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Abstract

KRAS (Kirsten rat sarcoma viral oncogene) is a high-frequency mutation gene in tumors, with a mu-
tation frequency exceeding 40% in colorectal cancer (CRC). The progression from precancerous le-
sions to confirmed diagnosis in CRC typically takes 5 to 10 years, and most patients are diagnosed
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at an advanced stage. Although small-molecule tyrosine kinase inhibitors targeting the KRAS G12C
mutant have shown significant efficacy in KRAS-mutant non-small cell lung cancer, their effective-
ness in KRAS-mutant CRC remains limited. The KRAS pathway, with KRAS protein as its central hub,
connects upstream receptor tyrosine kinases (RTKs) and downstream effector molecules, forming
a complex signal transduction network. Inhibition of a single target can lead to various feedback
and bypass activation mechanisms, which contribute to the development of resistance to existing
targeted therapies. This review integrates relevant research achievements in the field, summariz-
ing the mechanisms underlying resistance to targeted therapies in KRAS-mutant CRC and corre-
sponding strategies, thereby providing insights for overcoming resistance in the targeted treatment
of KRAS and related mutations
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1. 518

R4 [ B iE A FE ML (JARC) 2024 4E R AT 2022 4E A BRIERES T30, 45 B e 18 25k R
Hoh S T A REE R 9.6%, MEH=, KSR T ANBO & E S AL, ALK T[]

EEH e B b, KRAS SRR 40%. RAFH KRAS FAEE T 52 441 GTP/GDP
1B i1, 3 KRAS EEH A T-5 GTP 45 & MFFELBUR IR, 2 IR S i 2 2445 5 18 B (W1 MAPK
PI3K %5), {RidbRanfurfiiG . Mo, 228, B R mE4E RS, ik, KRAS SARE n] 5 %8 g i Er
5. sl R ERE, 5B RIS BAER, MTEZ AN T3 B0 25 e 5 i gk [2] -

1 40 ZAEMTFFCH, $EH KRAS SRAKI 2900 5T A IS R MR, KRAS #A N2 “ANHl ik
257 pE s, WK EZTTHMER: 1) KRAS FEREFH, SRZIRZEMEGKL S Xk, LR S5/
DTG 4R 2) (R KRAS BUE I E - SO A AR S, AR S5 AR X TR L,
BE— B IR T SRR 0 H I B [3] [4]: 3) KRAS 4T GTP/GDP 454 KOs/ S i fEHc ,  Hxt
GTP RAWERAM I, (N3 SE SR GTP 5 KRAS 44, WAt LAFHERIEH S
GTP/GDP 45 &I (h A& FE, WK HIBHAS T #E 15 KRAS 2941 A& [5] [6].

2013 ERF AL R L, KRASCYC SRR B [ T R ILIX 455 (switch 11 pocket) H A7 78 1] 5 - Il 2 e i 2k kA=
MGG AR AR [7], TEMREERD b, T REFFESRRI R H I Z A KRASCZC 05, 152 FhsL kg
B UM REPE8], i, AMG 510 (sotorasib)5 MRTX849 (adagrasib) 77l 2021 4= 5 H i1 2022
4F 12 A3k FDA it T KRASC2C G4 RYE/INAR fa il (R19R 97 s AMG 510 75T 2025 4 1 A 3RHEH]
F KRASCYC JRAFEE R It 45 H i R YT - AR, 7E4E EMRE T, KRASCYC AL (54 3%~7%, HXt3H
AT 2055 T AR NI e [9] . &5 B Hh i DL KRAS RAZ AL KRASS!?P, {H KRASGD ¢
AR R R A R R FE R B R LM 55 T =R S 2, 33 KRASCI S8R R (1) Switch 11 14853 LLd i
WIS /N 74541101, H AT IGsRAET) KRASC2D S il 751 Fiii, K2 014545
AT A PRATF ST B

KRAS J&# R 45 H i i W IRB R A 2 —, Sl Bt A bn By, HIHM @R
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MR R 22 S R . TGRS, B RTA N 3R R AR K RS2 A (EGFR) 1l 77 4n 78 2 & PR P S N 24 . %1
X KRAS RAZ LRSS B, IR —ZAn b7 s DME R AT T B A DURER R, JRITIRBEA R
[11].

