Published Online November 2025 in Hans. https://www.hanspub.org/journal/ae https://doi.org/10.12677/ae.2025.15112048

职前科学教师跨学科整合能力培养路径研究

王 薇

山西师范大学教育科学学院, 山西 太原

收稿日期: 2025年10月2日; 录用日期: 2025年10月31日; 发布日期: 2025年11月7日

摘要

随着教育领域中以核心素养为导向的科学教育改革的不断深化,跨学科的整合能力已经成为职前科学教师培训的中心目标。本文通过对大量文献的深入研究,首先明确了在实施新课程标准、培育学生的核心能力以及推动教师的专业成长三大领域中,培育职前科学教师的跨学科融合技能的关键性。此外,该研究深度探讨了我国当前职前培训体系所遭遇的"三断层问题":即能力模型与新课程标准的不匹配、课程内容的碎片化以及缺乏协同平台和实践机会的实践断裂。面对上述的挑战,本研究提出了一个"课程-机制-平台"的三维整合培养策略:在课程设计上,我们主张创建一个模块化、项目化和贯通化的综合课程体系;在教育机制方面,我们的目标是优化大学、中小学以及社会组织之间的多元合作教育体系;在这个平台上,我们提议构建一个线上与线下相结合的赋能实践环境。这三个方面紧密结合,目的是系统性地提高我国职前科学教师的跨学科融合能力,并从根本上确保科学教育的高质量,为此提供理论依据和实践建议。

关键词

职前科学教师, 跨学科整合能力, 培养路径

Research on the Cultivation Path of Interdisciplinary Integration Competency for Pre-Service Science Teachers

Wei Wang

School of Educational Science, Shanxi Normal University, Taiyuan Shanxi

Received: October 2, 2025; accepted: October 31, 2025; published: November 7, 2025

Abstract

With the continuous deepening of science education reform oriented towards core competencies in

文章引用: 王薇. 职前科学教师跨学科整合能力培养路径研究[J]. 教育进展, 2025, 15(11): 392-398. POI: 10.12677/ae.2025.15112048

the educational field, interdisciplinary integration competency has become a central goal in preservice science teacher training. Through an in-depth review of extensive literature, this study first clarifies the critical importance of cultivating interdisciplinary integration skills among pre-service science teachers in three key areas: implementing the new curriculum standards, fostering students' core competencies, and promoting teachers' professional growth. Furthermore, the research deeply explores the "three disconnection problems" currently encountered in China's pre-service training system: the mismatch between competency models and the new curriculum standards, the fragmentation of course content, and the practical disconnection due to a lack of collaborative platforms and practical opportunities. In response to these challenges, this study proposes a three-dimensional integrated cultivation strategy of "curriculum-mechanism-platform": In terms of curriculum design, we advocate for the creation of a comprehensive curriculum system that is modular, projectbased, and coherent. Regarding the educational mechanism, our goal is to optimize the multi-collaborative education system involving universities, primary and secondary schools, and social organizations. On the platform front, we propose building an empowered practice environment that integrates online and offline elements. These three aspects are closely intertwined, aiming to systematically enhance the interdisciplinary integration competency of pre-service science teachers in China, fundamentally ensure the high quality of science education, and provide theoretical foundations and practical recommendations for this endeavor.

Kevwords

Pre-Service Science Teachers, Interdisciplinary Integration Competency, Cultivation Path

