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Abstract

Glioblastoma (GBM) is a highly lethal primary brain tumor with a median survival of under 15 months.
Advances in genomic technologies and computational power have accelerated genome-wide associa-
tion studies (GWAS) and metabolomics, enabling Mendelian randomization (MR)—a method that uses
single nucleotide polymorphisms (SNPs) as instrumental variables to infer causal relationships. In this
study, we applied bidirectional two-sample MR to evaluate the causal relationship of cerebrospinal
fluid (CSF) metabolites with GBM, using GWAS summary statistics sourced from the FinnGen consor-
tium and the IEU Open GWAS database. Primary analysis used the inverse-variance weighted (IVW)
method, supplemented by sensitivity analyses including MR-Egger and weighted median approaches.
The results identified 15 CSF metabolites significantly associated with GBM risk—eight inversely and
seven positively. Notably, reverse MR analyses yielded no significant associations, supporting a unidi-
rectional causal effect and suggesting that altered CSF metabolite levels may serve as upstream risk or
protective factors in GBM pathogenesis, rather than being secondary consequences of the disease.
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1. 518§

Ji2 J5 441 i J% (Glioblastoma, GBM) & mi A HH 5 i UL PR IR R PE R g, FLOBPEREE &, A AR A7
Wt 12 15 N H, 5 FEAFFRINL 6.8% [1]. GBM (K AIm LI & 2 44107y 7Bk, 45 PDGF i
Fik. EGFR 34 LL K TP53 Fl PTEN J& K RAFZE[2]. SR, FH T30 A% 5 PR 88 R 2% AR B A FH DA I (E 1Y)
SIAIRR KR, H5] GBM PR R XU R 25473 T Bk ik o

AU A I A E AR ISR K T, N GBM (R B A FRHLHIR AL T AL A [3]. MiE
(Cerebrospinal Fluid, CSF)5 fixi 20 23 B #eefi, 2 Wi 7 i e eg AU AR A RO UK 2 1 [4] . SR AT B2t 9T
KB, 5 5E INE TS ) (Cerebrospinal Fluid Metabolites, CSFM) 5 GBM fE7EA e, {HIX BeAd et To ik
X oy PR R R 5 B Al [5] [6]. il /REALIL(Mendelian Randomization, MR) & —Ff DL A4 745 5 4 T
BAR SR W R RO R Geit %, v DA R0 s oW S PR AL 1 R BRI [ 7]

AR TR X ) P R A e AR BE AL 0 AT 73, BTEVEA, CSF AR S GBM ZRIMER R ER. %
ITEANBEVHAl CSFM X GBM XU (1) 520 (1E 7] 73 #7) » I BE VAl GBM X CSFM 7K-F- 18 50 (S 7] 73 #r) »
MITTHB 7= BRS¢ R 5 [ . A 5281 FinnGen AT IEU Open GWAS ¥ & v (8t 4% 504, 9 GBM 1)
IR T R

2. HiRABR SR
2.1. fmEit

A 5K I R AS 7 2K B ALK (Two-Sample Mendelian Randomization, 2SMR) J57%, 44 7t i & (CSF)
AU 5 1 5T BE 2 MR (GBM) Z T (R R SR K R o BT 23 T B0 P A% 80 MR J5 I =AM O 1) iit%
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LR 5REREMK; 2) BEZRMT TREAREZR; 3) BELRUES F5E R R F8].
2.2. BHERIE

AT R PIREAR SR BEN L Wit . GBM B2 CSFM %id 73 HI9kJE T FinnGen (FG)EXEE AT IEU Open
GWAS dfi i ; H b GBM #H5% GWAS $dE 75 F FG Release 12 A, 4l it N PA 51| s B A &4 520,120 1,
HrA112 GBM sl 435 f4l; 1 CSFM [ GWAS ##5 WK T~ IEU Open GWAS #i#i e, HA4EIET 291
ZAMES TS 338 B CSFM KIS Gttt & . BTA /A BREIEROM L e NiE, LA AR 2 I 7