KRAS 5 5B 2/ ST 1206 AR o Rs, H R % a2 KRAS HEH R
VL E I e TR S IR A A R SR A% O IR B S 108 I DL KRAS B A AX T A, &
FUE AR A IR (RTK) S RN >, TERL “A5 5480 - B3 - 0N 7 1 mes, TBRE 5
BRI 2%

KRAS i Eif RTK @55 EGFR. HER2. MET. FGFR. PDGFR %, /& EGF. VEGF. HGF Z:41 Jiu 4
S “BAIREE” ; KRAS R EEAHE MAPK., PIBK/AKT/MTOR Fl RAL =4 F47 HA2 X155 %
Yo BT KRAS (555 SIE 2 M%, Kk, £5%F KRAS FR456 T I 24 &I PR P i B B R, A rgh
G A ARSI TSR, A KRAS S8 25 B 79 % A I [ 36 97 247 1R 7= AR ATL 1) B S0 558 e &5 7 v i
17T 408, RNk KRAS KAHIG AR 167 T 2538 2%

2. KRAS 3BT 4 B B #3718 X $U 51 25T 25 B9~ A A6
2.1. KRAS i@ % ETiifE S 1 RIR BN X =5 R

KRAS 2N ESH SRR, HistFEER EGFR. HER2 2541 3R 1M 2 AR KIFE 25 4% .
KRAS {55 £ Zilil MAPK. PI3K &A% Lol i 7] R iiffk . 6T KRAS iz 51 L a5 M s ER
A%, RHPELS 5 38 B 0 EE T RO B R S 25 T B ) S B 2 —

2.1.1. KRAS LS8 BEHHIT A S

EGFR 1 HER2 #44b-F KRAS &1 [, FU#TE 60%~80% 145 H Wi 4 23 i 3 IA B 1 30
J& B AE4E B e R U 2 DS PR el B o Rk o . TS BT ER EGFR I FE HH] KRAS 1)
FUEHES, WUREHESRE T KRAS BFAE RS . ZTUIGRITFTIESS, 7428 B hin] B35 005 KRAS %7
AR ERE B R AE AR H(0S), (HAE KRAS RAF -, Toib & OS i & Jo ik g A A7 HA(PFS) Y A i 35 3k i [12]
FHNAENUHITE T KRAS RALT SEURIHE 570 T KA T EGFR HIRFELEUE, MIfiHI 55 EGFR 41
FIHIVEIT BOR[13]. Ak, KRAS RAZH 5 PIK3CA/PTEN {5 5@ 1Y 50 I A%, Wit — b na) s st
VU2 R HTII 251 [14] . B EIALHIAE, IR oA s i s ECIRES BN 2/ 3 EGFR 1 71 24 ()
HEF R 2015 FREW— I A TR, 4 A, SEAEEEIE ST HIF-1o 1930 R IEGE
T KRASCYY (545, kMg a2 R sl Mgk e 935 3 o6) EGFR #IHIFRI MmN 25[15]. MR, BT HER2 th 3%
it KRAS KR MAPK. PIBK S5 B AL 15 5, 1 KRAS [ RAL IR A] 5 80T Ui 2% & AR A
F HER2 [MRFLE0E, HI55 HER2 ¥ [a1YA T 197 24 [16].

2.1.2. KRAS Tii#{E S8 BEHHIT AR ZS

1E KRAS FRAZ R i, S U MEAS 5 08 B 1 e 0TS 22 B0 KRAS TR B — B sV 7 AR A PR, DALt
AN KRAS RIS —{5 5 0 P e UG RGBT R st . DL MEK #1758 61, PIBK {5
SR IE IR B KRAS S8R 4H %t MEK #5075 OG0, 1 PIK3CA [RIZhRESR A I 28 A8 ul
PTEN [k 3 ] S B0Z B 7 5 WS, A5 MEK I N 25[17]. & E 58w, SIRT2 6t
A ADAMLT W& 5 MEK 415141 KRAS 4S5 B VA T B BURME A 2[18] [19].