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

在当今这个快速发展的时代,新一轮的科技革命和产业变革正在迅猛推进,与此同时,人类所面临的挑战和问题也变得日益复杂和多样化。这些问题往往跨越了单一学科的界限,需要多学科的知识和方法共同协作来寻求解决方案。随着科技进步和社会发展的不断推进,对于具备跨学科能力的人才的需求也在不断提高。科学教育作为教育领域的一个重要分支,因其在培养人才和推动科技创新方面的关键作用,始终是各国竞争和博弈的焦点。在这样的大背景下,我国最近一轮的课程改革明确指出,各个学科的课程中至少需要安排 10%的课时来专门进行跨学科主题的学习。同时,科学教育课程也经历了全面的优化和调整,提出了全新的课程理念和目标,强调了科学教育的跨学科性和综合性。科学教育的面貌正在经历一系列深刻的变化,从传统的知识传授转向以素养为导向的人才培养,从单纯的解题训练转向解决真实世界的问题,从被动的学习方式转向主动探索和学习。因此,跨学科教学已经成为一种必然的教学形态。在这种趋势下,跨学科整合能力在科学教育领域的重要性日益凸显。为了适应这一需求,职前科学教师的培养过程中必须融入跨学科整合能力的培养,这不仅要求我们完善传统的教师教育体系,还需要我们展望未来,以满足未来科学教育的需求。

2. 国内外职前科学教师跨学科整合能力的培养现状

在 2010 年 7 月,我国教育部在其发布的《国家中长期教育改革和发展规划纲要(2010~2020 年)》中明确提出了基础教育改革的重要方向,即推进"跨学科、跨领域的科研和教学",旨在实现学生的综合发展和全面素质的提升。到了 2022 年 4 月,教育部进一步发布了《义务教育课程方案(2022 年版)》,该

方案中特别强调了"基于核心素养发展要求,精选重要观念、主题内容和基础知识来设计课程内容,以增强内容与育人目标的紧密联系,并优化组织形式;同时,设立跨学科主题学习,加强学科间的相互关联,推动课程的综合化实施,强化实践性要求"。这一系列的教育政策和指导方针,都围绕着学生核心素养的发展,强调了加强跨学科内容的教学,提升跨学科内容的综合性和实践性的重要性。同时,学科素养与跨学科素养需要互为补充,共同构成支撑学生全面发展的整体素养框架。目前,国内外对于职前科学教师的培养都有广泛而深入的研究。通过阅读相关文献,我们可以发现,国内对职前科学教师培养的研究主要集中在以下四个方面:职前科学教师培养的专业知识研究、职前科学教师培养的专业能力研究、职前科学教师培养的专业发展研究,以及对国外职前科学教师培养的研究分析。而国外对职前科学教师相关的研究则主要围绕五个方面:专业知识、专业能力、教师观念、教学实践及专业发展。

从国外教师跨学科整合能力培养的相关分析中可以看出,职前科学教师跨学科能力的培养在教师培训中变得越来越重要且紧迫。以英国、美国为代表的西方国家,为了强化职前教师的跨学科能力,科学教师需要学习 STEM 课程,探究式教学,并有意识地提升自己的知识整合能力,以期成为高质量的教育工作者[1]。为了提升职前科学教师的跨学科能力,这些国家还专门设计了相应的课程和项目。这些课程的安排通常具有真实性、科学性、有效性、融合性等特点,使职前科学教师在思考真实问题和参与实践活动中提高自己对于各学科知识的融会贯通,优化教学方式,更新教学内容,从而提升自身的跨学科整合能力,强化职前科学教师的观念、思维和主观能动性[2]。

在我国,职前科学教师跨学科能力的培养也与国际发展趋势相一致,我国也设计了与能力培养相关的课程、合作项目、信息技术平台等,以提升跨学科能力。例如,通过 STEM 课程整合,将跨学科理念融入科学教师的师资培养体系,通过正式与非正式学习环境的协同,如博物馆、研究基地与高校的合作项目,拓展了教学实践的场域。通过构建合作协同平台,如研讨会、教师学习共同体等,促进了知识共享和更新反思。但是我国目前仍存在科学教师跨学科概念理解的广度和深度不足,学科整合性差[3]; 科学教师队伍数量不足,专业性不强,缺乏整合跨学科知识的能力等问题[4]。通过对比可以发现,中西方国家在职前科学教师跨学科能力的培养活动上还存在差异。西方国家更多地通过将实践活动贯穿始终的方式来提升科学教师的跨学科整合能力,而我国则更多地采用先进行理论知识学习,再通过实践的方式达到培养目的。

