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Abstract

Neurodegenerative diseases are a group of disorders characterized by chronic and progressive
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damage to the nervous system. They are functional impairments caused by the disruption of the
function and structure of neurons or myelin sheaths, including Parkinson’s disease, Alzheimer’s
disease, Huntington’s disease, multiple sclerosis, and others. As immune cells in the central nervous
system (CNS), neuroglial cells are far more numerous than neurons themselves, including microglia,
astrocytes, and oligodendrocytes. Each of them plays an irreplaceable role in the CNS, mainly in-
cluding protecting neurons from damage, mediating immune responses as immune cells, and sup-
plying energy to neurons. The occurrence and progression of neurodegenerative diseases are closely
associated with changes in various neuroglial cells; however, the role of changes in neuroglial glu-
cose metabolism in this process remains unclear. This article will focus on introducing the changes
of glucose metabolism in different neuroglial cells under physiological and pathological conditions,
as well as the relationship between these changes and neurodegenerative diseases, so as to provide
new insights for the development of potential therapies for neurodegenerative diseases.
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1. 5|

M IBAT M AR 2 ot A7 1475 « TR S A% O RRAIE , £ 38 1A 4 %99 (Parkinson’s disease, PD).
R /R 7% 965 2R3 (Alzheimer’s disease, AD). 7 #E#iJ5 (Huntington’s disease, HD) . % & 141 {t.(Multiple sclerosis,
MS)&E Z M, KIWHLEIE 2 HAH EZR, A B2 /IR T RPRER G A, M LN A b [H W s 2 2k
JE[1]. MR B A AE AR #1142 R i (central nervous system, CNS)HF & 5 Lb i = 40 L BEAR, A& HE S
Ry E IR RBEHSEThRE2]. BOTWFAUESL, PR AN M LA ThRE T A G R X
(R 4% AR FH G20 e B, B O B G R AT D i 28 J o 40 M D e R B A 4 A% D IR B IR 22, SR I A
WA . T R B ERE, CBOAMEIRAT MBI T I G EE R f[3] [4]. /N4
T BRI B AT S R R R A B DA oG, BRI B4 M i LR R AL B s 2 e
BERE, /55 o7 240 P R WA QU S o 5 BB A 1) S B B V) ORI [5]-[ 7] 1 M = 28 SR A AN [R) 45 18 1 A i
Ak, SRS ERAT YR BT . R BRI E .

2. MBS PR AR BRI
2.1, HEIRRET B9/ R BR LB A pE A5

HEFEE AN I R AR, EABAM T, d0MBIFERERR . =R (tricarboxylic acid, TCA)
TEIAFI S AL 2 (oxidative phosphorylation, OXPHOS) & i 72 7= A= — W% Jlig £F (adenosine triphosphate, ATP)
[8]o /N5 240 B AE A= AR AS TF o) 361 67 4k 1) 3 18 S 8 0 b A SeUR e A R R A I e o A T 7R it &
BN CTRATG A, JE#3EN TCA TR, (ELRA NI4T OXPHOS 7242 ATP, I 742 HhobE e A 1) ¢
B il ) MR A A Y g P AN 7 1) B B AR 9]