2.1.3. EiEE0E KRAS IR 2
BELREEE A KRAS (130 770 28 I R o2 FH o i DR 35 B A S 0 25 2 F LR = 2B i 25 . A F R iR, AL
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KRASCC il 771 AMG510 1EH I BUB AR = b R I, B - (BB AL(EMT) AT 53 22 S 52 AR i 2 R B g
(RTKS)E #rkik, H#imEiE PISK 5 MAPK {55184, mAFEMZ4[20]. Aok, EidX4E KRASCZ )
il 7] MRT X849 (adagrasib) 1 AMG510 (sotorasib) A7 i /= AE SR A3 1 i 24 58 2 FIRE AT 20 07, 45 RAER,
HZIHLH e KRAS —IR5EAF, G12C ZEAi R K & MET 2[R 1, NRAS. BRAF. MAP2K1 %KL [H
YIS AR S5 55 B U s WL 5% 1 il i 4 22 THD L I SR 200 B A R B % [21]-[23] . k4,
HER2 KiA L], FAK-YAP {5510 5 it LLA CDKA/6 561 20 A ) HH I 2 o 38 R 2 ol A 358 ik
M IE Sz 2 5 7 KRASCIC S50 (1 26 7 B [24]-[26]. HAEBITLE, £ KRASCZC 51697 )5,
H0y BhR AE M N KRAS RIS M #R RS, T 59— 5070 WId i 58 iz 2F K BH 7 52 A4 (EGFR) L H e 5 5
PLIR S AR 3G FE AE 77, PAR A OB 1) KRASSI2C 3 (9 R4 RF Hm AT RE 8% 245 1 i 30 1) [27] o

22. MBERRY

2019 SEM—TRRF T, I 45 B 25 3 B R ER T 1 iRl S P KRASIMAPK {55 38 I R,
SZERRM, MAPK 15 5 1 53 57 i M 5 H X EGFR il A7 I M. 25 U AH 95 [28] . ik — D i #T KRAS
AR N R T, AR SE 2 AT, KRR R N R AR TS . KRAS-M1 (KM1)5
KRAS-M2 (KM2), HA1, KM2 IR RHIE RN E R - (B B AGEMT) TGF-B 15 5 A I A8 A BiAH JC I8 #% A7
EEE, R EAERIRIEERRE, SRFARBUSHIE 1M KML RN = ZRIH A0 5
RNA 5 30 FE 105 - X PN TERI 2 T4 BB 7R T KRAS 84825 B I 7 TR A & 2 S EUAN [F) JIE 7Y
Xof B[] 24540 7 A 2 S SR % i 245 1) B SR A ) S R [29]

2.3, ITmEs

KRAS 845 ¢ B figg i % HoAth AL ST 2590 2 7= AR i 24 e, JCH2 T AR RFIE 1 KRAS S8 748 iz 4 i,
WHALIT 259 5 pe AR T 291 [30],  dndERr 4k H R AT M AERRIE ) KHDRBS3 A1 5 45 B e T4 g
HIRF 1) RADS1APL, fF KRAS RARS: B i I RIA# G N, W 52m 1 45 B4 x) 5-FU 1Y
i 25[31] [32].

3. ETFESEREHINEKARIKES KRAS BT HIpE AT U
3.1. ETF KRAS 5Bt & K

KRASCYZC ikl 771 22 iy KRAS JRAZ IR VR 97 I T8 3 AL, e PRAFE 9 0 5 LI 6 24 W0t 3 /)N 2 it it
S (NSCLC) B 17 R i, {EX &5 B Vs (CRC) B 2 (7 A0 A BR[33] [34], 1M HL Yk 47 7E 3R 15 1k it 24
il R, B OB 25 SR, X B e KRAS HII VAT KRAS JA8 45 B fUs v 2 0 2