3. 当前国内职前科学教师培养的"三断层困境"

尽管跨学科整合已然成为了科学教育改革的明确方向,但当前我国职前科学教师的培养体系却与这一现实需求存在脱节,陷入了一种系统性的"三断层困境"。一是能力断层,即现有师范生能力模型与新课标所需的跨学科整合要求存在差距;二是课程断层,培养课程往往呈"拼盘化",学科间缺乏深度融合,未能形成系统化的整合性课程体系;三是实践断层,职前教师缺乏在真实、多元的教学环境中进行跨学科教学实践的机会,协同育人机制与平台支持明显不足。这三个断层由内到外、由目标到实施,层层制约,共同导致职前科学教师跨学科整合能力的缺失,以至于培养出的预备教师难以胜任未来的跨学科教学需求。

3.1. 能力断层: 目标之困——师范生能力模型与新课标要求的结构性错位

能力断层是最为根本和初始的断层,它根源于培养目标层面的错位。新课标以"核心素养"为导向,旨在培养科学教师成为能够驾驭跨学科主题教学、引导学生进行科学实践与设计的"课程设计者"与"学习引导者"。然而,目前高师培养体系中所隐含的师范生能力模型,仍然停留在培养"分科知识传授者"的阶段。高师院校的课程体系深度嵌入分科大学的学术架构中,强调师范生在物理、化学、生物

等某一单一学科领域的"专深"知识积累,其知识结构呈"竖井式"。而跨学科教学要求的是"广博"且"可联通"的知识网络,即对多个学科核心概念的理解以及发现其内在联系(如物质与能量、结构与功能)的能力。这种"T型知识结构"中"一横"的缺失,使得师范生面对真实世界中的复杂问题(如环境治理、项目设计)时,难以进行有效的知识整合与迁移。传统的师范技能训练(如板书、课件制作、模拟授课)多是在可控的、简化的教学情境中进行的"技能演练"。而跨学科教学要求的是在开放、不确定的真实情境中,设计项目、整合资源、引导探究、协同合作的"问题解决能力"。师范生普遍缺乏如工程设计流程、项目式学习管理等核心实践能力的训练,导致其从"知"到"行"的转化路径断裂。长期的分科学习使师范生形成了坚固的"学科思维定式",习惯于用本学科的范式审视问题。跨学科整合则要求一种主动打破边界、寻求多元视角融合的"融合思维"。当前培养模式缺乏有意识地进行跨学科思维训练的环节,导致师范生即使接触了跨学科内容,也容易将其视为多学科知识的简单"拼盘",而非有机融合的整体。能力断层的本质是培养目标与市场需求(即基础教育改革)的脱节。高校未能根据新课标的要求,及时更新和重定义"一名合格的准科学教师应具备什么能力"这一根本问题。