2.2. FREERTS T B9/ N BR 4B BE (X it

FE CNS Hf 24/ NI o 240 i 32 2045 F Ve ey, FLA- BRPA BT 2 R, I I 248 410 5t 3o o i e At i
OXPHOS AR i hE, JRER ARG AT T, 3-WAmR H i e At 2 S B A A F) NADH + HY, - ASREZR LT
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fEihBE A, BB FE AL N FLIR J5 7 Re 0% B 87 4L i NAD® [10] [11]. S 72 Hh i 1 44 (reactive oxygen
species, ROS)EKIAIG N, 1fi ROS 34023 i3E— 8 98 hE A o7 DA S 40 M R oA DGR R A I 22, Sfdipp
L RIER VL AN E T TS, OXPHOS 2t — A/, TERGREIEIA[12] [13]. oAb, PO B £ 55 BE 2% A
TABE ELHEHEN TCA TEFF, £33 i B4/ F-18 (IL-18) A1 — AL B (INOY IR & o IL-18 1E 9 K K 7 7]
N FRAEN TR, &AM RIE[14] 3B, (RIKEE R NO 7E CNS H BLA & R4 I ik B2 1) NO
AFAEFFPEAEFH[15]. NO AN A0 ] 743 1 12 Mot S i P, A PRI R T2/ A o T4 TG A JEN TCA, b
O2 [ S FHAG L F AL B HE[16] . /MBI A AR AR AR AL S5 AR E g FR B R D), R B AL 9 ML R 4%
RA M2 BT RIEE R, ML BN o 48 e i B U2 28 IR 7 IL-18. IL-6+ JHBSRIEIA 1~ (TNF-0) 55 15 5 1
LI B JORE, M2 BN R A0 L T bR A e B, (R SUMB R, BT S IL-10 R B
BERSPUR N7 I RAETR SR ERI[17]. SR /N R i AR 7 St &k A 5648, M1 Y
ZIN 57 200 L T T A A 4 5 17 OXPHOS Wik« TEREAR M IR, AHOCHEI Rt 2 G S 32, WRIRE AR
(O BERG OB 2 B (HK2)TE/ MR A 5 #0420 Hh i 7 L EE A, HK2 J@id /N B 5 4 i b
W AR R ) R 22 AR E R s ATV HIK2 W] 18 5 /N I S A PR P A Wk D) e, o0 o 28 B3 495 - ek 8 9
JRE[18] [19] HEMEMRARUR IR 53 — A R G TR B BRIV 2 Y (PKM2), W] LA AR i 35 BA 1% (A «B (NF-
kB)gE 4, M IL-18 A TNF-o [O%63%; AN PKM2 5305555 R T 2 (ATF2) 45 & T s [ 05 /s i i
AR T B B Gm AR MR AR A, TR £ 98 R S S B [20] [21]. KEFLIRE PKM2 /S HIHH
FEfi =, AR A LB B, HEMTIE5E PKM2. FLER B AU B (LDH) A A% 3 8 7-1a (HIF-
1a)i%, TERUE R AR E[22] . MR M 1245 (Pentose Phosphate Pathway, PPP)X TIN5 Jofi 4H 5 A 15t
Hm Al A OCE B, A& HE-6- B L D SR (GOPD) 1 N Z I 2 1 PR A A, I805 J5 21 NADPH AE 53 n -
i NF-xB {550, FEHCIIER TR, D040 N SR, L FHES /NS A e M1 2
te[23].

2.3. N RAEBMAER N SHRRITERR

FE AD 1, /INB 5T 4 M 7 T R SZ AR I P B-TE KR R EE 1 (AB) IR BRI SGERE R 3, AD R AR IR /IN I 5 48
MAEBE 2 AR E . FRRIL, A S/ A0 M S v E AL T R AR K, IR BOE
MTOR/HIF-1a {5 S E%[24]. WA, APP/PSL /INGR ) /INK BT 240 i 52 300 H T R R A A R 36 28, Ho /IR
JRAH A REAR I R AL & AD R I OCENLG 2 —, B DTN, I kN R R A A
OXPHOS It F2 [F] i M b EEARAC T, AeE RN AR IFAWERE /7, BEIMIRZE AD H5S N RIBERS 1) K&
JE[25]. HEERAARL =) FL IR I 5 T /N A R A 20 B 1T HA 2R 12 AR IR LR 51 (HAK 1218), 3
TE A DG R (R %, TR OB R R -HAK 121a-PKM2 TF S BRAEER, IRl AD w752 J53 4H P PR 98 3R 2 7
[22]. HREFEARH R OCHEERG HK2 $MmInr, 51/ A0 R A 5 Ak gt o 3hom, — 7 /N T 4
H RIS, MR R AL N, il ATP PUsAL R, {2k Ap F5WE; 55— J5TH, SRbE-6-BE A 4 bE-6-
WBERRAE N HK2 R PR AR =), @it PPP A/ NTATT NADPH 7K T34 /) st ot 48 i 7 W D) BE [26]
15 PD i, -5l 5 [ (a-syn) S FEBE A A1 PPP 3547 & R R, 7F PD 8 8 Hh/NI TR 4L G6PD
RILERET i, PPP IR FE NADPH AREIKF b7, X —id #2425 30E NADPH S 1LEE 2 (NOX2), T
;| ROS &AM, F5 2 EMREMAEITTAME[27]. LA, PD EBE T, a-syn 5 PKM2 78 /NEE 5 40 i A
AIEARAEFE, A PKM2 B4, SEIpEEzfRiEE, (Edt M1 BUMRAL & 980 ) 2 [28]. CIk1 /£y OXPHOS
HL AR B 1) SR B 2L 2, FL BRI W (i /N 4 A B R, 385 AMPKI/MTOR/HIF-1o 15 53 6 fish
KRB N, IR 2 R REFR R TG40 [29] - E MS 2 28 RE 0 M5t Bl s 5 30005 ek b, /DN 5 400 2 %
oy ML R, PERE R PR E e, ZatfEnT @i PDPKL/AKL 5 5B AT, HACE9 NO i
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A IR 2 3k — 2D Pt /> SR Jie R 4 B O LR b AR IR Thige, /b BEREEE A&, I I BE RS 15[30]. LE4h,
TE MS S35 10 A 5 P 00 55 1) A I e o, St i e o 00 o) g A T R Pl S I B P i M G, e 0 e 4 P A
WHOREACHI 2, FR AT RER ROS #E— PN EWMFE[31]. Mt A EmE T s 25T L
R ) TE VR T TR

