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Abstract

Osteoarthritis (OA) is a common degenerative disease characterized primarily by cartilage degrada-
tion, which severely impairs patients’ quality of life. In recent years, the mechanisms of metabolic re-
programming and epigenetic regulation in OA cartilage degradation have become a research hotspot.
Chondrocytes undergo significant metabolic abnormalities during OA progression, including enhanced
glycolysis, mitochondrial dysfunction, and lipid metabolism disorders. These changes are closely as-
sociated with epigenetic modifications (such as DNA methylation, histone acetylation, and non-coding
RNA regulation), which together promote cartilage degradation and inflammatory responses. This ar-
ticle systematically reviews the synergistic effects of metabolic reprogramming and epigenetic regu-
lation in OA cartilage degradation, elucidates how they interact to affect chondrocyte homeostasis, and
explores potential therapeutic strategies targeting metabolic-epigenetic pathways, providing new in-
sights for the precise intervention of OA.
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1. 5|18

B KT % (Osteoarthritis, OA) & 43RGl A Bk Z I im0 7000, HoAZ Ol BEARRAIE A2 Q19 B 1) gk
ATPEIRAR, FERIVKE M Th e 2 EL AN 40 fi 4P 3E 5 (Extracellular Matrix, ECM) R FEMR[ 1] H0E 40 /2
B ME—H I, 1157 ECM G RS 70 i AAERFRAS, FLDhRe 250l B ol R PRl TR iR, HE3h
OA HERE[1]. IEFWE I R ARG E IR FE (U LRI IRRERT . W AR 1Y 50) 5 RALEL 4% (DNA b, 4
FMEMSE)IE OA FICHIEA . AR E e 2R AL O IKBIR 2R, REm i A ig S ThRe2]; R
AL AR R ] B R ALHIE A MO DNA PRSI PRSI iE R R RIS, 25 OA R3], =&
TE R A FAE ) “ AR - R LML, HE[FEIIKE) OA BUE iR, & FEECEMEEE . W& ECM
A R[4, A SO RFEFRX — W REH 2L, FEER HR R .

B XBRREARNR G EREFE
2.1. BRIHRES Warburg 3

OA i HMAFAE B E AW E AR, B ORHE A AT TR e MR A (Warburg ZU) [5]. 18RI
4E OA F¢f, W W T PRod S G 40 M (s A0 A, A2 AR U AN e S8 A T BR AN T (IR K R W T A, DA A2
BETEIRE B SR G TR R [5]. OA B AR PRI MERE AR 3 0 . SRR Z AN [5]: BERbiAT)Re
*%éxh,ﬁﬁ%ﬁ%ﬂﬁﬁ%%ﬁkg%%ﬁ%&m IR B B 4 M FE S R R Z IR A

o ML) AR T AR AL O Rl T 19 R B PFK) 260 13/, PFK S SRR 25 8L B DI AH <[ 815
ﬁ%%pMmmmmﬂﬁm&immMﬁﬂm\%%ﬁﬁxh,W&WKﬁ%hﬁm&uﬁﬁmoﬁﬁ
R IR LR, MRS RAER, (R HEEE IR PR BGRIE, IR BCE IR [0]. BbAh, BEEZAR (8] 7= 4
(n 3-BERR H R 3-PG BRI B X N R R PEP) B2 AR A (1440, SORTAE Ry 2 W ast A% i (4 a1 R RS/ 4 Tk
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HREHMRARTR], AEREMEERERE, EERREIRESERMIBEIE[10].
2.2. RI{FINEERERS ROS 74

OA B 21 AR 1 28 4 P A1 B Y2 35 2R MR Dh BRI AS . SRIUNTEAS e (K . k) ATP & iR
BEA%, (G MES(ROS) A BRAB N[ 1] [12]. ZRkifhk DNA 5145 b o T-A% 45 5 4 W03 1 o528 n i S804k 3
[13]. itHE ROS (A E 1. AL E)IIE NF-«B 55 S B8, WREhHCE 4070 IL-18. TNF-a %
RAEN T, TEBCEIEOEH, INE T RAE S PCE IR [14]. [FN, ROSAHENME 50T, @l iR EIL R
TR A RIS AL (1 DNA 25 846 TET X% 4158 11 25 2L IMID 5K%), 52 DNA K208 &1
HIPPCH R SO0, IS . SO R AR G R RL, 25 OA WELHEFE[15].

