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Abstract

Optic nerve injury always leads to irreversible vision loss. Retinal ganglion cells (RGCs) are the sole
output neurons connecting the eye to the brain and the most critical type of neurons in the visual

EIREE

XEEBF: PR, FREEW, 240, X0/, S R 0 Y R 25 4 A B AR A 2 AR S B AR R SCIE R D). IRIR
£33, 2026, 16(2): 122-130. DOI: 10.12677/acm.2026.162369


https://www.hanspub.org/journal/acm
https://doi.org/10.12677/acm.2026.162369
https://doi.org/10.12677/acm.2026.162369
https://www.hanspub.org/

lig

&

Rz %

¥
gﬂ

pathway. In recent years, advancements in technology have revealed significant heterogeneity in the
morphology, gene expression, function, and connectivity of RGCs. Different RGC subtypes exhibit var-
ying susceptibilities to injury and intrinsic regenerative capabilities. This review systematically
summarizes the heterogeneity of RGC subtypes, elaborates on the differences in their responses
to injury, and explores neuroprotection and axon regeneration strategies targeting specific sub-

types.
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1. 5|8

MR350 22 5| A 48l 5 (1) 78 14 DL S A0 19 iS4 22 15 41 ifd (retinal ganglion cells, RGCs) It T2
X FE A 2 MBS MR L R B LA, BAETEOGIR]. QMATEAR 2R [2]. Leber AL PRI
ZNRAR[3] BRI TR LR A [4) AR K [515 . —ELLAK, WF7C LSO T i 5 4 v R s
WS AH M N P A S S g LA SRR TR T A S, DLSCIEE R RGCs I LRI [6] [7]. (HIX 1L
5 Tt PRI PR AR AT TR P 0R Bk K, D BB P A0 0 VK B PR B SRATI R R R

RGCs @A TR LN JZ I —RM &0, HMRE ST RAAELE, WRIBS, 55T M a2 5
AL A5 B 2 i P AR (8], IEAERINIE SR, RGCs VE NGB B & v 4o, FEAEThRg
— SRR, TR BT A IEAS . THRE. 2 TR S AR PSR b A FLARRAE ) AR A
SABER[9] [10]0 X EEERY 3 1 ST gmAd J7 1) 5P BESEAR R SIS [ 11]-[13]. Bk, TEALMZ
FFHE(ONC)J& » ARl RGCs WAL A7 & FI AR BE JJAFAE 38 22 7 [14] [15]0 DRI, RS TR 1 38 1v) i S
B g9 Bk e LR AR /10 RGCs AL, AR AR AR R FE A S8 SR 6L 1 38 T B AN 78 5 170

2. RGCs T BIpg 4>

£ RGCs WAL 2RI s, KW= 45— HARMEIL I 8048 . 1645 F, W08 2 BAK TS =245
#EXT RGCs #HATXI Sy —RETIRAZARHAE, WA K/NGOIE . W REF RSE B A N WOIRJZE A 1) 73 2R
FE[16]; —RET AT ReRr I, BAET7 IR FEIE . J7 I HE | 18 B BURNE DA R N TE G BUR S 17] [18];
SR TAREY, W RBPMS. Tubb3. Opn4. Runx1. Zicl 254% 5 i 5K 7B A 19]. 2R, X
eI AT L CTIRE” . O T WMRRHEZEIGEAE——XF M, 7R T RGCs BERNTERI R At
Bae %5[18]5 Briggman ZE[20]HF ALK BIEAS AT RGCs 7 LS 5%mtS A H 55 E; Dhande %5[21]
ROLBIERIEHF 9 FArid, RGCs fEIhRER N R B B S itE . R 410 R R RS
—, BEEMAEREF AR SHEIS RS S, H5r RGCs VAL 7R 518 1% HH (1 3 B8 A € CLz A0 e B

2.1. Alpha RGC (aRGC)

aRGC 72 RGCs IR~y Hig MR 2 —, 2 Z M AL sh Yy 56 73 4 [22] [23]. BA Ak
R B TR B IR 0 ] L 52 B0 S AT MR BT S S RHIE[ 24, O Hm RIS M4 22 8 H (SMI-32) [25].
MR aRGC KGR B E 53 Jy 2k, FTHE— 07 NI IIREI R . HOLFFEER aRGC. HOGHFIN
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aRGC. A MHFEEA aRGC ML eI 1 aRGC o 33X 67 R 76 A 0 it o S 48tk a0 A, S 00 W0 28 3 iy
THME X3, 11 B A B B W4 Hp 43 A TR X[ 24] [26]0 X PR AS SRR IE AN 43 A A5 20 Rk kR 1 AF 2
e YIME G . aRGC H A PRIE [ AR 2R SN BB 2 T, R v O A0 3 A5 B A% 33 2 AT R 1)
[ FE(SC)#RZ AN AMI R A (ALGN) IR X o 2438 BB M, aRGC 2 f 517 K & A5 5 B4
Mz —, BeBEIRIEA TN 5] T EEIT N9, £ T2, BT aRGC WA= 3RIE Sppl Ml kengd 5
K, Horp Sppl gt 4y b BB 25 B AR R 1, kongd Zmt FELE | #5 M IE WP B0 [27], FRIAT B SMI-32 it
AR . SR, AFENERLE S Thric LA EZESR. Flan, ON BRI OFF %4y 531k Opnd A1 Tbrl [14]
[27]o WAL, ZR0GHFEEAY aRGC /K FRISHEME H, It BE A 55 < M1 [28] .