3. B RmpabER 5

3.1. BEERMAREIRATAPERE

AR TR, BT 40 e R 0 00 A o e I AR R AR AT, IR SRS R R AR T R
U] T4 H 2 R o AR, X R B RS R 1 (GLUTL) BRI A0, 518 Jod 4 e A 1) DBl
A AR, /£ LDH YER N A LR HF R B 4 i Ah[32] . BT 4B AF 9 CNS i) R B AR 1)
R4, (EAREeiEsh I, EPEL e BRI A IR, SA AR R O LR G, B SRR
HAZE A(MCT)$52 24 0, BATELRE TCA MEI R ALRE, Zd FERCON BT IR R4 - #4570
FLIR %42 (Astrocyte-Neuron Lactate Shuttle, ANLS) [33].

3.2. BB RMARRIESTRER S

RN, EIER AN AR AR 2 BRI . Bk, AP SRR AR T, AT S
2, SAERKEMALR, &EIRENILRTE A e R, 4ERr R fhIhag, 1 AL A
25| RARMRPE, LB ANLS ThEERIE, Mo aes Ry E = BT Retifi, m& S
T WRRG 5 Sl v YR 24 [6] [34]. MbAh, AT AR T S AT, R T TR 4 42 I B I A B 5k DL 4
Frae RN . AR SIETZIRFIIMH, 2 H I S BEA N T ARITER B A IG5R, SRER AL )
P RAREE M R AR [35] o 2 T2 M T 4 G P 38 S5 s 25 Th REAE T BIDIRAS T 4 ML %5, TEMa sk L 540, b
JEPRE S RN SRR A AL, (R RFERER I 2 SO SR RE v, (R B A A ) PR OV A ROE R, T
INE AR HE[36]. AN RAN RIS, 2T S5 4T M T o) R, 2 M Dy Sy R 4
Al BUF1 A2 U[37]. £E CNS 24 /5 AL MY oxildie It 5 & 1R AT I v B OCHK, 75 R RIH 7 IL-
18- TNF-o F1 NO BEJi, 5 28 F BRI 451473 s A2 BUI 7304 1L-41L-10. 1L-13 Fl#% A0 A= K K 7--B (Transforming
Growth Factor-g, TGF-B) & Ht & K7, AT B A 2 E K PRI #PZE[38] . B FLIESE, NDRG2 FE[H (1) 1A 7K
TRl SN B TR R A M 2 R, BT SR A M R M T FLERE I H NDRG2 iz Ak
LI, MRE AR AL AR > F B NDRG2 2 Ak, IIRIZRERRSE, FREHE L TNF-o A% OIS 58
FERIEBEEE, SRS ITI, B R] W LR TR R TR A A RS A OC EEEE[39]. kA, Sorting nexin
27 (SNX27) &2 — M E T RN E, 58 IBEAGHEOE, 15 SNX27 milr/NsA, BRI 4 s it
GLUTL SHU A & Mk b, MRS BT I T A e 8 oA S i B T e R A, e 7 /0 BRI i e i [40]