23. TETETHE

IR MR 3T BT SEME, FRAT4E1S CSFM [1i8t% T HAZ & (SNPs)#% Nik 3 AN IRIEATIfiE: 1) 5
TR B EK(p < 1 x 1079) ik S5 AW W2 HHOCH) SNPs;  2) EBRIEBIA-T(Linkage Disequi-
librium, LD), #HEEREEAHICH) SNPs DLERIUE T HAS S M (S H50E N r? < 0.001, &% EEES 10,000
kb); 3) @it F Giit(F = R3(N — 2)/(1 — R?) (Rz}y SNPs fERs i) 77 ZE Eb ], N A GWAS FEA ), 4l T
HAREaR, HEFR FH <10 1955 TR,

2.4. BfEREENLSH

AT 5 SR T A IA) W5 A A 7 48 /R [t W14k (Bidirectional Two-Sample Mendelian Randomization, B2SMR)
Jii%, ¥l CSFM 5 GBM Z [A] [ R 6 & o il R T 5 AR & 1R 20, FRATTR A DL bR i i SNPs:
5 CSFM 5 GBM W EHH K (p < 1 x 107, TL&EBIAF1i(r? < 0.001). JoBH R £ 24 (i it MR-Egger #;
PR I8 VEAN) o

AHIF 52 e 835077 2 AL (Inverse-Variance Weighted, IVW)1E A B0 4151k, BRIHAE T 2 20 MR 1G4
TNHAERESITSER; FRRAH MR-Egger [EIARUINAL A7 F0E AT BUSIES T,  DAVPAl 22 20 A 57 5
PEXT S RIEEm . T A AT R (A 4.3.0)7 1) Mendelian Randomization 147

PECFAE AT ) B2SMR J5%rb,  IE[A 70 HT H KO PP CSFM X GBM XU S, R IS 75 A7 72X
GBM A K AN () CSFM, i 2 ] 434 U B s GBM %5} BT & BIL AT REAR 5% CSFM 7KFA TEsem s 25 [ —
CSFM FIE 7] 43 1 S 7 &t 3 ORI S 7] 23T TE . 2 R BEG, WU S5 1% CSFM /K rl g2 GBM (R SR XU
BRI, AR SR

3. DRER
3.1. CSFM 5 GBM K< A E & BE4

AWFFR 2SMR 735, KL T 15 # CSFM 5 GBM Z [Al {745 AT BE IR SR 5 R (42 1), o 8 AL
W AR E R (OR < 1) 7 B EA XK AEH(OR > 1), % CSFM 5 GBM () 2SMR Hi A & 1 firw,
IKF- 22 3501 R S TR PEAS 6 1 45 TR L 2,

3.2. RIPHERIHY

4-H 3L ) LSy B R £ (4-Methylcatechol Sulfate, OR = 0.714, 95% Cl: 0.568~0.899). 1¢ /4 VU2 (Arachi-
donate, OR = 0.795, 95% ClI: 0.657~0.962). y-7+ 2t 7+ 2 Wt [i%(Gamma-Glutamylglutamine, OR = 0.739, 95% Cl:
0.562~0.971). H- ik ELILEE (Glycerophosphoinositol, OR = 0.531, 95% Cl: 0.289~0.977). N-Z. /it F ik & FR(N-
Acetylmethionine, OR = 0.559, 95% Cl: 0.358~0.876). FLif M (Orotate, OR = 0.518, 95% Cl: 0.276~0.974). S-1-
I & IBR-5- #2182 (S-1-Pyrroline-5-Carboxylate, OR = 0.727, 95% Cl: 0.532~0.993) . V. ## % (Spermidine, OR = 0.808,
95% Cl: 0.697~0.938) % & [# ik GBM XU »
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3.3. MM

njnrdf X (Caffeine, OR = 1.136, 95% ClI: 1.008~1.280) . FLi% ¥ (Orotidine, OR = 2.164, 95% Cl: 1.188~3.942)
A AT B (Theobromine, OR = 1.097, 95% Cl: 1.010~1.191). JRM51E (Uracil, OR = 2.518, 95% ClI: 1.190~5.328)
X-12007 (OR = 1.103, 95% CI: 1.006~1.210). X-22162 (OR = 1.575, 95% ClI: 1.013~2.450). X-24228 (OR =
1.947, 95% Cl: 1.054~3.599) i 2 1 11 GBM X[ »

GCST90026097 - GBM GCST90026122 - GBM GCST90026134 - GBM GCST90026163 - GBM

fecton exposure

GCST90026241 - GBM

= 1 s = ]
SNPeffecton exposure | SNP ffecton exposure SNPeffect on exposure
GCST90026261 - GBM GCST90026265 - GBM GCST90026272 - GBM GCST90026282 - GBM
SR
= : ———
P ve— b eticton aposre
GCST90026313 - GBM GCST90026324 - GBM
| —_— MR Estimate
! e
) S e e i S | | | Inverse variance weighted
: =1l H ! R H
i g ; T /R Egger
o i i g, | [ 0 [ Simple mode
& it £ 5 e _——
& § e i / Weighted median
Weighted mode

SNPeffecton expostre SNPeffecton exposure.