EGFR E 5 KRAS [ i, HAFEEZMABAZE X, #IH] EGFR PR T4 KRAS TAL [ KF 4L
T TR B B 1 S P, TR LT e S AR YT PR AR SR T AV R S BUARRL . ERARTE 2024 4
(%) F [ I R IR 2% 22 (CSCO) R EE T, B 1 X ME4E BT ) RAS. BARF B[R] (1) 5878 Y R B A= 7Y jif
TR, AHERREVEZE YU T KRAS RN H . AWKV, KRAS RAM CRC 4ifi &+,
EGFR 5 5 FdE 2R, HAI RS SYEFr MR b f7, fE3RLep A, A EGFR AIILAd Y
(T KRAS) H] BE 7 H i[RI 2N [35], By LAJE T35 5 % B AN R B & SR BE , KRASSI2C 1|51 55T EGFR
BPURIERA, AR SR RN SR, TS 58 KRAS RAL 25 B o 48 A 16 97 IR BIURE 1 [36]
[37]. TE—TUmPRIRIGH, Xt 44 Bl R V45 B M J8 3 1EAT AMG 510 (sotorasib) SR 257677, 32 i i ik
4T AMG 510 (sotorasib) 176 2 BHTEE G VAT, HRZIEIT ARGV TT B R LR AR RR S 7] 43 7 4.3 Fi
7.6 ™A, s TCEE R AAF IS N 5.6 A1 6.9 AN F, BRARYT IR IR A U B T AR YT [38]. A —
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T RS 7, MRTX849 (adagrasib) A 7 % & L HTIE A AT VI BREEL A2 1 KRASCYC AR 4h B g i
o B I R SR s A 22 A [39] o AT HAE SR B, KRASCRC HIffil71 5 EGFR HyiFl FGFR3 i 57
=258, A GEE T KRAS RARSE B e X B3t i 26 P [40] .

WL R I, A7 E MAP2K-INK-JUN ¥ S Bt 05 F1 Y AP LITAZ-TEAD 2% £ 6T KRASS2C |
FUMIIN 25 K35 7 OSE M IRBE A, it KRASSZC Hlii FIE & MAPK, #il5f] HRX-0233 = TEAD i
A, S REIG SRR SR TS T, PN KRASSL2C i) 71 5 FAth 5% 40l 77 (1 B0 & 45 FH R it v v 7 ) SRt
[41]-[43].

AR, RIS 10 (KLK10)tH REE#E KRAS 848 1 4 H i it B R R, 5
ot KRAS #IHI57BI M 245 Bl KLK10. PHYH PAR1L-PDK1-AKT ZiBt e i, 1] 4 3MH] KRAS 5845 45
BB, $EEx KRAS 75 i fUs v [44]

BT FRBCA YT RS IR AU, HAEIR IR (e p Tl 2 )RR 58k : w2, HLHIh RZ
(IR PEBE R LB N, SR T I S S e w0 . HOk, BRI S 55 RS S R S ML S 2R
RANGRAGYEM 2, A8 — 07 M LAFREA 2. Ak, BUA RS 2k | B /NI 7T, Ho7 &S e 2k
i) 5 TIOR8 7E R B AR B0 UF o B, AT SRMS 32 A% KRASC12C A, 5 54 LI G12C A%
R Z /AL TFB . L, RORTEAEERINZG . P72 RS e N R AR IR PRI R 45 5 T
IS BT

3.2. EF MEK I B0EL & KBk

MEK il 7%} KRAS JRAZ 25 B g G IT CRANI &, Aot iR, @il ERBB3 (HER3)%Z 14
MR BRI, PRS2 T E E BAD 1 BIM B4 YRR 1L, T3 e KRAS JRAZ 4 B g Al ifidie 6 MEK
O U E[45] . T HRVARTT 5 80K 52 1A T S R U S 0TS MRS N 2, BXA MEK-CDKA4/6
HIFGTT KRAS J48 (45 B e, mIik 3] 60% IRy i8 , iF B 72697 L B B R4 F [46]

MEK 55 s (i #22 # 8, H7 37 R KRAS S8R g op 77 70 5535 25 55 o 70 il 5 g g A 70
o, 25 B B T R AT 4R 40 AR KR T2 4 1 (FGRRL) AR MRS , A S 26572 42, SR 7E KRAS
RASGEH e, AHZZGWA R I — 2 EURME[47]. 2R R, KRAS RA AL p-ERK2 5
p53 JERUE AW, T 126 & Je il ] ERK2 BIBERR AL, T BHWHZE SR, 2 R s AR A p53,
I 5 IR 40 M R T2 48]

WFE R, EHEFE MEK 0617 125 8 2 5 Bel-xL #5417 ABT263 BESE 1], [RmHI4H] Bel-xL 5
BEIRAL ERK FIZRIE, Aefs v IR & Hh 36 B JE it 24 [46] [49].