23. ERAHERRE

OA i AR ZALIC R IR B Emfz, DUIRIIER G B8 #(ACC. FASN i B -4
AAIHI(CPTL FRIE N ) ARFIE[16]o XFPHEAR SEUR B H =) 7 5 A, 5IRMRF M, RN
JREO R AR T, I AR k(17 ] BEORBE ), IR BARE (N St 4 E AL S-IRH AR 2R SAM)
AR S RVIRAL IR LB A NAE A CBMCERIRY, O 450 LI R 5%; SAM &
DNA FIZH 2K A P 34k SR SR ) (AR 18] 25 b, B FRAR Y 2 4 R B3 it A 3 1 EL B R A e,
SR CBE-CoA SAM SEARYIKT, MR WIREB A EA L. FRELEE), HEREm
Mot SOE R AR AHOCEE R Rk, AR 5 3ROUL I8 4% Py [7] 1) 2 B A9 18]

3. BXRDBRPIRILBEFIEVE]
3.1. DNA BHEAMA BTN

WFFEE W], DNA HIELAE OA FEBAS i S IR e . e FE 4L AL #r SR OA BCE T71E
REZFHEMXE, BEEET ECM G RIEMHRSEER[19]. 41 COLGALT2 £ JH 31 XA H &
ferl BRI, R ERESEAL[20]. DNMTs 5 TET S0 455 B 34k 2 AL 5 & P4, Herp
TET /51 330 25 Bk 0 A28 1A 4% SOX9 S5 301 TE O B Ak [K 52 M0 OA HE J2[21]. AR EE 4 72 5 DNA
BB DI : o-Bi R R (0-KG) BEHIERZE/E N TET/DNMT BN 1, 8 520 B is 14 1 75 A 24k
SPAET[22]; SRR T e B o-KG/BRHARR LU s, m] s SC S RE R FRRAOIRES , {33k OA i Jg[23].

3.2. HEABIGRE

HEABMREZ OA RIWEBL M EERHE, RN OA HEMM+ H3K27me3 HERFFE.
H3K9ac #hn[24]. XFhiiAe 5 EZH2 (4L H3K27me3 () HF R4 50 R . p300/CBP (415 H Bk
B BOE AR, P R A R R A 251 AR 54 B B8 B . SDH/IDH K47
FHRHIR . 2-HG SHERR, Seg-VEHD ] IMID 5520 85 1 25 B R V& 1R [22]; SBE-CoA fE R4 B L BEAL
HERIRY, HACPAR R LR BRE v S Qe B T I, OA H IR R A3 S B £k -CoA FA R,
JER A H3K9ac i MMPI13. ADAMTS7 %53% i [ ff g 1) Rk [22]. BE4h, H3K9me2 B1HiFK S
ADAMTS-5 ik FiAHSE, #4882 HEAGEE LSD1 I 42f% OA /MR 1IBAZ[26].

3.3. dE4RFD RNA B4

JE4if% RNA (40 miR-140. miR-146a. HOTAIR. MALATI %5)7£ OA HEBAS i il B A% 4% M 4%,
T A ECM AR et L K S BEERE[27]. 101, miR-140 ¥E[alif] ADAMTSS DABH b5 Ffg, I
E OA WL TS INRIBEME[28]: PR RNA (W1 ciRS-7)7E N miRNA #4582 50T - 4005E IE S [29].
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AR BB ) T @ TS HIF-1a 42 JESR1S RNA ik : G515 IncRNA CRNDE, 8 #%55 p300 {2
H3K27ac £ DACT1 J& 21X & %, I Wnt/f-catenin i# #[30]; ELDR 5 IncRNA J# 3 /£ il hnRNPL/KAT6A
SAEYEEE THH SR H 8 B, s s 2 s E (31 X LR IR R gD RNA 1E 93 Wi 14 8
AN OER, N OA 2 W i )7 JE AL HE s 32].

4. R 5RIEGHPEER NG
4.1. RIEEHNELE

AR 7E 20 B P e EL R 5 R B AL RIS I E DR, X —4FMETE OA IR SeE IR LR
B3 . FERRAROCHERG PKM2 RI7ERCE AR R AR AR AL, AR 98 I B IR A2 2 1 H3 5 11 AL
FR(H3T11), Bob SO OGIERFRIE, HZAR M I REA S, TR AR TGV, JEId 5O Y € o ] S M R s 5 5
[33]s HEFEMRAS S R DI Re RN —— RIS M = R G @i N R PEERE ], s P DU R ik
W5 A Mt 2 S5 R AR 341, TOAE SOREROABE R IL-15 W55 PKM2 A% 45647, BT BEER Ik H3T11 {23t MMP-
13, ADAMTS-5 S5 50CH BRI 214 [35]. fEECE PR, AT IR I UG IDH1/2 J8A8 = A (1 Bua A )
2-FR BN IR (2-HG) e G+ I o-KG AR XU B TET/IMID ), 3420 DNA & 4L
SR A A SZ R, HEIMYTER SOX9 S 8CH (RIS R UE (R £ 4L Bk [36] . MhAl, ATP ATiEIRZL
il BT W LR AR T AR R A A% A U BE-CoA, N2 ER (1 2 BR L 78 B IR LA B = SRR P 5 e £ i
ZEAR[37], MM A7 T Hm P T v i AR Bk H3K27ac FERCE & GE R R 8l T X B4, 19 11 R Rk
1K[38]. X LA L RS AU ERE IS L DR URIRES 5 RS %, IRBI ST .

