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Abstract

The POU4F3 gene is a transcription factor crucial for the growth, development and survival of cochlear
hair cells. It is located on the long arm of human chromosome 5 (5q31) and encodes a protein com-
posed of 388 amino acid residues. Its core function depends on the highly conserved POU domain. This
domain consists of two parts: the POU-specific domain located in the amino acid region 179-256 and
the POU homedomain located in the amino acid region 274-333, which together mediate binding to
DNA. The genetic location corresponding to the POU4F3 gene is DFNA15, which was first confirmed in
1998 as the cause of autosomal dominant non-syndromic hearing loss (ADNSHL). The currently re-
ported pathogenic mutations in POU4F3 cover many types, and their consequences can be summarized
into two categories: one is mutations that lead to “truncation” of protein products (such as nonsense,
frame-shift and partial deletion mutations), and the other is missense mutations that change amino
acid sequences and thereby “damage” key functional domains. Regardless of the form, it ultimately dis-
rupts the normal function of POU4F3, manifested by loss of transcriptional activity or erroneous sub-
cellular positioning. From a genetic perspective, this usually results from a single dose deficiency or a
dominant negative effect, and causes progressive hair cell damage and hearing loss. Clinical studies
have shown that POU4F3-related hearing loss mostly manifests as delayed, bilateral symmetrical, and
progressive sensorineural deafness. The hearing curve is mainly of the high-frequency decreasing type,
but the intermediate-frequency decreasing type and flat type have also been reported. Phenotype het-
erogeneity is significant. In addition to typical hearing loss, some patients may have vestibular dysfunc-
tion, but generally not accompanied by other system abnormalities and are consistent with non-syn-
dromic characteristics. Genetic screening showed that POU4F3 mutations accounted for a certain pro-
portion of familial ADNSHL, especially in large families with specific hearing phenotypes. Given its com-
plex molecular mechanisms and diverse phenotypes, in-depth research on the pathophysiological
pathways of POU4F3 is of great significance for developing targeted therapies and improving the clini-
cal management of hereditary deafness.
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1. POU4F3 & EH =TI =L

POUAF3 J:[H 2 Hig BN A K& B M4E R fAim B BB RN T, T A 5 SREarKE
(5031), Zmh5 388 NG HEEL TR A I R 0T, R0 D BRI T BEOR ST 1) POU Skt b5 A4 38 el
AT RIS AT 179-256 f 2 IR X B POU 457 45 i 35k (POU-specific domain) ff + 274-333 i & 2 %
X B i) POU [A]JE 45 #438(POU homeodomain), —L[A 535 DNA HI45&[1]. H 1998 FFH XAl &
SR e Ak B AR S5 A AE BT J745 2k (autosomal dominant non-syndromic hearing loss, ADNSHL) %05
JERILLR, 7 AT POUAF3 58748 Bt SR 25 6 AiE BY T A7 453 2% R IRALI A BFF 78 CLIZ B IR N, BUA TR R W,
H A% OHLH 2 H 45 7 5 A 2 (haploinsufficiency) B 14 11 24 B (dominant-negative effect) 53 1 DR 2%,
TG R R B ) e T 5 AR AL i8R T S5 S A B IR 3R B U AH D% [2]-[5]

11 FREARLESERE

POU4F3 1EN#E R 1, 15U P B4R/ B4 AR b e S K AR S TR A% O ER
WA, POUAF3 & AR T A N B4 s 2 B, FERFERZE, ST B4 i 2R o
FIRERETE6]. HFEKFERBEREPZIREMAE, 5T A TSR E R AP 47. 75/
BRI, Poudf3 ZEDH (158 Ak 2 S BRI SE A 0, I 91 AGHAT T 1 FBE[7]. E— 2B I ThRERIE 5L
KW, POUAF3 i 5 N ¥ LR (n GRil) IR Bk RF B4R, Poudf3 Biff& S8 Gfil %
KR AL, RSN BRI, X 0] BENT Sk I 32 By TR [8]

12. ERMEEEBFSTARENRE

55 R POUAF3 3 7 = AR 57 ) POU 45 Fy38(POU 5 7 45 K38l POU [A) 45 #y3) , 1157 DNA 45
B S SRS , IR B N E AR IR E T RE R RTHRE[9]. 2 HUBUR R4S HL IR POU 4 M3 Bl 2 fr
F5(NLS). B, ZKigk H 9848 (— Rl i 58 8) S BUR LR R Uil o sk e, MUK T Eafaet:, &
S H e A T AR BT, B AR A R B AL T A AZ 9] BEFEAR I, POUAR3 05 I DhEetE NLS (— 4
Rk NLS Al—ANXUk NLS), W FHEeZ el 2 EE,; FNERAXHNMES & FBEATE
AR R [9]. WA X ZEAR N p.L223P. p.L289F (& D)W SERUIM LA e =W, A
HILTEH MR A [10] 0 X PS8 A B | HAE Nk R F I T Re, 2 SEURAE R E A 2 1) EZ
il