2.2. PRTELBUAT M EE 4 2 45 4R P (Intrinsically Photosensitive Retinal Ganglion Cells,
ipRGCs)

ipRGCs A2 4k WU SHE 240 i FHARAT 200 2 5 R 30 PR 585 = SR 0 I8 B 4 [ 29« ipRGCs 114 A 1 il SR S
PERIXBAEE, ZHEE H Opnd BRI Gahs, 2O AME 540t 19 XE T RE[30]-[32]. ipRGCs 1]
FARAL TR ZE(GCL), W9 A T N AR EANL) R E W E, FHTEIX S 2 A 5 A [ 2 8 [ 30
A B FR TG TG0 BT BURE e M R AOERE [33] MRIETE A SAAE . A BRI S B X AN R, /N )
ipRGCs #1709 M1 2 M6 NANER . H AT, 78 R A KSR I b AP 2B 1) ipRGCs, 737 36
LT/ M1 A M2 WEA[34] [35]. Horf, MI PRS0 B ER AR IE KT i, SCHIE A KON i
N, RAFAERGI T RER R QAR , R EERG EAAE X R (SCN) RIS T 55 BT #%(OPN), 4
Sl VR 4% B T ARG FL oG A [29] [36] MEAh, BEFRRIL, M1 EAGEIE S JE K SCN B4R 44 22 40
28 4% % X (pHb), AT I6xT 1 AR IR [37]. M2 FRY IR 22 582 5 A i 4 R i AL X O S R [38 ]
1M M4 A1 M5 PR 5 A5 DIREAT %, F 2B % ALGN, E A5 g ht[39 M0 L BUSEE JR45[40] [41]
HORIEVER . Bh4h, Liu ZMIHFAKIL, ipRGCs B AEHRERJE G K B K IE 5 5 M I AL I T il B B2
YEF[42].

2.3. FEEEEHZTYAE(Direction-Selective Ganglion Cells, DSGCs)

DSGCs & — 2% 77 1Al 1438 S U I P 2 A M [43 ] FR 40 e s BikEME, DSGCs 1] 43 8 = KIE
%1: ON-OFF-DSGCs (00DSGCs). ON-DSGCs 1 OFF-DSGCs. 4% 11, 00DSGCs [ 58 2 W2 43 i »
374 T IPL 1 ON #1 OFF VU2, F-5 75 2R Re XN 20 i LA S 22 19 T K 4 i TR 1 SR fir i 422 ; ON-DSGCs
(IR AN 43 AT E IPL f¥] ON YEJZ, T OFF-DSGCs [R5 R0 A0 . AEXSFRIE, FEZ MM LA, AT
IPL ) OFF W2 AM[44] . #4123 w77 7 BIANE] , 00DSGCs #E— 3540 NIUAS /IR, 43 730k 50
AN S AN AN 7 1 ()38 Zh UK w7 1m) R IR 2 5] R e S 3 B R L A0, T 22 7 [) (AH e 7
) JL - JGHa 2[45] [46]. ON-DSGCs FZ A 534w i5 7] 1A A& /) (132 5)[47]; OFF-DSGCs JUlAS JIHL
S ER A _EizE, IR SRR R IE R N> T B JAM-B), I HAEFR A J-RGC [48][49]. DSGCs
(k28 1 B 5T 22 SC M ALGN, N K2 HEA 3 23 (B2 2015 2., S 58 SR AL 54T 4 I S 45501
2.4. FERiB S0 ESRS(Local Edge Detector, LED)

LED 5 7E K AR 3 A3, & —JRHERT I Y () RGCs [51]. Ja 8RR AR I, /I BRAR I s A
e — Rt b b B B ORSF I RGCs R, HAREASAERFE 5 LED S, #idar4h W3-RGC
[52]. fEIEZAS E, LED U912 4045 T IPL ) ON-OFF 22 LAk, BT AN, Mk MBS R %4,
B A AL R AR (X 4. X RhSE RS LED (UThRE XML, TRt b, LED ik3edhm S il
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%, BATL - IS GTRIE S IR, SO RS2 B N AN S DS SR A OB, T RVE Y AR
RIBTEN N R XL X Ia 3 m FE UK, (B AR e F . est, fEE3ss e, LED A
Z 5 HMEGH, 102 1T T IR L U (0= i & ) [52] [53]. BRI, iZSRANRAE S L A7
A REIN IR R BB A

