)%Z%, L [F] 2 54 S I aiE #1714
E % [38]

4.1. NLRP3 &%

NLRP3 J@ ¥ E AR R T i BEEAEA, HX PAMPs & DAMPs REUK, 1] i B 2 b2 i K
KR RN P B -1 (Cysteine-dependent aspartate-specific protease-1, caspase-1) 5 Bl J5 & il A 41 i A 2% -
18 A4 3-18 5l KR 2 BB, 14 AiE L caspase-1 F1 caspase-11 FIHE, 123t TF FIREAL,
T 5 28 0L DR 1T, 8 Sl I Bk s I, o i i I [R - X, b T 20 4 [ (R g L 3 A%, A s AR T2
JIT 75 R L [39] [40] - ARFE FAG B 78 % I, NLRP3 38 2%t 7] L HoAth {5 Sl gtk — 2B 0K, .55 cGAS-
STING JEHHZ A 5-xB & o #% K 1-xB I #% F{5E 53, W PAMPs. 20 [R5 K & Rl BRI s
T2 R BE A AT SN 5 B LG I R ARG 2R, 3 T (i 2k S e M AR B TR A 411
4.2. cGAS-STING iE 2%

cGAS-STING i@ % n] # 41 i 4 () DNA S8 0% [42], ERFFRET, ¢cGAS-STING il & ()T &5
AL 8 B P U 2 TR T 51 RS 9O A5 5 A S A L T RE 3K AL [43]. XIBEX AT B R L& D B, HAEN
— P RGN B I S LIE AT A SR T A, TR R SR T ORI, T R Bl L R
JRL40-441 ) FE R BRAE R A2 I, STING-IRF3-NF-kB 15 S8l uE , HAR A fE 5 58 R 0E 58
P, ATAEPEEA i RS DNA KPR35 Tt s, 5 T2 Bk BRI A TR R, JE— 0 IR 98 RE I R [45]
AL, T3 Z TR F 3(Interferon regulatory factor 3, IRF3) 1% K -¥-xB AIT-$t 2 3 K 3 2K (4 7T 5 TANK
EEVINE 1 TERRE A, N N S N AT BB, B 5RH SIE TE[46]

43. Hit5SESIEE

Z 5 ML /AN BOE A LA TR R 5 — A R R AR R BE R BEULEE 3-B/ R A e B (5 5
(Phosphatidylinositol 3-kinase/protein kinase B axis, PI3K/Akt axis), 1% ¥ 7E M /MRS RIS 54 S
A EEAEA . /ARG 3R T A 5 G P A A0 B R] R A B A, R S IR AR T B R kR
HIEMEHI[47]. B4t PI3K/Akt il EE 4 K E &4 0] 5 e b b R eSS 3 7 1a BhRE, 3%
AH MR AR AR, AT R Y b PRI M, DR g I e A [48]

5. BREAES SRR RETT RI%

A e ek AR T R B A BB+ > R 2%, H AT B BEXHZIRRE B — . A R L& iRTT
Jiae RYEIA BIWFFTIT 1), o TSR LA S A I A TR 8 B AERE TR A W SRS, bR T AT A
BT S I W R SO S N R SR R R D RE . AE H RTIR R SE b, RER M PR IR T 77 R EL
KB XA T S AL R 7> T I PUBEZG N E o X5 IFBREEAE A 5, I PRIE R F LA SRR A e
FNGTT» AEPUBRE A I FH 2 1 1 Fr) DS 5t 3 T i 491

XM hRERRAT I8, H RTRT T o) 2 (A BTkt S BUAIE R IR 250 D I 3 S 7R (A R 2
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RS ERHIER), 712 T IEERE A SC ML 1) e BEAG A ik ke ke 28 I Tl 5697 . 78 H AT IR IR
SR, R EEI RO g H IR TE ER SR I AR s, L E T IR RORE RV B e, (AR
WA FRI, HRETEMEEZ 8, EEAPIR . RPN B E A, B T2 m e s i
G RTT RL[50]. [RIY, HRTFREY], AR o 1456 2 Mgt AR B gy, A IR i o 3
WL MR T HEA RSB EEEA | (HMGB)ZE[51]. WAk, WHILEE C. FuktiEs. TFPI. &t
I 3 SRR AR UREE OB FHustia T [52]

TENRZ W55 S I MEERE R, /MR P2Y 12 $IFR, anGiehs B . BAR s, OB iE SmT 25 Ml
55 P2Y 12 I 46 KA A i[53 [ FE, 25 (9 1Tb/IT1a (GPIIb/Ia) 7], HERTFIFAZ . M8 LAk
B D AR PR R BT FUCAK, 0 0E ST ik BERE AH DG 8 I ACRE B VR TT AR (541 [RIRE, &% 2H 23R 70 &
P05 2 58 AR S 7T HE I AR S FH B B, SR 259 3 B %o ARt I i& 42, A FH ML 55 TFPI
FAAAISS]. WAk, AR STHRIE S o3 2454w 3 sk 400 o) JOA I s 2 i U B 4 (PADI4)BIGE I #5471 CXCRs )
il NETs JERL, AT 980/0 i E59E -1 NETs /S B TR B[ 56] [57].

TESY I, B A0 MR TH S AR I HUAAR AT A R s A MATE VR 980D 40 B R -1 R TR A | 2RE S
N, ATHE R SIS R AEAT 2R [58]. [HII, MCC950 Rl #IH] NLRP3 @8, i /N % b K7 2
YRR T A R [59]0 WAL, HUHNARZGRT K B bR nT R U8 R SR BE N 1-00 ik 45 E A Bk Ak, D% 20T
NG, 3 T 0 6] P R /) BB TR P I ) B S (601 B BT E A A4 A AINIE 9 % ik B A O ek I 3
BEAS VAT 20 TS TR AT T KBRS, EIXGH RS R ARNE, 2T IR
i S O ML S B RO BRAF DR sl SR 250 PR S F AT 20 A PR

6. FIRERE

JHR B3 A G 1) B 928 1 LA T AR I 3 B8 ) 98 R S 7 5 s L R G R A2 FLARE T, R IR A9 2 46 40 i TR
THBWHF I REF A, BRI RS £ 0 IE H RS P, 0 i 40 1) R S (L4 B %
Yiff. EWEANAE. PRI & NETs. /MR K ECs 25) 2 (R E (2 Bt i 5 e i I8 7 s fh, A& S5
T AR T A LI R T 2 PP Af i N A5 S5 B B A5, W0 NLRP3 il % . JAK-STAT i#i%. cGAS-
STING % % F-xB SEi s, 75 M A G 1B ML h e B s (0 40 M5 5 7% 5 b R PR G RIS E R .
HAT, PiRShuEtasr R ImRs H e sT FB, (8 H RS 67 A SV ATy & B A i 32 2 . [
I, BHEARMREEREAS WY BRI ZhAS AR AL, 6B RS i I AL VR T TR R ASRIE AL H AR, Rk & TR
TR S IR S BT 98 E 5 5 L s 2 () AR DB i ), DR VT T 9 R B 8 I BBk S 2 PR B el [ I ] i
— P SR QIR PRI NLRP3 1) 71 K G328 1815 770 S5 B0 1) YE 7 AR PRI UE , DA DK Bk B8R AH DG 46 1M 1) BE RS
G R TT -
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