¢.668T>C c. 977G>A
c.191A>T c. 662_675del14 c.884_891del8
c.172G>T c. 602delT l c.865C>T l

POU4F3 ]711 82bp NM_002700

POU4F3

338aa  NP_002697

p.E58¥ p.L201fs T

p.L289F T
p.DBAV p.G221fs p.1295fs

p.L223P p.R326K

Figure 1. Schematic diagram of the POU4F3 protein domain and pathogenic mutation sites in the literature
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Figure 2. Schematic illustration of regulatory mechanisms of POU4F3 target genes
2. POU4F3 £ 58 B R IE R B E

14 EEREMERS EMABN

7 POUAR3 RAZAA B B Dfee sk, i n] geilad & 30N B A M R B R D Rg . ek,
FELETAR A A (0 p.Ala189SerfsTer26) () fe e P i Z K T AR R 1, HE S WFEMR[5]. thhh, Hobgh
SCHRAR AT e S 1) R BSE R MRS S AL R T, AR Y POUARS AL S BE TG 1 [9]. X
FOHLHIRE 1 o0 Gtk AR A% A 2% 5 R L UL BURI R .
15 NEINRARBERB AR ZER

LI T A ] 4 B VERSRAE A, HIESE Poudf3 FE ARG I B4 AR &R AL i AN AT Bk, Hosh ok S BB
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FUEER, JERER

P58 4 RANSE RN ER[14] 0 SRTA, S SIRI Y At 528 2575 (O B 4RI e M 2% AF R SRR A B, POUAF3
FE R /N BB 20 AR v R RE oG B 2L, BT FER I, TERAE AR IS L Wr Jy s UI(2) 4 J3 %) ik 72 hk
(8 JA ) MER POUAF3, Yo SBUEATYE BN E RN I T, HBMPILT R EZES: N
RGBT MR POUAF3 2 SEUEPEMAMILT. . X1k POUAF3 MIZhaE BT % BAIMA L, A
IR R 1 HAE R 5 Y Fr B BT REBAT WS 5 R 4 AL A B0 i #E 2R A

ER PR, POUAF3 A RAZIE I A SR A IR ENL . FRIRILAEE . 159 DNA 45 5 %m 1k,
I PUMR R B B AR A R AR N 2%, e S BB AR BEAT PRIRAL AT k. ARTIT,  AN[R SR A2 SR A ey
RS PRSI s, AR A0 T S B R R 22 5 (AR R e . BERRIESE), A R IR W

2. POUAF3 B S35 1 X i RO G PR 4

POUAF3 J [K RAR T B W /745 2 (DFNALS) FA B IR I R ARFAE TS o HAZ O R I IR RV L X RRIE
HATHER RS WA . RRERE R 10 £ 40 £ 2 0], (HGJLEARIIRE, SRl mE
WA SN R [15] o Wi 3458 8 ST 46, 20 1) AR J&, W I B 2 R i R Y, H R
TFERL( “cookie-bite” BY)AISFIHAYTRA W, FBHAH W3 ()R B F iME[16]-[18] (35 1).

AT FET B2 22 POUAR3 A JCHB (1 — A B B I R0 A RFIE . 380 B R A LR B AR,
BN RLRIE TR SE Poudf3 R FE 22 RE M H B2 B 4 MR AL 400 [19] . SR, K2 BB E A EA HoAh R4
S, R A AR AR E . EAERRE, RERFAEAMUEETARK RN, WAETRE
— KRR A o R4 A ) () 2 DR O AR 7 05, SR B (R R AR08« W 0 ARkt A e T g
PR TR AT BEAFI[20] (35 1) IXFRAR ST BB SAEIM LR . PRBEIR 2 (o 7 2 58 ) LUK AT e 3 W ik A%
WA . B, B R c.37del (p.Alal89SerfsTer26)7E A [m] 5 £ i 30 H i B i e AR e . —THIM
TN, #E SRBIAMA, R R T W D IAR A, W )T BRI SRR R AR I 2 R A
FEWAFEREES . WETER KRN, BRI R ATREAN A o X SRR 78 1 55 DR AN PR 85 IR 3% (A
W R R . HREVEA) I E R . PSP RTIRH, ROREE T TR IS KR R A B R A OCER  T BLsh )
PR AIIETI, R RGO BIX S 7

3. EFE - REXHKERETIE

Table 1. Summary of clinical features associated with POU4F3 variations in previous studies
# 1. XEACIRIER POULF3 TH R HBXMIGKRFIERLE