B 15 A>T B GCST 45 5T < 240K : GCST90026097, 4-Methylcatechol Sulfate, 4-F3% )L 5T HRIR Lh;
GCST90026122, Arachidonate (20:4n6), ¥4 PUM2(20:4n6); GCST90026134, Caffeine, WMHE[K; GCST90026163,
Gamma-Glutamylglutamine , y- 2 & Bt 2 & Bt }% ; GCST90026174, Glycerophosphoinositol , H Jr 8 F& L &% ;
GCST90026219, N-Acetylmethionine, N-Z. Bt 2 F i 22 ; GCST90026241, Orotate, FLiE 1R ; GCST90026242, Orotidine,
FLIETF; GCST90026261, S-1-Pyrroline-5-Carboxylate, S-1-FHtI&mbk-5-¥2#%; GCST90026265, Spermidine, VA,
GCST90026272, Theobromine, 7] 7] fis; GCST90026282, Uracil, fR1ME; GCST0026291, X-12007; GCST90026313,
X-22162; GCST90026324, X-24228.,

Figure 1. Scatter plots of 15 CSFMs related to the risk of GBM
1. 5 GBM & X BXHY 15 # CSFM AYRL = &
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Table 1. Causal associations between CSFM and GBM risk estimated by the VW method
= 1 IVW A5 CSFM 5 GBM RUBEHYE SR KB LR R

R4 R OR/E 95% ClI p 1 BT A
4-Methylcatechol Sulfate 0.714 0.568~0.899 0.004 PR XS
Arachidonate (20:4n6) 0.795 0.657~0.962 0.019 o2 A PR SG:
Caffeine 1.136 1.008~1.280 0.036 B PR
Gamma-Glutamylglutamine 0.739 0.562~0.971 0.030 2 AR RS
Glycerophosphoinositol 0.531 0.289~0.977 0.042 FEARG RSz
N-Acetylmethionine 0.559 0.358~0.876 0.011 FEAG RIS
Orotate 0.518 0.276~0.974 0.041 FEATS XU

Orotidine 2.164 1.188~3.942 0.012 i A
S-1-Pyrroline-5-Carboxylate 0.727 0.532~0.993 0.045 FEEAIG AL
Spermidine 0.808 0.697~0.938 0.005 Ree AT X
Theobromine 1.097 1.010~1.191 0.033 8 R s

Uracil 2.518 1.190~5.328 0.016 B A

X-12007 1.103 1.006~1.210 0.037 8 R s

X-22162 1.575 1.013~2.450 0.044 I AR

X-24228 1.947 1.054~3.599 0.033 8 R

Table 2. Heterogeneity, pleiotropy, and MR-PRESSO sensitivity analyses for the causal associations of CSFMs with GBM
52 2. CSFM 5§ GBM BERXEKHIF M. 31K MR-PRESSO #4345 R

Exposure Phenotype Methods Q p Intercept p MR-PRESSO
VW 13.76656 0.68355 —0.125257 0.13935  0.005365867
4-Methylcatechol Sulfate Levels
MR-Egger 11.34658 0.78760
VW 27.78417 0.31788 0.036134  0.48907 0.0267893
Arachidonate (20:4n6) Levels
MR-Egger 27.22421 0.29411
VW 27.50645 0.33107 0.044010 0.39581  0.04678201
Caffeine Levels
MR-Egger 26.67557 0.31980
VW 76.96252 0.85298 —0.001368 0.96366 0.0204798
Gamma-Glutamylglutamine Levels
MR-Egger  76.96043 0.83470
VW 14.15733 0.71878 —0.038328 0.55295  0.03388916
Glycerophosphoinositol Levels
MR-Egger 13.79089 0.68184
VW 11.07466 0.74728 0.048263 0.47672  0.009817865
N-Acetylmethionine Levels
MR-Egger 10.54001 0.72173
VW 10.12990 0.75263 0.007513 0.90050  0.03076978
Orotate Levels
MR-Egger 10.11364 0.68462
Ivw 18.05243 0.58395 0.070060 0.31353  0.01519874
Orotidine Levels
MR-Egger 16.98060 0.59118
DOI: 10.12677/acm.2026.162462 874 I DA % 2718k g


