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Abstract

This article reviews the research progress regarding mitochondrial dynamics (MD) and its related
genes (MD-RGs) as biomarkers for early diagnosis and therapeutic targets in sepsis. Sepsis carries a
high mortality rate, making early diagnosis and intervention crucial; however, currently, there are no
effective biomarkers for early detection. Mitochondrial dynamics, including fusion and fission, are es-
sential for maintaining cellular energy metabolism and homeostasis. In sepsis, these processes are sig-
nificantly disrupted, leading to mitochondrial fragmentation and functional collapse, which in turn ex-
acerbates organ damage and immune-inflammatory disorders. The article highlights that three MD-
RGs identified through bioinformatic analysis—RNF165, SLC22A4, and UBE2C—show significant
changes in expression in patients with sepsis and are closely associated with immune cell infiltration,
indicating their potential as diagnostic biomarkers. Experimental validation further supports the reli-
ability of these genes. Additionally, intervention strategies targeting mitochondrial dynamics, such as
inhibiting the fission protein DRP1, have shown promising therapeutic prospects in preclinical studies.
In conclusion, this review emphasizes that in-depth research on mitochondrial dynamics and the iden-
tification of related biomarkers is of great significance for elucidating the pathogenic mechanisms of
sepsis, enabling early diagnosis, and developing new targeted treatment strategies. In the future, large-
scale clinical validation is needed, as well as exploration of their potential as tools for dynamic moni-
toring and prognostic assessment.
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1. 518

JRBEAE, SECHFR Sepsis, FENUANTBGY S BRI S B & B DI RERERT SR G 1E, TEERINTER. K
BohE, AR RIS B SE L], RERAE PR N B IR FRE NI FR AR T, W SR BUREDIREA 4
NAEIRERT, LA 2] AEREEAE T R MR ERE R B 4890 i, FET- ANELZI A 1100 75, 543K
ToNE 20%, JHREEIE 2 SRR MR 4708 B3 A0 T 2R A [3] . o) T Mg i OB T JR IR H i AN 58 40
o AIRIEIRL, FUNSW XS LT R A HE, R I BT T /N, BERS AR
FHCT- R BEK 2% [4]. 2R, H BTSRZ A R0 IEEAE ) R 2 Wb 58 BRI, $2 9 IRERAE ) 30012
VbR EYIREAT RE AR ST RAFICNE B . RSO R AR AA B ) 2 A RS A IR EERE R AR R R Y
WL B ik PR 2 P 4 S T 98 64T 2503
2. ZRIFEN 5 (Mitochondrial Dynamics, MD)

LR R RO, ESS5HMEMBIRIG. ATP &5 40 A5 7187 DL 4 Rr 4 o
K EEMMA[5]. LkifAs) 112 (Mitochondrial dynamics, MD) 2 443 22 b A 25 F RIS & () e mth, 7= 7
RS NSNS, 9Tl REL A ThRE R 6] [7]. MD EIEEL& >3, P& @t o 2kt 5z
S R S A, el E AR AR AR R, T 4E R 2R R A AR AR [8] . BT AT I, ZkifA
Dife e SMRERREA ¢, 1 B I SRR A 1 e ) o R BORLAR 73 2L, AT A% DX R B L A o 2 T Xy R
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RN ARG RAR, FEERRARIE AT AT, SRR PRI fa 7 35 EL, (73 IR B B IO A8 T KU 38 i
[9]. [RIRF 2Rk & 1 7 KBNS A RGE N5 2R 5 S SR 38 B DhRe MR RLAR TR A, IR E 4L
A LA IE 5 7K~ [10] [11]