4.2. RBEHIMERRIBE 5

2 7 AR U ) B A5 AR A I I U B AL SO AR - RMIBAE SRR, 7E OA T B R 514
OEH: SAM 1EJyid H B fibfA, KPR sh B DNA S E 1 R AR, 30 4 23 AL s HY
R IR FEEL SAM/SAH LR F%, 51Kk SOX9 BT X DNA ik F F4L & 155 7 X H3K27me3
F AN, DT SO0 B e S P R %634 [39]; NAD+/NADH i i 875 Sirtuin 2= 2 BEAK Bl 1% 12 45
LR RIAAR TN BE, NADHKH SIRT1 25 4Bk PGC-1a AT HBEE WAL & i, 11T NADH £ 22 2] SIRT3
EESE SOD2 AL . PrEALBIHBE S FF%[40], OA h RIEN T 1) NAD+FEMH 3 — 4K SIRT1
WEE, FNF-«B B 2Tt S 8 SORE I S [41]: a-KG 5 3EFARR (1) LU 4 28 AL S 1Rl (1 71
TR, IR JmjC £ FIEEE & TET & St doe Je i E ¥ )7 ), IDH RAZA 1) 2-HG B i85
BEHAMR/a-KG ELBIHE] TET /2 DNA 2B B4k, i COL2A1 S5 50H 87 2 R R 3l X FR R i FH 24K
RA[42]; LBE-CoA VENHE A LMALI EHRY), HIKES H3K9ac /KT 2IEM, A& N AR
1% Jid SR ARG A0 ) PDH 35 PRI 2 -CoA 2R, 5 SUHCH 4 i H 12 98 2 R A i 4 B IR e Ak R o
SEAMHI[43]0 X LLACIPE i A . SRR BB, # A S R AL R P A 2%, B
3l OA BB, W 1,

Table 1. Epigenetic modifications corresponding to key metabolites

= 1L KREAIGIFTX R AR IIE S5

R M ALAE MG A ZH R
SAM/SAH Lt DNA HIE:AL. HEAFHEL [39]
NAD+/NADH L4 B AL L BA(Sirtuin FK) [40]
a-KG/BEATR LA DNA % FIAL(TET B). HHEA LB RMALOm|C 1) [42]
Z.-CoA HEO LWL [43]
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43. NHESEBRNEAER

2P NS 5l A - B X2 o 1B AR s ERAEGEI FRE HIF-1a I PR A BE(PKM2,
LDHA), HEFZMRIGIRE a-KG IR/, #E— 842 HIF-1a J-H0#] TET /51 DNA 234k, AR 20 fiF
AU IE ST % [44]; WIS /738 YAP/TAZ 3@ B2 13F GLUT1 Rk (39 04 45 BE 130, [ 5548 p300
% RUNX2 JA#hFX, @it H3K27ac BBt e 40 AL K40 [45]; RAERGAEEH TL-18 i@id NF-«B
7SR (HK2, PFKM)RIE, [FIR A% DNA LR S miR-140 G330 FIX, B & FIRILGTER,
HI§g%F ADAMTS-5 [HIHI[46]; LN BN FE NADPH 428 GSH/GSSG Hufil, 504 2R 1 2% H 5L g
KDM4A &, 330 H3K9me2 59 R MR HEFIRIE[47]. IX L RIS 5 158 SCAHE IR OA Hh 5 44
AR - R Z %, WE 1.

m;%aga—' iR S0 KIE SULREEL
.|
B BEEYAP/ BHENF- MESGSH/
HIF-1a TAZ kB GSSGEY /I
ST (FE/tEme ,
IDH1/2 fRigtmE EEoiA)
ATPiTHS B
EARREE PKM2 i
it . F=4£2-HG
NAD+/ a-KG/
SAM | | Napn | | e 1| ZHCoA e ! s | —
d s | i CoA A
| .. ! JMJD
< /
REN || KZEHL| |ZRENK| | JEHE ek R
| magy | BT
T %g%f# I
HERR REBR
R AR
WERS LIS=pE2

Y5 Tmm | /AR

Figure 1. Molecular mechanism diagram of the “metabolic-epigenetic synergy network”