https://doi.org/10.12677/acm.2026.162462

RIRE, X EH

VW 32.35709 0.92086 0.007403 0.83330 0.02237162
MR-Egger  32.31227 0.90396
(A 36.66968 0.43763 —0.003338 0.93839  0.008002538
MR-Egger  36.66333 0.39157
VW 62.82009 0.37669 0.012524 0.71982  0.03216343
MR-Egger 62.68208 0.34706
(\AY 27.15816 0.45529 0.108261 0.10136  0.02274321
MR-Egger 24.27347 0.56033
VW 43.63449 0.72518 0.000691 0.98498  0.03027909
MR-Egger  43.63413 0.68975
VW 14.77107 0.98672 0.110353 0.05982  0.008488759
MR-Egger  10.92318 0.99842
VW 26.81484 0.36520 0.044332 0.48702  0.04346604
MR-Egger  26.26937 0.33964

S-1-Pyrroline-5-Carboxylate Levels

Spermidine Levels

Theobromine Levels

Uracil Levels

X-12007 Levels

X-22162 Levels

X-24228 Levels

4. g
4.1. FEMREXM

AT FER F R ) PR E A AR BEATLAL (2SMR) J77%, B 15 Flt CSFM 5 GBM 2 [AI171E 1] B i BRI SR
KR, Hr 8 MR- F 3 LAMRIR L. AEVUGER .. - B EEA 2L BB RIEE. N-Z B
R FISMR. S-1-Mgmh-5- R ANASIZ) 5 GBM KU 2 23 FuiH K, 7 A Sk . A
WA, ATAIBRL FRMENE. X-12007. X-22162 FI X-24228)0 & F 3 K. 5 Bao 25 A (2024)WT 5T AR L,
AT LRI 15 Fi CSFM 5 GBM fAER R C R, 1 Bao S5 AR I 14 FH[9]. AN 50 & IR LR4 PEAR
PIN-Z B F AR - RAM A E RS Bao 55 NI R B AR AR 7 (N1-Methylinosine
Stachydrine. Succinylcarnitine) 7287 LA FrE &, (HEMREWIGFAEZER . XA AE S50 ERIE. FEA
NBEE AT T Z R o0 BT A AR B 1E 17 73 A 25 il /s 35 OQ Bk, T S el 3 BT e BE S B, SR BHIX
e RIB AT 7 e e, SCRE BIR CSFM /KPR EE Y GBM T 7E LR RS BRI IR 3R, T ARSI 5
Ro 15 P BAREY S GBM KU S/ 45 R R, X LA GBM XU (1) 5200 17 7 I 25 2
Fto FERIFPEAEYI, N-CBEEE BRI p- 23 Bt 2B R It e o () ORAP ROSE, 17 S-1-Fbk g -
S5-FRERAN 4-FJE ) LR B2 £ I AR T SR SR RIRE 28 o 7E RSP, SR M e AL B R
I S g R PR PR 205N, 17T WA BT R AT A PR IXURS: RIS A G B S5 [R5 o teAh, ARBF TR R At 3 Fh
B bR TR O A 4 AR I(X-12007 . X-22162 Fil X-24228), X2 “X-" Bl 2% (A & 5t A ZRAR
20 2545 % (Human Metabolome Database, HMDB) H1 (v A< 56 i 45 1) %5 58 BRI e BRI 4. R IX 8L X
FARGYILEBLRY BefE AR L E B IR IR AR FAME, HILFE 2SMR J R 1A MR — £ 235 R R ke R 3L
A] BRARIRIE TE B HT B A WA S