LR RLARZ) )5 R LR R TE QM V5 B R B S I FE, BRI RS . B, BEMIEE
TR . KRS SR T YERFAI I N B IR 8  3E AR PR EE 2% 4t LA R e Rrai 2R K 3558
SRR R A R . ZRRLARS) 1 2 WA EHLHE S R, hifh— B Ab T3 5
BRI AFAE R BN AT o, S48 im0 WA IR B R AE AR, P T Re T, SRR N FRas &L,
A FEIRIIRE . R B TRk s) 712 5 MRS B A A Y0248 - AL B FOE A 3R 8 78
gy, ACA BRI, WRREERAERS) S A AEMERE 10 0] DOR B AR AE P 54T 3R (R AL A
UEAN, IRAHIE UK BRIE T 2R BN ) 2 AR L, AR B TR~ IR EEIE B R ALER, ] Ge AT
SRR TT RS AL AR RE AL 25 1, MD R TR 2 35 B 6895 A1 5038 Ik 330 R0 8 UG R OB R, 3
R IEEAE S P 2R A B )15 M S5 3£ BRI (MD related genes, MD-RGs)& T #8 FT IR EEAE AL, -4k
OMEPRE WPSUEE SIS VR

3. RN FE AR X E YRS E R EET BER RIG RN E

ZR LA 2 R A% R R AN SR A i P AS [ s R AN U R SR A 4B, R DU b T & PR A B D R 10]
LR A ) R B EE SR, S5 MR, giE T AR R RN R
WA RS . ZRRi R — DRI RN G, SETIshSma AR, RIEThRE T RGBS EN,
TR RLARE % 0 R R T Re S T IR ANV T NS A B R [12].

LRED) )R a A . MG AR RS R AR AR, XN THE 5 S AR I s AR D e
BREE., RSN F AP SBIR R RAA DI RE, SR Aris 7 M — RPNV, BIEMEIRAT
PR AR O U FIERE , L ) 2R A B 7 5 BE A S s B T A2 VR 9T SR [10] . Btk
PAGL, LRI BN )5 7E S R G IR N R SOE P R ¥ A BB EEAE SR sl ) 2 P R 5 N 1)
RIFHLEIAT P TE IR [13] . WGP b, 0T REAS AR IR B 5 R 1) 22 28 B 6800 1) S B AL G 43« 2R 3
IR 2 R 2R A WA T2, PO NI IR S o0 E 3, SRR hARS) % T RS S EERE D)
KA R E[14].

HEFERI, 1E LPS /N RS b, R ERECIEA N2 PKM2 #1 PHB2 1) %2 T i,
LRRIREN J) AT MR 5, AR AR . Rl AR BRI WE[15] o LRk 2 15 — R AN TE Sh A% O
SANES, BRAVOE T BRI R R dria . ARG, AR AR S R 2R LA () 25
FThae, LAREEERE 3 G s mn LM N AR AR . ZRRLMACR FH 2 PN SR GE B ), R iR R I Bk
FIR AN ZRRLARE) T 0 e, IR R BRI S 1 WL 2 516 F I ROAE RS, IR BEAE B8 A 9 T
F I N R AE L, FORERARS) ) F 0] RS 5 AT R [16].

LR P B 258 A3 AT X 248 e T (MK B MIFNL/2 AT OPAL 3 3 A il 2 25 1) A % A8 2 i 52 453 i
RARE RN BN, RS R T AN AR AR [17]. R, TERREEMENL N, SR E AP
FrE(lan TNF-a. IL-18) LA RS AR 2 BN I R o I R A SRS UEHE R B, FE IR BERE 2R3 PR FA B
A R SR 4 e, DRPL 2 (43K Ser616 A o5 1 B IR 4b 1M ok FE G, RIS MFN2 [0t 25 52 24
il AR S FERRARGE BT, AR R IIRE I, DURIE AR A & X SR
S5 RAKH caspase-3 MR TS, B FECOMT B NERITIE S 38 B (0 ThAERaRS [18] [19]. Bk4h, fEE
s 4 L 25 G e A A b, DA 2 0 o B T 30 R Ak 0 9 2 A1 A 4 A i T 3 A AU T i B A (D
Warburg Z80),  MTHTHE— 25 IR 96 RE SN, ABAH ) ML B 58 RS AR Ak, 3 TR 4 51 R 4l IR - X 2
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—— X R R AR 1) — N SRR [20] . R ERRL AR BN SR F T IR AR IR R AT A ST I T R
LFIHG 5. 253025 B Y DRPL 4057 (%1 4 Mdivi-1) DA K ii i B AH O 28 /1 5 1) MFN2 i FB HR1E ik
AR 38 S YR ITIE F7[21] [22] 0 31X S T 8 o 1 b A I 45 4 S SRR L T B RERS IR
REERE 5162 100 LAH ML P8 T AV INE B . [FIR, SR PR 3R A SR TR IS SR AR A I AR, RnT
DA g e B E 1k i A 78 e b 22 G 2R R AR 1) 2 AR AR B R B A 42 A FIE[10] 0 SRTTT, 536 97 ¥ B F T I AR 5
BT T 1% 22 PR, X Bk B FEAN R A 406 SR bR s A AL R LRI AAE 2 57 . AR
et N Z F 2 FE (10 DRPL & A vl e AN 48 732 R SRR AAB 1), DA R MR W 2 2 1R i) f o
Z5PE[23]. R, ERMERERAS FRRAARS) SRR 2 LA S CEEN R . Bk, XfH
BT T fRAN R 28 B AE TR AR FEAE I B R I A M 99 PR AR AE s IR, BIE R N BRAT SR RS HE TR T IO HE A
WA R T AR S Z H B H ARG S, A BIEANIUA AR 3, s I & e w2k
BN AR BT T B