3. RGCs TR SMMAZRIPFFE
3.1. 7B RGCs TR GIRMER

FOR I Z AR, AL RGCs TEM I G M S AP E R E E R . XF R AR E SR
FA T ) 53 F LA RHAEAR DR [14] [54]

AR5 AR, OO FREEA aRGC A ipRGCs B H s (TR 52 15 T 40 B e 784
aRGC X505 mi BE UK, W RS Ve 3 A W SR EF A sk, L4 R AR B4R [54] [55]. TEMBPEmIR
JEAER R, aRGC AR EL SR AN 32 1 s 1 ipRGCs W 2 [M A7 AE 2 5, ot M1 BU s BN A2, 17 M4
BUTE 524015410 [Rl— A RGCs FEA RIS S5 F IAAIE 22 7, TRE 2 MR B (02, n 98 95E [
TR FAPIFEESE . 534k, DSGCs TEM AR AR Y rh 403 I HH o B2 401k, 10 Je A i 25 2k e
ZE T HARTAL; J-RGC Al W3-RGC 7E 2% G M2 M 45140 SOV 28 B 13 A58 2L b A9 S8 I T 20%, &
T MR = S 4R [56].

AR S5 5 S I B I BUE BE R % RGCs Z e« Zhao Z5[57]HIW 5T &I, aRGC 1EF JEIRALHH
LR AEIERE AR, X —IRS Sppl 15 5 B IRE T MBS % VI G . Sppl 1E#G fERIE
I, B 5520k TtgaV 45 AR aRGC 7736 [FIRF, FHE ) Sppl Alik—25 mTOR {55 id %, 35040
RUHENE LIS GE 1. ipRGCs 1 s 511 52 M FIFE S Sppl/mTOR @ESHIC. ipRGCs A & 3K iA
Sppl, L5155 4E FFi s i) mTOR 354, A B Bk T IE - Rg

RGCs V2 (1) 5y 451 14 22 53405 40 M P9 76 (10 40 MO 25 T e S R PE S DA G, B EE R bk 3h 7724 5 Py i
NN . FEHRAA , BRI S S SRR RGCs &4 Drpl S HIZRRI ATy 3, il 54k
LA WS 1B, 5 E0E M A BRI T @ S . 1 aRGC ipRGCs 251 52 M2 (1) 2 R AR mil 75 8 7
T, JEd AR R AR AE, dERrRe R ACARES, WIMTIELZIH (58], H4b, S AL 1) N i
W 7 S84 R SR, P09 I R BT B B 1 S SRR [ R T ), T A2 I RS R TRE1-Xbp 1 388 #3858 % 5
HOAPTERRE, N5 R [58]

Bk 4b, RGCs (X Aith 2 5 5% . Kingston Z5[SO1IRFR LB, SMEMMLR0IE,
PP SR S X 331 RGCs B8 FLR AR IBAT PRI, IX i X SRe 5 1 Sy i M R LS RFIE R - AR B3
AT o %05 5 SRR 5 SRS K A R AT AN A S A S S A 2 U A0 R S ) RGCss
[F 53 TR B A AR T S 2R 9 GPNMB Rk, R&SHZX I RGCs F i .

gi b, HETRF SR IN, 4506 RGCs WM B BN 52 1, MiHOEEY RGCs B 52 4. 4
T2 L, fifs24 RGCs 1l H m3RiA Sppl H4EFHHILK mTOR 55 . XUEEH A4 R RB T RGCs X4
13RI 2, e G A S 75 R 2R R N TR — 20 g B .

3.2. AR RGCs TR BEEEHER

5 G PEAEL, AF RGCs WAL AR BRI R B34 M ik . 72528 RGCs Y, ipRGCs K
W SR N IR R AR RE 1. TE/ DAL BMG(OTI A, Zhang ZE[60]1HIWF 5K, @I @FR PTEN Al
Socs3 B K I it FRIAFEIR WA E F2 R F(CNTF),  FIE3EL R AR FF 5286 OPN 1 FF SOt FAE koK
Z KT ipRGCs, JFAEH OPN MG @B M DhRet S flide s . b4k, ipRGCs 5 2R P AR BE B W35
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I FHARE AL, IR Ak SRR AL G AT TR . HHLEI AT Re 5 LR LA THA 2% 1) mTOR 155 g1
SRR IS AR, H PTEN k5 CNTF WRE R AV FEEM: 2) 78 OTI B9, DLK 155G %1
KPR, TS 5 1 RGCs BIFETI T 3) FHlG, MIgF MR RIEE L, W Sox11.
Sprria. Gal. Atf3, #t—DiGiRpiERE)). MHILZ T, aRGC MHEARE 58T ipRGCs, (HIEFEE T
A SEEL A BF AT R, W PTEN W] @ 35 1808 aRGC A5 A2 fE /1[61]. Duan %5[25] &K 3, #% mTOR
5SS 1L %L OPN 5 IGF-1, A 2 iedt aRGC H R L, 2R 53] PTEN FRiAM L. [FR,
mTOR GG aRGC FHAF L HEE, HIHZIE 2 0% W 55 L AR R