BeAl, 1EFT MEK F$E R 2 /K fif ik & 14 (Proteolysis-targeting chimeras, PROTACS), Ag gk £t
P AR AN R s MEKL/2 B BB & XK B2 AR TN T 52 A (EGFR/HER2)/MDR I E 8 8, T [R] i 410
254N 2R MDR HIE 55, $0H] KRAS F878 45 B i i 5 i 28 1 42 K [50]

JRFR TS BhEL: R LA MEK HIF AZC IBG 58y KRAS AR B e it T H 7 m, (|
FORPREAC TG 2 PR . w2k, Mg ss R pARE S OB EGE HLE (0 RTK _E ) nris S 80mt 25 . 3
W BRI HEAEM RSN, BRE TRTE DS BEM 2. A, DU U R RSB 2 05T I R AT
WHIT, HAENAR N BT R0 221 i 7 KU R 5, T H PROTAC HIG IR AT AT AT TR IR .

3.3. EF PI3K H#IHIFIRIEL & HEhg

B PISK 1 75 (38 B HK 5 S, B AT BT 70 AR o FLrf PISK T MAPK {5 5 38 i (¥ XU ) g ki
7] ST-162 ATl KRAS FR72 ) 45 FLI Ji8 73 B2 LR A 704 P R ¥ 3 5 ST-162 BB 5 S A 20 s v 7
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WMAE KRAS RAZ S B i 7 A iR AR A b 7R 7 R0 s [51] . AR FERIEE 7% PIBK/MTOR XU/ 43
TP PF-04691502 M 2] KRAS 748 # KIR M R B R A, R IZA RS T # 5% M+
FOX03, iS5 T EGFR. ERBB2 (HER2)H ERBB3 (HER3)MIFE. WML M ikt HRImIBEA 18 ]
PIBK/mTOR 1 EGRF il 7] fe i3 KRAS AL 45 B g 38 197 24[52]» I T 45 R0, R
PYBE AP 2535 Ak &) platycotin-d FTIEIE K] PIBK M1 AKT 1554, i1 KRAS 54845 B i 41 i
Xof PG 2B AT A U, HIHI MR A A IE RS AR 28 (53] [54]

BEXF PIBK I 7RI E A5 SR, A LE S S e PR AR S B b A PR B R S FH e o At il 52
FEBRACLE 5 B (W3] PISK/MTOR 5 3 EGFR/ERBB Kk i) % S 8N 25 kb, H 2585
bR REH R BN, FEWAT 32 . 2SR > TR N R A R 23S AL B4 platycotin-d B HT HIHE
IR, HZ M. 2 RS P RN G HE LURS B e B, 25030 0% S 8ORE . & bkl
AR, EWIT AR EE ST EA.

3.4. ETFTHELS RS

S ST TR 24 1) T 180 5 S 0,35 T MliCroRNA-143 FIEEAZ I 1] 15 5 KRAS S48 [ 83 40 (19 U T
N MiR-143 52077 KRAS SR 4k T7 B BGRI[55] . AW 50K A NF-xB {5 5 #0177 PMBA
5-FU BEAVATT KRAS RAFSE E g, K I PMBA RJ 3@ 14 1 caspase-3 75 M RAL #4012, H 520
i 25 A bR SR IK, PMBA B3 1 5-FU X KRAS 584845 E e (76 TT JUH[56] -

BARVEZH A MR T KRAS 278 F g, (HA B Felid @ B8, 43T KRAS AR TE 45
L VG 2 B B S AT RGBT R IR R, 4 SRR e G 5 R SR HE AR FH U 2 U AN A B R (M
ST YNER KRAS AL M/ 45 B e i — 2097 77 £ [57]. 4-AAQB (4-acetyl-antroquinonol B) 574
ZE RS N, A R EUE AR EY) EGFR 1 p-MEK. p-ERK. c-RAF/p-c-RAF ik, KHE KRAS
GRARRIAH o} 76 22 7 BB BURNE (58] SIAMERBET B RIS KRAS JEAMR % UIMISC, BEA 1 FH RS
T S50 RSL3 VG Z & Fidi, RedlamBkatrs, MIMIHY s E 2 8 bt KRAS TEA8 45 B 40 i (1 2
YEFI[59]. BRI AI, £ KRAS 23545 iy v, #4E7E & C RESCE N BRBR B S0 (PDH)TE M, AR5 15
LR R = RIRTEIN(TCA 183F); 7EPL EGFR G 7+, BREAEE P A AR M 48 2 S 3 KRAS %
A RIEE i xt EGRF M FIIN 25 (10 R [ 2 —, E4i4E R C 2 AL IEm Pl EGRF 45 H WM 167 iUk ic
AR — P IRIUE[60]