3.3. ERRRAMRFENREHSHARITIEERRS

76 AD W, EIEERAMRERINEZ MRS Thaerns, 5§ ESMI, HaERIGaE /1 535 R,
FURR A Bt 22k, SEONMZ Te R B SCRRES, IR 4 - #E o AR, St —
RN A DI Re R [39]. BIRI AL 25 T I fix 57 % (Blood-Brain Barrier, BBB) %, GLUT1 £
HAME = B E 48, BBB 1 GLUTL J/b, Wl gl i @ e m, A it N Py 34 22 T 5 & BN
AD R EEERE[41]. BIER A M@ SR A B E IR L2 R EAATL Fil EAAT2 AN 2 IR LA
IR H RS . RN WA 0 XYtk 2 R AR ERIFFE KA T,
£ AD HiR, EAAT2 @il R E B AAIESRG, RERFEEAMRER, FHRET, BRERM
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s ANLS 748 ATP N fERE, 4ERFB EIRACINFRAS: 17 AD 1 ANLS DjRe i 2R AR ER,
FFRZ G T2[42] o #E HD R v K B2 J2 ANSOIR A pods kar 21 o e AR U S2 08, FFE R, Thaekimm
BRI R4 - 2 oA EAE 2580 HD HRp g &b, HUai Ry >y K Hh B EE B A 7 o
T, PG TCERIE BT LA R A R 4 1 RIS AR L, T7E HD (/N AN B R R I,  SUIRIE M Z
JCH GRAR R = SR AR (A (MHTT) AR B 2 G Bk MR FE R 1 2 (SVCT2)AE AL, Uk i B e s 2
fieidk HD &4, $RFALER W {EA HD K2 Wik EYRGIT#E A [43]. Ak, HD /NRBA A, H & KT
2 PR IR W B AR B AR, AR 70 (R A5 2 TR I 4 AR T At 3 3 =X 2 1) T 07 TR R At e i
7, MARRME ST ROS F=AE DL & o i, 85 2R A4 FE 7] 1) B 7B BR 77 XIB-5-131 k55 71X
— LG, SRV R FH 3R TR I o A A U 2 TRT R I R T R SR HD SR I8 IRVR 9T 77 1 [44] . #E PD 1,
R B T f T 40 = AR e B LR T RS R O, SIRTL 2 — M4 A1 LlELE, 75 PD 584/
B, SIRTL PISGEI SRR, 11 SIRTL MmN — L hnE PD fEtR, MMLEI B, SIRT1 5 PKM2
FHEAE AL 2k, AT RS PKM2 yEMEAIFLRR A B, 2835 PD [28]. i&H W 7LR M, BRI
SRR B E WO P LR AT T, B HK2 {23 7 2 BRI A Ie i T, il HK2 f3RiE
Ve 1ok AR AR T 4 A5 S 3 1A LR A R IR S A 2 T IR T2 [45] « 1T WL ALIRARAS W RE BN T KR YT PD #4
IBAT VAR 2 (R HE A

4. ‘LSRR M PaBEA 5
4.1. LR RAPEESTRRENR S

ARFIRAS TN, A SR 5 400 A LA BB IR A Dy 2 B RE 7 2, AN /> S & N 2R 44 HE1T OXPHOS,

T HEH 1 A R SRR R, BRI B AR ST TR 1 ATP 77 IR AE B R e B4 Rk RE R 7R, IR
R 2 AR 1) P )= A T A D BB A A B SRR T AR 0T, 2 5 MM 0T ORI 4 RF[46] o BB 5T KW, ErbB {5
50 P T A A TR 0T 2 B A AR URR R A T S M R A T 5NN TR, UE 52/ SRR 5 4 AR
5 AN Th RE ) S SR [AT] o A SR A A A LIRS T B8 B T Bt 5 R ] 43, /D SR o 41 PR AE ARG R 2 10
TN BEEE I B2 3240, FLIE AT DAE R 5 05 10 2640 R SCRERI R DR [48] . > R 40 i it MCT1
I IEH MCT2 2LFER, AN RIR AL IE 2 MEn, WA iR, 24 MCTL
1L R R on i o 2 R [49] . Rk, 7R RERANM P &Rtk S 5ata 4. BRRAR
W MRETE S S% L MAEENRE, H OXPHOS 11 EA A B A K1EH[50].