17 i A R BEATLA 53 B AR R IRAT AR 5 35 QK Xtk — 28 SCHF 7 IR R OC R I 7 e ek, BIARK
PR AT RES I GBM B R AR, T dE GBM S8R AR X5 [k i 14 EER GBM
IR PNLE SR AL 7 B AR, R AU A mT B AE I R AR SR B DR E A .
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4.2. G ERNBEME S

AWFFCRH Z R GET Ir ik R AL 45 B faddt, A48 IVW. MR-Egger [FIJH. i Az 0% MR-
PRESSO BUBE 7 # . ONK/ANE — B AR 0, 28RS IVW 0877 191 5 MR-Egger —2, {H
WA REAAEZESR . RAMERRQ ML) Bon, ZHMAEWIN Q 14 p 4 > 0.05, K TR SR
BE RN, {HA%40 Caffeine A1 Gamma-Glutamylglutamine /) Q % &, T aREAERH L.
M2 AR IR 45 R RIR, 28U MR-Egger #47E p {5£>0.05, {HJRBERE T X-22162 21 2 35 1 5]
B, WREAFEZ LT . MR-PRESSO BURIE MR, Fra MSH) MR-PRESSO p {534>0.05, %
B HE BRI AE S (8 5 DR R ONAT) 8 35, SCHpas SRR . T B AR S ol B (F Siit &) =2 /R B AL 23 A b
MEE LR K, AW FREWE A SNP [ F {f1>10, L5 T LA REM.

4.3. CSFM 5 GBM fRERAE ML HIAY S Bk

AR FRIIAEY) S GBM XU 1 Sk 1] A2 A3 A= FRATL ) 7y BEEAT e Wl R P AR b S 6
H IR SE T H) GBM 4RI E . iR =78, JRmi S FAK/AKT/ROCK B (LR T, (HAHT 7T 45
RERHE GBM K2 IEFHE(OR = 1.136), F&/-UMHER KN R AT AES GBM JRU A7 7E 71 & A i 14: ¢
R, Wik B R HAE AR FFE T RS RN [10]. B4 TUEERIE AR A 5, AR LB /E GBM &
£, PTREEE (2 18 e Ra 1M 35 A B AR HUR N, S BURITIN ) « AW 45 R R OR=0.795 (95%
Cl: 0.657~0.962, p = 0.019), FWITEAE PURHER/K-F-TH i FEAIC GBM AU, 31X AI A 5 HAE IR TP 55 v 7 X
HAEHA R, PO A GBM i BARIERLH . JREEIE(ESy DNARNA & RCHTER, HAKCT T+
e P REE (R HE TYMS (M EF R -6 B ) T P e A R 34 5, 5 GBM XU IEAH 5 (OR = 2.518) AL I AH FF
TYMS #iIF], a0 5-5pRmE0E, 7E B . Sl AR, B1E GBM H TYMS 35 i 42 v] Re s i 254
BB . AN TS AR IR E AKCE T REVE S GBM Tl fa W R A Y7 S B TR RV AR A N- LBk
FR R N AR, N- 2B AR 208 TT AEE L 1% DNA FFIEAL IR GBM XU . AHIF 7046 B R
H OR = 0.559 (95% CI: 0.358~0.876, p = 0.011), KHIHLRI RN L E, Alae 5RMWELREA L. N-&
T B R B 2R 1) FH AL TR AE L AT RE D GBM (R MLIBHE 1E T S (bt JEU G . RS A 0 2 e AR, v
BT mTOR LML IES AWE, K GBM K (OR = 0.808, 95% ClI: 0.697~0.938, p = 0.005). [ WEfE
GBM RAKBEHIIERE S, BErTmm g &, thal ek B aniufrig . AT 54 FHm RS I n] g
T S SR M E R BRI GBM XU, D GBM [ SR IR TR TR O M. A, AT R
[ 3 Rl X AR E, B X-12007. X-22162 1 X-24228, 5K oK 56 B 45 A6 48 58 B T RS 108 11 0 SE BRI
IRE S, (HHAE B2SMR o —EUf B R RIS, B GBM KEGAHSE, HIFRIEMK(OR 75lM
1.103. 1.575 i1 1.947), #nHAES S GBM M@, (H MR AR o B A i 43 R i
WEHEAARSE IEAE TR, SEIL AL G5 RS S 8 5, J7 Reidk— 20 B