A58 2 G S R 5 WGCNA 43 7538, I th T BREEIE R 5 {g o HE A 2 [) 5 2ok ik
IR AT R I 2 F RIEFE R, @ — RIVEDE B AH AR E T 5 IREEA S AEYbr &8, FHRT
T IR LR bR B BARAE LS %5 R T 2 2 IR RS, 4546 T MD-RG 1¥4. WGCNA 43
M ZRKISFEHTEE . LASSO BIHLL R Z Moy KE L. 1E 45 Mgk iR, &2 T RNF165.
SLC22A4 1 UBE2C X =/ RS AEMIFR EN « XM RGN 1% 77 EA B IR 15— 438 7 1 s IR,
N4 T30k e AR A 76 40 P mT e R L PG I FH 7 7

RNF165 (Ring Finger Protein 165): 1Fy—Fi{Eiz R A AF I S RE Y E3 &2 320, Ehe
B Z M E AR, Flndn e T, AR E IR S5 5S, DLURAIRR T RN T
i1t FE[24] [25]. R H AT Z H AR R RNFL65 5k 8E 1 AOmLH 2 [RA7 0 6k, BTz R
ARATLHI BT 51 1 P4 52 T i i A i i 5 R B 1) R JE I R B UTAH G, IX 47K RNIF165 7EIX — i HH Al RER
Vi BB IEFH[26] [27].

SLC22A4 (Solute Carrier Family 22 Member 4): ZFE K gwtd—FG HLBH = 4412 5 H(OCTN1L), XFh
AR A RE S (e BE G HLRH B8 FAEAI AR i . WA R, IR G A S RBe Vs R L% V)M G,
EOR H A M B = BRAIEYE REAE Y] SLC22A4 5 IFEAE I AR AL G Z IAIAFAE R BK, H 2 AT 48, oA
J& TR i B AR RN —— 0 H 2 SLCTALL CEERIB AR s ). SLC12A4 (KCC1 4 -
AILFEEA)LL & SLC3A2 (CD98 i) ——fEMRERAE M R il FEh th e 5 2 /E A . X Sepf Je 45 Rk
[FZR 8, SLC22A4 7E i EE Ak (155 35 A2 BR R v n] R4y i A5 22 00 EE 22 1) A 4 28]-[30]

UBE2C (Ubiquitin-Conjugating Enzyme E2 C): %K 4tdiz & - A A RA N OHBH 5, X
PR Y RSB R IR R R AR R . e 2 S A R GBI AR, B 23
HEFE. DNA Hif 8 UL KA T 5546 5. R H AT B A UBE2C 5 kBRI AW WL 2 [ S
W R BONA R, S 1E 2 Fh JRE M0 R AR A e Se—— e R 7E AR T itk B 3 1 AU o<
PR~ A LR 93 B B G DL R Wy R — 33 350 B " T 90 S B (e i R R e SE B ThRe MR . T
2 i DR DR R i 25 B A F AL R AR, AL A SR, UBE2C 1R AT g2 a1 AL 4 0
SN 2R TR N SRARR a3 Jie B RE 1 U FE IR [31]-[33] 6