BExr FORECE SREE, NG R TG AR K n) . 22 BOM B M A T IR AT 7 B, AR
AR R AVES R TR . BUAER R GE T EIRAESE, (HILTIAE 2 IR TR R RIS . Ak
R KRAS AR 4T EGFR 77 USRI HEE , 5 Al BIRA 0 R FE B HEFE AR R . X LU SRR 1Y
RAEMARA T KRAS FRAL Ffr B 5 (14 5 K 25 308 6 1 24] D 2%

4. ZIBSRE

7E KRAS RAFAIGE H i b, 55 B8 A5 5 T8 B I 0E 2 a2 0L 2 — oG8 I 16 2 5 st
KRASCRC #5154 ) MAPK. MEK. PI3K S5 % (4 IBe& A, vl R 2 N2 11 W [\ B E 5 7%
S IV iR 2 I VA T R U o BT ) B — S e DU R TR R AR — AR, R RRE
IR AN ] KRAS JEA8 1“2 KRAS” SIIFISZ 22 Dk . SR A 3 o il K 978 57 i v 5 80
M2y, S PETHAIT AR, (B nTfe b s i) aE M R Bi[61]. DA TL R R, AN RAS (55
T rigosertib 7EAIT i 24 K N S M AS AR v, 97 20T FOLFOXIRI (45 B % O IT B G U7 %8)
K DUREREBT T F[62]. UbAh, #iBLZ KRAS il 5 BI-2865 Ref ik 4E & 27 KRAS RAZ 1k J¢ BF
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A KRAS, Tfixf Hifth RAS FIEER RSB/, TEHE ST R[] i 5525 AR 1 A% ez #0170 (v 7 25
[63][64]. b3 —Fh e mg S i 25 (A B AR R HE 1] KRAS, Btk &4 TKD w4 0 45 & 40 i P i) KRAS
H 5 FHLEBHARR, o B ESR TR S B R W B SRRIER . Bhath, 2 3500 AR AT BT 7T 32
7N, RM-018. Pan-KRAS-In-1. RMC-7797 Z5#i Al (K) RAS #IiII5, X% i RAS/IMAPK 15 5 54 5
(T 24 R I H R 498 [65]

KRAS J&42 7E 5136 R A BE(TME) R #E S22 /E H o 387 KRAS AI /3 CXCL-8. IL-1 &2 Fh 4
SER T2k, FFE0E NF-«B. YAP-TAZ & JAK-STAT %(5 Sl #%, #E— ARt R TR . X eeif
AE I s ) 502 e 8 A 5 1 B3 5 A P, o i g i 6 2 1, AT BIX 20 595 1 JRE [66] « 36 T+ E 3R L,
B [ R SR B o KRAS RS T 4 et (V6 TT SRS 2 — o TEIRIR SRR, DURER i HERRAE
KRAS RAZH R VRS B e 00— 2RI6TT 254, 12580 ) e U5 AR e, a8 e e PRSI 4 R AR
E5 - (VEG ) #H ] Jir o 3 A ML T F, [ B 0o PR AR 88 = AR R i o b T DUARBR SRS BB T v
YA Sy, TR 5 2 s L A AR e VESE N E T 2 WL A 52 e,  [RIRAE KRAS SRR 35 Hh 7R
REIRITRR, B 2R AR BAG. B, RS IR MRS 258, o8 KRAS AR g
SRR TT PR AL T B B (5 Sl A S — P E R AR

E&WE

AR A 51 6 11K1(202305AF150054) ;
L B R B K 22 A - BT 78 A2 3806 697 %4 43 (20255023)
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