4.4. R EBRM

AR FMAFAEIR Z SRR . 1EU Open GWAS %48 B Hh I 5 A Rt 88 R s T 291 2 4MA, HEARE
BUNBRGTI RO, SEER YSRGS E, A EUR TR TR A T . FEAEAN L
PR T BATHAR IS GBM R IR RE B fli T, R AT/ KA E DL 45 R T St . thah,
48 SR 1 R 58 A 1 5 S BRI RE AR 1 G S BRI IR S I X SR E, BRSPS e, ™
HFRE T R A RER P AIG RN B . T H, R SRR A I TR A 2 & P E,
NMR. GC-MS. LC-MS, [R5k R A7 o5 6 Fl 22 R T Be S S R St . A AAWE R BARR A
T MR-Egger [A1 VA58 22 %tk (AT A EA7AE AAR I 2 (TR % [H 2%
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45. IERBY ERKMARFE

AR IS GBM XU IR A — & BIIGIR TR 3 o JRmEIE FIFLIE B 55 KBS A
5 DNA/RNA & RuidEsg Ao, mlaelE n R s Wisl e br S0, ea AR il AR N IR, (H
HRr s, AT GBM I A BRI XU VE Al BV IENE . AR 78 AT PR 2 X LA P 7E o 9
S ZSARA 5 R 3k RE IR DR IEG,  DASRE 2 T () v A e R B B o N- 2L T 3 PR S IR 11 PR Ak T P VR T
At MGMT JEzh T HEAAER, JE# 2 GBM X & S M Al 7 BUB: B SR Rl 1. #RZE N- LA
AR S5 MGMT HEEAL I SCTHCRT ey GBM AR IR YT S (T FLRK o VRS e i P50 15 W i B PG
GBM K, FIHRZRHGHAGIT G N, DUERIGTT AR . 16AEDA IR AU =P (i PGE2)idid {i 2k
NEWIR AL IS 558 GBM 1) TMZ it 254,  #IHIAH CHg (40 FAK/AKT B CPT1A), FIREEST 48 iRk
W 2T SR ] B S B8R R 22, R VCRRIFTUR Gt — 778, W HPLC, G2 R . AR % 55k
22 B A B2 A WA Bh T8 78 GBM 2 4124 E AR AL o Ak, 2542 4250 A
ANAAUIEI, wTH S AU YAR SV TSN R TT SRS RS L . RS X BRI Z br itk dr 4,
BH & OR (EHR /NI LI IR E . 45 & ARUDHE B FEHEDN, X-24228 W2 50 & liEik, 5 GBM
AR FEAMFEAH DG . B X RAVRIEPIIL = MR Th R R L 5 GBM XU SRR ) S0k, Uit
GCST 45 BB REME IR LT IRBCE 2 F 5. R ik E) 5 GBM AU 2 IEAHDE, mTRES /R
WNFEE, HAREYI( N- 2R RZER) S GBM KU 2 FAHK, 7l REfn oAb 7 il 1y BA
T 1. ETREYE GBM JAU I TR HEns 73— D T IR E, (HAW 785 RO R TR
1) GBM Ty SEms At 1 BRI LAl o

5. &hig

ASHITFER R PUAE A AR BENL T, IR ARG EHR7R 1 15 Ff CSFM 5 GBM Z [ H IR R 5%
Mg, Hrh g A EA RS VEM, 7 MAUYRA XA XL RBUONEER GBM A M B §2
BB, FENRRIT R T AL A 2 Wibr S RNETT 4L R 308 1Al RS AR A AR A
RG] A A A R PR, (22 M RURYE AR SR - BUER BRI E BRI A —E
PRAEYVE . ASKBE T RREAR . Il & . S THARRRE, HRZENAWY S GBM KUK
BRI 7 AL, DAt D IS IE A UL RO HES LM R e AL . B2, PRIy GBM ik AE AR
WS B OR I R 2R, AT BEAE IR A A R BOCH AR o B I IR AN B AU LA () 2L~ D A PR
RLAAME, AN GBM M IIZHr. MG YT FITRE S B3 (1 B EE A1 57

o
BAHHTH 2 5 GWAS BRIP4 BEFOHR AR, WRERI S SH AP
B A

AT TR A P s 9 T A S AT EAR e BIrA SRR FOAT a8 a2 2B e i i 20K, HL
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