B 1. s - RILEEHEINE” 895 FHLHIE

5. ¥REMKIE - RILEE R H T T Rm
5.1. REHETFIRRAA

A e A B 1) TR T R T TR T - R AL I 2 ) A S, R R E OA B A A VA 1)
FRUIRES,  TA1HE 5 R A A A7) (8 7 (1 2 WL 38 i M DA I e R kil . i, 22 8 AMPK 0%
7 FROOUTCAE FH R R e 4 2 b, T 38 9% AMPK 411 mTOR 15 538 % % e RiA Th A . J/b ROS
FEAE 48], TR AL HBEE AMPK fEiEd% SIRT1 R MEAL A K FistE, £ OA FfrhiEid
AMPK/SIRT1 15 SRR FESU R ACE RERH, $&mlReidd 757 SIRT1 AR MAHE A £ CBb 5 RN
BRI [49]. BEHET TOMERE AR S 50— A%,  HEIF AR 77 2- i %-D- 1 & B (2-DG) Al fR | OA #Rd
AR Re R LR, W RO AR SEAAR R 5 4H B A 2 SR R (HD ACH) B & B FH AT 7= AR W R e
R RN (HDACT F i BEREf#, 2-DG ] HK2 PHITZIERS), Xy OA JRIT7HR 43T LB —— I & WE I A
Pt 395 W3 A% 25 s e [ I D 7 S e R R I 5 4] IE R AL R [50]. ffE, % T ROS LR Z1H
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5 DNA/ZLER AEH 7 15BN 2R, PLEAL T N- 21082 Bt Z FR(NA C) I i #h 76 285 e H Bk BT 44375 % ROS,
AIREN D ROS /S 10 5% DNA HEM ., HEABMERWEE SR, ERRFMMRZEZRT, N
PEAR T - RWBAL T FFBLS51]. XS SRMEE AT - WAL XE AN OA #1455 T I %

5.2. RIBEHIHOF L

TR ) ROV AE B A T IR - SRR AL 1 7 — 0T R, BEEE SR OA BB H
BRI PUBRABGERAS o W WZ5Y) B4 DNMT #0177 (an 5-Z 2% ). HDAC #ilACn i #M w2 A), &
HSEEG BRI AT IR R AR R R S R [52], HI PR PR Bk = 51 ) P 5 2504 B RIAE
MR, TP R TS UER L 2 45[53]. CRISPR/dCas9 2 Wit % 445 4 AE i dCas9 b2 2 WL B S8 (dn
TET1. p300), & sk H bR G 30 H I QRS , MuE s EERRIL, iy OA BFF 1R
FrHeft TH[54]. th4h, miRNA {E RS R A& 1B al, HBRW/AS PRI G778 71,
1 miR-140 BT 4N T8 OA BCH Fh 25 () miR-140, I R yrsl ik 5K 5 0B A VE I [55]. X4t
RMBAL GV R Z H N OA AR - WIS 14 I 25 T TPt 2 ARG HE S, LI 2.

05 AMPK. mTOR
ap = “‘ %—E‘%
seRRSE A o—_ R —

¥ HK2
Fzt: 2-Bia-D-AEHRE (2-DG)

_ . #B=: ROS
ﬁ1tr_2,%ﬂﬁaé°< T : N-ZEREMEE (NAC)

#045: SIRTL. HDAC. p300. TET1
AE & =1
’35‘51’%%%"“0—< FIFEL: shiERA (HDACI). CRISPR/dCaso4migssA

FRRRERS o e o L o)
REL . - RN

\ B BAFEERH TR 2B
BRBMBTRR O oz ColopR/dCasom M

$ES miR-140KRH T EER
FRFEL: miR-1408& 80 /+5457)

HEEEER FEEERRIEER

gy -RIE G EET REER JERIIRNASE =2

Figure 2. Potential therapeutic targets and intervention strategies

2. BRI R R T IRE

5.3. BRRIRTTRIREIMLIL

S AR U P R0 S A SO EL M, L T USRI, AR VT S 25
BB T RUT TS R 17 (07414 (02 P RN AR RS, 7P HDAC 410175,
BRI, SV Y BHATTS6]): RN, SPRBARCIRBTI . JAMPRR) AT LA 5 R i i
SRR, SRR MRS | Wb A I FST): AN, JBEE A BORCH R
URANNLER PSCs ) BRI Py 1 RHE(SS], o L0 e ML ZG AL &, IR HEIA ST B St
AL SRRSO BRI A HE SR AR - RBAEIIL G OA T 92 6 52 7
Ik
6. &g

OA BB IRASIIIE S N “ 1R - F WA RIS RORTTAR, ot AR S 5 it
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