4.2. IR BRUAREIRIRS T HOBEA A

BRI BRAER DRI R BRI R, BT AR, HERAREEEZ N, HIF-1a fE
U T T A R4 ) B SIS R (GLUTL/GLUT) . BB RBE(HK2. PFKFB3. LDHA)%, FLFE/fEit
TCEE SRR, D F0R A, HIF-La PT LA 3220 9 2 IR T 4 4H P (OPCs) A A7-47% R 1) Bl 88/ 5 52 ol 240 L 1) 4 Ak »
RAE ™ B AR R A T HIF-Lo 3 B2 W0 RTHI Z R AR A ) & 7, ik/> OXPHOS &E 77, [RIF 23k
TR EAR R, RN ER T #E[51] [52]. WEFRARIN, AR 28 AT LAY T 20 SR o 24 i 1) 5 vy O T At 2k
PPIRAS AR AYERE ATP A2 i, (HIX P U AN & DATR MR R Th RE B fS it pR IV BE B 11, IE 2 454% PPP iy
R, FEFUEMAE S FFE[53].

4.3. LIRRE RAMFE N SR TIH KR

7E AD H, A HOHE Z2 ] 15T A SRR BT L e A B A R e A, R R XS RE R A, B
HE R 5 AD 2 R UIoRHK, Bl 25k MBEETIE 3 B & R RS g AB IR T hn/b 58 1
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JRANAE AR R AR, T AR SRR R S ThRE, AT MRS [54]. PIXAIE KRG MCTL £
BRIET DREJTAMM, HIRERIR nT S8 R R & oo F 0%, 7RI 460 2 i 44 (Amyotrophic Lat-
eral Sclerosis, ALS)H1, MCT1 HEEHRIALZE T, [HIGARKIZYIEE, FReE Uk, SBHIRMG
LA 2 IR AT VW A2 [55]

76 MS BRI, DRI T 588 TS M AR A R IR ST, SRR A 1 A8 )1 208055 DL &
SEFIE BIHEIR, OPCs [ 53 th 225 41 H BRI/ [56] . /b SR 4 M AE (R AE B AR CIRIR 25 R AT DAAE
FEiE, ARTERC I AR E G AR T, HOA TR AT 20D RS R, i — Do ah 54t , v WpE
AR PT BB AR 4ERFRESY 1L 4500 5 ThRELL KL MS VB TEIR T IR 12 [57] .