EARFERENE, SLC22A4 HrhPERIgH i 2 [MAFE SR UM IEAH G OC R, 15 CD8+ T 4 i I 5 i 52 %
AR SRR R——IX R K B, SLC22A4 W] AL I 15 B 1 15 SR 5 S 2 41 i (AR 1 15 Th AE[34]
RNF165 FIA /KT B & MM S e i IS G 0%, B TRz AR RN T 404735 [35]
MR, UBE2C KA F T 58 2 AR ATE A 2 IAHIE, X UEH] UBE2C 7E UK 48 K ML 2 e
HEAEH[36]. XA AEYIAR EWRIE S G A0 MIR I 2 R R SC R, i Al R BEAE 8 3 1) S IR S
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FRAL T4 TR M AR, (R R B T IR bR A AT A g e D G A B ) T SEHR RR[37]

WA BN 5 LMK R IR A LA T RE I AE LB R, —FhAEYIbR 40 0] REA7AE 2L RV 2R 55
AN ROS 5 Ca?"ifik, 12K i W IR iR 3%, 7% 3] DRPL/MFN1/2/OPAL. A KifAZAL %
/& DRPL BZFAMEIEE MFF. MiD49/51. Fisl Z5ERC R A Foe e brzd; Bl A0 oK
MFN1/2 5 N OPAL. fE#% 21, £ HLiEHEaEfuFE: Ca**—Calcineurin—~DRP1 Ser637 Z: 1t —~DRP1
B — ZUAR IG5 (78 2L RPN e 50AIE) [38]. 7E4HAEE A, CyclinB-CDK1 wJ {1 DRP1 i/ x5 iz
T IEHES) 73 ZLII AR . A 2253 Z4R I, APC/C (Cdhl)/r 5 DRP1 2 H 4k 2 512 5 8 (LA T Rl 5
#) [39]. ROS mliE T 2 Flifl (W ERK2. PKCo %5) it DRPL WU /H%Ar, 51 R &RLERE F 6[40]. ER-
bR il A7 S (MERCS/MAM)iE it IP3R-GRP75-VDAC1-MCU %l #8idk J5 i i Ca2*iids, MGk Cazt
BENRRAA IR RS 712 MFN2 5 ER-ZRRLR RIS & Ca? #4iz 56 2% [41].

RNF165 7] BEA7-TEM “ AR E3” 21| “ YA - LR i U P il & 28 1 7 18 2%, RNF165 J2 RING
B3z mikehy, HAMSZ RN O, B E3EMEI 2z 246 K. A RS
o, Rnfl65 515 55 A, HA “E A T VRS 8 (AR N R 4t) 7 kiE 5 2rk e R 45[42]. ©
AW FOUE ISR L N ARFEOC E3 BERETE “ K - SRR BE B Befil” &b, E Bz RAULhARSMERA & O
MFN1/MFN2 F A8 4 b A4 T8 25 (1 AT [43] .

SLC22A4 (OCTNL) A gEEIT “HrE EM I —~ROS HI{H % —DRP1 % Jk/b " A8 /@4
SLC22A4 4w OCTN1, J& A2 MGt (ergothioneine, ET)HEMK, 540 M S/ AL SO 42 4 0%
[44]. 2 fh it LA PGS AR IR A G SRR RS, 5“2 T4 B R R B SR Ak 8 7 3k = 5 18 (O
& SRR AR BB IE ) [45]. ROS Wit ERK2. PKCY 2542 it DRPL MuB/HE4r, 5| KA SHEF
1, TR AENT R R LA i G % [40]

UBE2C A gl 4 “4ufiu 5 & A 57 5 “DRPL BERRAL + 12 547 iX W &L biiksh )y 50T ik
ek, UBE2C J& APC/C X4 E2 [, 25 227 FA IR (W1 cyclin, securin 55) 17z #4615 B
HAEZ MR g Rk 54 R 45 RA R II SRR UEYE 78 /2 [46]. ZRRiAAZ) )% 5 40 i A 58 A5 Bk . CyclinB-
CDK1 BEif#% DRP1 i R HIE i3k 73 ZLHIZRAR 15 2R R A4 73 BC[39] o A 2253 24 10) BN 2% B g i F2 H1, APCIC
(Cdnl)rJ {1k DRP1 [z =4k, ZE5RERIES W4 HE#[47]. t4h, UBE2C/CDH1/DEPTOR 5 H i
WA, N R AR SR T BANERE s 48]