*%ﬁ%%’f’t ﬁ%ﬁﬁ%{’t %%%@ 9}@? lziﬁ Eﬁﬂzﬁ/\% Dﬁjj Hﬂgﬁ i&@lri %%ifﬁﬁ

(Nucleotide (Amino Acid  (mutation- - (Audiometric .
Change) Change) type) (exon) (Domain) (onset) Configuration) (Progression) (Reference)
‘ B R B, Freit
Ry _ A AR . reitas,
BRI — 2R SF AL HE 113y s e & 2014
T R,
. HOC RS, Singh
* 2R AR ~ H. ’
c.37delC p.(His13Thrfs*71) #igsAr 1 3~72y (T P, = 2023
SPH A
: e , e g o g . Kitano,
c.74dupA p.His25fs MRy 1 20’s ST B2 2 2017
c120+1G>C ByjRE 1 0-~40y PR 2 He, 2016
Paran .—A/\
c172G>T  pOGlusgTer  LXRE 1 VKK iﬁ@g WA R e
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PR, E AR
1 A rea(y? ST TR o Kitano,
c191A>T p.Asp6dval  HE N RAE 1 IVIX 10°s~30’s A5 FREHY 2 2017
¢.288dup p.1le97Hisfs*75 FRgZRAE 1 17~45y A BT = Li, 2025
g R, h
* Y oA N Ry PR = zhang,
c.337C>T p.GIn113 XA 1 14~40y AR & 2016
S AR s e 5 31 = Kitano,
c.367delA p.lle123fs BrRA 1 40~40°s AN FASY 7 2017
Y s ST R Kitano,
C427C>T p.GIn143Ter  LURE 1 3y HOCT FR B NA 017
E_‘}Fﬁ\ # IJ; -
€. 491C>G p.Prol6dArg  HEXFTE 1 NA “’%ﬁggh NA wei, 2014
c.564dupA  p.Alal89Serfs*26 #HIRAE 2 30y O Y b Jo, 2022
Y P AR , 4 52 31 = Kitano,
c.574G>T p.Glul92Ter  TLXURAE 2 POUS  17~30°’s Hil N FEHY P 2017
N AT AL, Kit
1 ) o re 20 R4S itano,
c581T > A p.Phel94Tyr  HiXRAE 2 POUS  10's~20Y i ke 2017
€.593G > A p.Argl98His AN RAE 2 POUS  0-3y SFH A 5 Bai, 2020
€.602T > C p.Leu201lPro 4N A 2 POUS 10’s O Y 2 Gao, 2018
c. 602de1T p.Leu201fs BRE 2 POUS 16~30y il NF&ZHY b Cai, 2016
C.603_604delGG  p.Leu201fs*12  #fgzar 2 POUS NA NA NA Yang, 2013
c. 662_675del14 p.Gly221fs MRy 2 POUS 20y AN RRA NA Lee, 2010
I, e 71 - Kitano,
c.665C>T p.Ser222Leu XL 2 POUS 6y S Y 2 2017
N R, Collin
C.668T > C pLeu223Pro  HENZAE 2 POUS  4~44y T RIAR, 2 o
2008
SPEE
AT AL, Kit
4 T 2% 7R i 151 2. GRS = 1tano,
€.680delC p.Thr227fs MR 2 POUS L T [ = 2017
c. 694G > A p.Glu232Lys  HEXEAE 2 POUS 20’s AT PR NA Baek, 2012
€.704_705del p.Thr235fs BiERE 2 POUS  2~4y =il FFETY b Bai, 2020
c.706C>T p.Leu236Phe XA 2 POUS 8-3ly NA NA Pan, 2025
H ) 2% AR 1 42 FH) =) Kitano,
C.718A>T p.Asn240Tyr 45 RAE 2 POUS 6y AT Y 2 2017
c.743T>C p.Leu248Pro AN A 2 POUS 26y ST B2 = Jo, 2022
1 e AR - 2 o Kitano,
c.841A>G p.lle281Val MY 5AE 2 POUHD 50~54y il R&HY & 2017
N
.863C > A p.Ser288Ter ~ ENZA 2 POUHD *E' T AT B & Z;(?znsg
R, Collin
c.865C>T p.Leu289Phe X Z%4F 2 POUHD 13~20y 4 TR&EA, b3 ’
2008
SPE
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PR, ATk
c.879C > A p.Phe293Leu 5N 2 POUS 37y NA = Jo, 2022
A AR 2y ) - Vahava,
c.884 891del8 p.11e295fs Fidgeds 2 POUHD 18~30y  miffi P& 2 1998
g N R, Kitano
c.896C>T p.Pro299Leu  #EN A 2 POUHD 26~27y Hil NFEAY, = ano,
2017
F1E A
€.932T>C p.LeudllPro #5354 2 POUHD 10~20y =ifil &R = He, 2016
c.952G > A p.Val318Met %A 2 POUHD 16y NA 2 Jo, 2022
S RV ﬁ?‘?‘!
C.976A > G p.Arg326Gly  #iX%=AE 2  POUHD  NA NA NA 2020
Y Ze AR = 2k ) - Kitano,
CI976A>T p.Arg326Ter LY 54 2 POUHD  H4E SE N it b 2017
AR R, .
. 977G > A p.Arg326Lys  f X ZEA 2 POUHD 10-~50’s ’;ﬁ;@f P Kim, 2013
c.982A> G p.Lys328GIu 45 XA 2 POUHD  10°’s il NF&AY 2 Lin, 2017
s = Mutal,
1007delC p.Ala336fs BIRAE 2 0 NA = 2013