4.4. HERRMMEZ EFERIBOZEER

PRZE R AR BE 2 1) B AR B AR RS EAE o EAEERAS S, B TR B 4N M A U B A B LR
T I PR BRI B B TR TSR A R D R, 12 LR T A R R )N B T 4 R B, AR A R B RIS 5 T
BoE L RLAR L E ) & B A SR i OXPHOS i #%, /M 4 a) M2 B934k RAEBT R EI[32]. BFFEER
By, 75 AD KR, BT 40 ) RE R i 5 SCFLIR AR sl Sk /IN R I 4T i 11 e B S Rt 2 0, A
Fom) ML BUEEAR,, IR 2 SO0 SORE[39] o B2 TR I o 4 i 5 /1 SR R o 40 Al -2 T] 19 22 B 2 B2 2 e JER P )
B, BT ALE T MCT B FLER vl 40 R T 20 M B U E T TCA JEFR,  SCREHBERS Y ol 12
BT BRI B [48] o BEAR, B TR AN B 43 WA T 3R R AR K TR (EGF) AL /MR 5 4 2E K Rl 7 (PDGF) AT
WOt OPCs [MERA MRS, [ HHI5E 53T H% e 0G5 [58] . 7E MS i St )b ol [l e B A B2 T2 G I 240 e
YU E IR N T AT i OPCs 704k, EREAIHZFL 2 SR EMN AL, HSHEM A [56]. BBk
Jo 4 6 30 VT T 5 A/ A AR A 1 mIRINA 48 /0 S o 240 B A B R e 0k, i) 422 5 i L 2 R4 D) g 5 OXPHOS
RCR[59] /MR T A5 /D S SR AN i 2 (BB AFAE S HAE T, BTSRRI, HE 2 5 5 10 /NI 5 40 i 2 B
K1t NO Fl1 ROS, &R (170> 5% J5 I 4 M #25 fih fi » LM AR R R % 525 AR PR 6 PR 2 32 B0, 523 OXPHOS
AEJ) N RR[30]o AR FU AT, /NG 20 M 7E 77 Wk BB A 1 5 22 R AR L g A, 38 n i iy R S Ak e g A
AEEREEN IR B, i FE RS 5 AT B2 OPCs (1 34 B FE R 5 PE[60] o MEARIHAEAH 0 5 1%
JRAN A () A7 AE B IIAS H o (EAEFIRZS N, /MR B 40 M X T 6 i 10 5 i A0 40 PR R A 38047 7 Wik B T 4
PR 2R Razs, X PRI Th RS T 2Rk OXPHOS P2 1) ATP, FEMEBEAR ISR I RADIRE T,
FISZ IR 44 6L 1) 7 Wik R ) 4 3 T B S UM 2 I 2 RS IR [61] o TEMPEARA IS, /NI I 41 i 2 IR A2 2145
PRI, I8 3G I R A I R IR T S R R TR, I ISR £ R 740 1L-10 A1 TGF-p
B AUEE[62]. BTN S M2 e (Al ANLS X —HLHIEET 28 B 92 RE & i P 4t B [33] .
T 20 M R R K FLER IR 2 5 PR T M 2 0 I AR RS, TR I HE A NADH 4k Rr4H g 3 1) S84 IE S5 7
i, PRI S T2 A AL BB [63]. A SRR AN M S5 4 4 T 2 (R AR A B T BN R e AL,
I MCTL ¥ IR 2 R R IR, P& ol ZRm i MCT2 AL R I H A AL LB [49] .

4.5. FEB TR BERIER

P2 JE S AR MU A RT A D9 i 7 Ao AR AT PR OB R, SR B Ay S5 T 0B A Qi 7T e
R —E EIE R . B, FREARE/NR T 20 OXPHOS A B T-28f#% AD ity A UiER, SR I BEWuE
LRRACH T BE & T2 ROS I & /™ 4, 5K DNA 175 S Ui e 2 [13] [25] [FIRE, I HTHE B 400 1]
R FLIR M B 7, SR TR A 5 AR 22 T 2 (] A FLIRAS A R A, SR 4 Te e R R LR R
AT 2B PE[34] 0 TR AN M AR AR BRORAS T v BEARASURE AR (I B ARSI TER I, D T AP O S I 2 11
55 OPCs HIHEFH 5 70 AL RE J1, ISR iRl Jm A BESH F A 2ERR[64] . £E MS KR rhr, 8 W IR A28 400 1 751 T ik
AR JORE, (HR WM OPCs LR 5, FE AR E IEIR[65].
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5. /&g

MZIBAT PRI B B L R o 24, FEBR A RUOR A2 — e, Ml Al Ve oy PR & R 4
b PR 2 AR, SR EIRAT PRI IR R A R AT S OB AR AR ST 0 = Fob e 2 o S 4 i MR
0 1 L T SR 6T 5 B S LK S A B AT PR IR R, X B BN IR AT VE DO BVR T SR 11 1B
Wi S AR R, ARSR AT X RE A I R AR SR I B s A 7y 7B B MR 22 (R 25 . SR, AR
2 A A 22 SRAT PRI VR I I T AT T e ¥ 22 190 L, AR AR 0 AN [RIBi B ) 3 25 D RE 4 17 K 5 42 )
B, SEBURSHERT PR 3 7 Bk i, AN [R5 240 A A BRI BEAR A R I A2 ELAE TR 7 i — P i I
B T FitiR 7 77 305 B RN R FUM I B AR Ry S T U s SR (K Fe b R AR T sl e
IRATPEZR SR SE EINA I(E R A

& H
WAL= 25 2= Bt 7T AR RGBT H (Y C2024058)
SE 3k
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