MRSk, 7E RNF165 & I8N, TTREAELE MFNL/2 & FK B B4 K oAs s Bkl B e Fo Ak s
LB A A — R A o (B R B A T 358 00K ml) [43]. 7E SLC22A4 K iAl;, FREAFAE ROS f64r T
K. DRP1 ZRifA o8 /b . Ser637 LRI, TR I 220R; AE A NS RL N ORGP 248 B B St
[44]. 7E UBE2C i ikif, TRETELEA 247024 DRP1 Ser616 R v 54 5ki8 H! ] DRP1 12 AL 724
HIL “ 2R - IR AR RRECRRNS, FEAERE B R BB AR A [47].

HEEH W FEEE RT-qPCR #5 H0MT BRINEGAE T =R AW £, NMERRE R 4> T2 Wi fit 756
BEMESZIOAEYE . EE S04 B(RNF165 RIS SLC22A4. UBE2C i) 5 AHCE W15 B 2E TR AR 7,
W X SR E R B E, X 51 AR TR F I 38R S g —2)[49] [50]. RT-gPCR fEAZEHRIE A
BRI S bt DR e e P RO A 8 DA B 3k 75751 SR FH GAPDH 1E RN S 2L [, JFid@ il 2-AACt
AT AN BT, I AR AR IR T A R BT FEVE[52] . SRR T A T, AR RN IR
A (R 5 B AT REFR MG 2k )T, BRIk, ARKBF AR KEAGIRUSE I 347 2 O30 IE, DAPR w4t SR 1
&

KRS WU AR SV B B RIG IR R X . E3 12 3 &M RNF165 ¥ T 1 7] fe -5 Ik 2 E
SRR A AR OS, 1 SLC22A4 R UBE2C F -1/ I AT i s e S RE [ o7 AN it Ja % i ki . 5
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P YIbR EVAELL, 2 IR A R Re P it = 2 W AR PE[53], Do EEE 1) S R I A AN A v T T
T E SRHE TR T LA

X LG AR E YA T IR EHIE S AR HE (ML RT FR) K UL, S FRAFAERERT $(24~72 /)L BHME AR (1L
30%~40%). Joik RIS WI A BIG, REERIRAEE, ARBurE FmIEREEE . AR T % F48AR(PCT. 3L
FR) KA, PCT 7E /Rl ey JE 378055 JR Ak ol L S B e i mT e AN vy, 10 L AT i 52 B I SORE RIS
BRI A AR T il R AR 5, W EIE M s 5 B BT s, T B2 D Re . TS RR R SRR R R
SR o A AR UE (AR M0hR SRS VR N R EEE 1 A I T B, RS 5 MR T 7 R E .

4. RE

LR PR, T RREREA A A 2, R PR RS R A R A, i
PR R AR T ROR o ZORLIREN 150 TR A A A ROARE - IE R I BT 2% 1 DL S 41 iR
A SEFEA AL SRR AR OB I . AEIRERE S A AR R R OB L, W REEL RS S ik
RERIAE R R, JF HATRES IR AE S W 56 T R B AR O MHORHIT TTRE NS UIE B 2R AR 51 7 22 A SR IR ik B
AR EDEA RN, NTONIKRERAE 7> T2 W 56 T R it 1 e v, (ERRAWITT. AT LS
PR Z i RIS IERT FT AR, DU ST AR AEAL BOAGIN J5 SR S 2 AR TF RN IR BASIRIT AL, JB B i
FEAEGEUIE] B A= M0 SR DL, TR I L A W s B AE 50 I R T PP h PR s S s At
220 M, KD SRER B A RIE KT, AT AR 3 AR 126 1 2 T e 1T ) D3 2 2 19 i B B T
HU R A T o I LERIT FETT 1)K D e S Lo A b 25 Al R I P 5 % Je B8 M s g i

SE
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