H RIT7E 23R VG ) CARGE 1 270 35 R F #) POUAR3 BUR AR &, A3ETE URAS . B RAE, 4 X
GRAR DL R A B IR BAMR TR SR [15]-[17] 0 JCBH R IS X3, RART 2 A TR IGIX, (H AL
TEREE) POU DNA Z5 &85, BB LR iae. B SR (8RB E . Bk
ME, FHEARITA LB R TC L BARA)EH & B EREA SN E0N, HRMRSRE
PEA R, HWmEARE S, MH R, Rl KA TE POU SM N 1), R RE S 1 57808
RIEAER, A 5 50 B B P R A A OC[15]. 140, p.L223P Al p.L289F S54K X A8 33 A U E
MY, ThEEME R AR . — AN EE PR E K POUAF3 28 S n] fe 5 2 aEEE M 5 BRI A G .
K HRIT A 2 AJF FE7E 75 EE BT 88 1 2 AEAMA TR R BT POUAF3 f 5 DL U35 53 (4n p.E232Q), /R 1%L A
(R I RE 453 3 T A I3 4F 8 AH 5% B W 1 38 3R [20] X9 8 T POUAF3 I PR 2 S, A AN S 57 I, o 7
IR R R, ] R W LA A MR 1 DTk R 1.

4. HISRTTRE
4.1, UG

T RINE GO Rk . IR R VERHAT RS MR R MA SR, JUHR T /7 B 2 e ik
AN BT, N T POUARS SNSRI . BEE N — I FPEoR N [, POUAF3 SN
Z R A Ve H 2 DA panel o HERAKI > T2 Wi ANOUE B T WABRRIN . PEASTIUR, IEREN SR R R
HERAG R0 A U A T2 e

4.2. JRTTEIR

H A DFNALS By 5 LR T O T, tnBhWr 88 A0 N T H MR, 5 2 76 25 S A o J o
BORRUF o ORI, JeTBORALE] B0HT R a7 SRS IR R R, RILH BRI 77 61T %1 DFNALS
TR RAFIEA LR, B EERAR G AAV)RIIEETE POUARS JLALEIX B A H- B, 2T
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SR PESENS . SISO TLE ) AAV A5 ) 6 R 6 T4 SC B S . RSB R T
JURIL, Wik ATOHUPOUAFS HiI /(L L (Lt BAINIRIL , i LR EAIILIBIEL:, (EZ5HIPER R L
RS T T AI18). BTN T 2SR AT MR RS, T A B T R AR B B4
. W TSI T POUAFS 0% 45 AR AS N JCHE TUFHL A, IBBARIR A4 PLSCRS, J5#¢
R BT B 3 T R S R 25 5 AT (21 BRI 052 58 0T LT AR B R R
FrET.

5 BESRE

POUAF3 &4k 7 H g AN ML 4 S DhRE AU DA SR 7, AR R DNA 255 BOERL. EAR
SETE SNSRI NS, SBOEATYEBARAR AT A8k, IRRRB LR KA XARPE . AT VE K
Ve ENE, FpthE, HTRe S EMR.

RREVWEFRAE E T LUR UM E5E, RN WA A R AR A r 4 57 T30 POUAF3 [ 5%
WIEM 2% R SRR FRVERSCR, 2R B RIEH iPSC U BB AL AT Thae s 7T [14]. 3
o REA RN EEREIE T 5, IRALEIR . BBl T 25igte, JVREDINA YT BE IR R S AL B8 5E St .
i, 3t B {2 POUARS (N2 MR BB SE BRI IO A5 T, 7T RE D9 T 47 8 AH OG BT 0 R B iR A

B2, X POUAF3 LD I RFEAT FUA R T X AR BB AL O B AR, B IEHESD 3G X% )
TIREERS IR T MBS E FBLSE, O DENALS JBE R 7 2.
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