SR, #55 RGCs WALE T F A AL, BRI oR B AT, WX LAA . filln, DSGCs
7E PTEN #0ifi] 5 Bax SREAEZ&AF TR WEH SRS [25] [62]; W3-RGC 7E PTEN il J5 A WL 4% 21 5
A4 [251.

RIS 2, $E1 RGCs A AR 2GR R T AR 1 S0 ek b v B 4 T 2R RO A P 5 2, 8 i s T2
TERE AL N TERE 7, SERFILSE AR B 1) s et E— DR E A Th g .

33. MNRERKAEY: RGCs ERFHERIRT M Sk

HHT, RTHAE RS AR A 3 BRSNS B AT, K AEmE 14 2834 5 2
{1 S5k 3 AR 22 ORI 5 PR AR ORI A R 22 48 BRI R L 7 28, T B KBk R

e, REDNRMRKIESNYN aRGC Ml ipRGCs L EEA R, HEA1{E RGCs 427
oA EAEE BEYMZE R HATMTEARE, AR % e B 40 1 RGCs 248, HAFMAA T
d7 LR T 10%, RWH KB P FHAL. ZR1M, Peng Z5[63]iid scRNA-Seq &I, 7R K5
Y7, ARSI E] > F 20 Fl RGCs 287, Hrb Midget RGCs (MGCs)# Parasol RGCs (PGCs) 5 415 41
i RGCs ML 85%~95%. REKISENWIHI RGCs A E R B/ T/NR, (AU RE A58, X ] a2
DR g R A RS e A AR I P 2 R ARSI 4, 17 B8 22 AR TR 2 2 1 B 2 A5 B Ak B . bak, R
KB REAT (1) YU 5 84 (43 RGCs WEALAE GCL JZ P (W28 18] 40 A7 BAT s B R 5 ko 9, 3895 MEEIS2
ff] OFF-MGCs 515 EOMES ] ON-MGCs 7£ GCL Z W KB K Z RS Z 10 B 040, X ks
Y25 R LE /N R R WARTE[63]. IX LSRR 1) 45 4 22 S AOME B AL ERALHI AN |, R BATE /N B R I
RGCs FHRHLHI A BefE R KB PAEERRAPER 2 57

T TKF L, RENRAMR KNI RGCs KA Z e — XN KR, EIZOFEZERT
eV B T RS v B, ANR PR E RGCs S AURFAE (#4355 7> Tbrl. Eomes. Satb2. Tbx20 Fll
Foxp2 %, 1E R KB RGCs WAL A e Bk 3R0E o R, I S 53¢ (K7 B 1 42 [ 5 TR 45 AN TR 4
FRIAAAAE 35 22 . [63] . MbAh, 5 AR AH G IR R, an SBIRAHOCEE Rl CYPIBI. CYP26AL,
DA R PR 7 M 35 BE K B A G JE K] PDGFB EDN1, 7R A5 T~ X i o R B0 5% 11 DX 3R 4 P S AR ) i ¢
PERIE . SR, XL B R ) A A UTE /N R A R SE A AR [63]. AT LA, T/ BRUBE L 077 446 1D 0 AL B
YRR AT, TE NP TN 2SR AT R R i 2 S5 i T

gr BTk, RAE/NRAMRKEZWIN RGCs F1E—E MR, Hb TEENYMESR, FHL
oA T B IR AL B 2 P, TR IR A1 EE T R RBATF e RGCs AH IR ML B 50 A0 25 Wt % 1)
WEE,

4. REGEERE

LR LA, RGCs AL B A5 2 AN IR A% 326 8] PR 400 5 A 21 X S e — B i e s, O B8 0 4544
MIIBEZ RN IEFRIBE TR, AR RGCs WRAESI G RI BEN RN ZSR, BFH B 5
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EIEMB R A AERE T IA . b ifile, K RGCs it thia T, R Kk WA REvs 4735
FFSEOU R IFH, BIERR A, k507 ) e M AN AR 98 g thm] e DR 52 05 8 B B 1 22
FEMAPTAE . XK ILEE T JA DS AR50 L AE IR R . Bk, REUAR RGCs WA
FE 2 R BRSO DRI 5 WAENLE], KA B THEZN A T RGCs MAURS Rtk s Oy 5 A 5K
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