3.2. 课程断层: 载体之困——培养课程体系碎片化与整合性课程缺位

能力模型的错位现象,直接导致了培养载体的失效,即课程体系的"碎片化"。这种课程体系的"碎片化"现象,意味着旨在培养跨学科能力的课程本身却缺乏整合性。课程设置"拼盘化",虽然有整合之名,但实际上却缺乏整合之实。许多师范院校虽然开设了如"STEM 教育概论""跨学科教学设计"等课程,但这些课程往往作为孤立的选修课存在,与核心的专业学科课程(如普通物理、无机化学)和教育学课程(如教学论、心理学)之间缺乏有效衔接。各门课程各自为政,未能形成一个围绕"跨学科整合能力"这一核心目标的、相互支撑的课程模块,导致师范生难以将跨学科理念内化并融入其整体的知识结构。课程内容"理论化":与真实情境脱离。现有的跨学科相关课程多偏重理论介绍和概念阐述,缺乏以真实世界问题或项目为驱动的实践性内容。师范生学习了跨学科的理念,却极少有机会在课程中亲身体验如何从一个问题出发,调用多学科知识去设计和实施一个完整的教学项目。这种"纸上谈兵"式的学习,无法培养其真正的整合实践能力。协同开发"缺失化":学科壁垒在课程层面重现。开发高质量的整合课程,需要不同学科专业的教师与教育学专家深度合作。然而,高校内部严格的学科组织界限和固有的教研文化,使得这种跨学科的课程协同开发面临巨大挑战。物理、化学、生物等专业的教师很少共同规划师范生的培养方案,导致课程间的整合难以在项层设计上实现。课程断层是能力断层在培养方案上的具体体现。它使得培养目标悬空,师范生无法通过一个系统、整合的课程载体来有效构建跨学科教学所需的知识与能力体系。

3.3. 实践断层:场域之困——协同育人机制虚化与真实实践平台匮乏

即便师范生在课程学习中已经培养出了初步的整合意识,如果他们没有在真实或高度仿真的教学环境中进行实践和反思的机会,那么他们所具备的能力就无法最终得到巩固和发展。实践断层的问题恰恰体现在这一关键环节的支持不足上。教育实习的"形式化"难以支撑起跨学科教学的尝试。传统的教育实习模式大多依附于分科教学的节奏和内容,实习生的主要任务是协助指导教师完成日常的教学工作,很少有机会被允许或能够独立设计并执行一个周期较长的跨学科项目。实习学校固有的课程安排、评价压力以及对"标新立异"教学尝试的谨慎态度,导致跨学科教学实践缺乏适宜的生长环境。实践基地的"单一化"与非正式学习环境的隔绝。职前教师的实践场所基本被限制在中小学的课堂内,与科技馆、博物馆、科研院所、高新技术企业等富含跨学科教育资源的"非正式学习环境"之间存在严重的隔阂。这使得师范生无法接触到最前沿的科技应用,也难以学会如何利用社会资源来丰富自己的教学内容,更

无法体验到"馆校合作""校企合作"等协同育人模式所带来的益处。指导共同体的"缺位化",缺乏 具有跨学科背景的实践导师。有效的实践需要一个强大的支持系统。目前,无论是大学导师还是中小学 指导教师,他们大多数都是分科背景出身,对于跨学科教学的理解和实践经验都相对有限,因此难以向 师范生提供深入和专业的指导。缺乏一个由科学家、工程师、教育研究者、优秀一线教师组成的跨学科 指导共同体,师范生在实践过程中遇到的困惑无法得到及时的解答,实践反思难以得到深化。实践断层 是前两个断层在最终落实环节的体现。它使得所有理论学习和课程积累失去了转化为实际行动能力的桥 梁,是导致职前科学教师"知行脱节"的直接原因。

目标层的能力模型错位导致了载体层的课程体系失效,而课程体系的失效又在实施层因实践平台的 匮乏而无法得到弥补。因此,要破解这一困境,必须进行系统性的、贯穿"目标-载体-场域"三位一体的综合改革。

4. 职前科学教师跨学科整合能力培养的重要性

培养职前科学教师的跨学科整合能力,是主动适应全球教育发展潮流、深度回应我国基础教育课程 改革需求、并着眼于未来创新人才培养的战略性举措。其重要性根植于以下三个关键维度:

4.1. 响应国家教育战略, 落实新课标理念的必然要求

随着《义务教育科学课程标准(2022 年版)》的全面贯彻执行,我国的科学教育领域已经正式确立了以培养学生的核心素养作为其根本目标的教育改革方向。新课程标准中显著地强调了"跨学科学习"以及"科学与工程实践"的重要性,明确要求打破传统学科之间的界限,引导学生以科学家的思考方式去思考问题,以工程师的解决问题方式去应对挑战。这种教育范式的转变,预示着未来能够胜任的科学教师必须具备将科学、技术、工程、数学以及人文社会科学知识融会贯通的能力,并能够将这些知识应用于解决真实世界问题的教学实践中。因此,在教师的职前教育阶段,系统地培养师范生的跨学科整合能力,成为了确保国家课程改革宏伟蓝图能够在实际课堂教学中有效"落地"的基础和前提。这一步骤是从源头上保障新课程标准实施质量的关键环节,对于提升我国科学教育的整体水平具有深远的意义。

4.2. 培育学生核心素养。应对未来复杂挑战的关键支点

在当今这个快速变化的时代,我们面临着一系列复杂且具有挑战性的全球性问题,比如气候变化、公共卫生危机、以及可持续发展的需求。这些问题的解决不仅需要深入的专业知识,更需要跨学科的思维和创新的解决问题的能力。因此,培养能够应对这些挑战的下一代显得尤为重要。职前科学教师,作为未来教育的"启蒙者"和"引导者",他们的角色至关重要。他们是否具备跨学科整合的能力,将直接影响到他们是否能够通过教学实践有效地培养学生的核心素养。一位擅长跨学科教学的教师,能够设计出富有创意的学习活动,例如"设计一款节能建筑"或"探究本地水质净化"等真实世界项目。通过这些项目,学生可以在实际探究的过程中,自然而然地整合来自不同学科的知识、技能和思维方式。这样的教学方法不仅能够深化学生对知识本质的理解,还能在不知不觉中培养他们的批判性思维、协作能力、创新精神以及社会责任感。这些能力对于学生未来在充满不确定性的世界中立足,是至关重要的基础。

4.3. 推动教师专业发展,实现终身成长的内在动力

职前教师培养是教师教育体系的有机组成,是教师队伍建设的源头活水[5]。研究表明,有跨专业求学经历的教师的跨学科教学胜任力显著高于没有跨专业求学经历的教师[6]。跨学科整合能力的培养,对于教师来说,并不是一种额外的负担,相反,它成为了推动教师实现专业持续发展和职业生涯升华的强大内驱力[7]。这种能力的培养,帮助师范生在正式入职之前,就建立起一个开放和动态的知识观,养成

持续学习和主动更新知识结构的良好习惯,从而避免陷入固化的教学思维模式。跨学科教学本身所具有的挑战性、创造性和成就感,能够极大地激发教师的教学热情和职业认同感。当教师看到自己精心设计的综合性学习项目能够深深吸引学生,并且产生显著的学习成效时,他们的职业幸福感和专业自信将得到极大的提升。跨学科教学还要求教师走出自己的"孤岛",与同事、专家、社区建立广泛的协作关系,这有助于他们构建一个持续发展的专业支持网络,在合作与反思中实现终身成长。因此,在职前阶段着力培养科学教师的跨学科整合能力,是一项具有前瞻性、战略性的基础工程。它不仅是国家教育政策落地的保障,也是学生全面发展的基石,更是教师自身专业成长的引擎。深入探究并优化其培养路径,关乎教育系统的整体质量与未来竞争力。

5. 构建"课程-机制-平台"三维耦合的培养体系

面对职前科学教师跨学科整合能力培养中存在的系统性挑战,零星的改进往往难以奏效。为有效回应新时代科学教育的要求,有必要从系统论出发,构建一个以能力发展为核心,课程体系、协同机制、支持平台三维度深度融合、相互支撑的职前培养新路径,旨在通过顶层设计与协同联动,实现培养效能的整体优化。

5.1. 课程维度:构建整合性的课程体系,夯实知识基础

课程是能力培养的基石。想要应对知识结构失衡和课程碎片化问题,关键在于要对现有课程进行系统化重构,增强其整合性与实践性,增设跨学科基础模块,强化整合意识。当前科学教师培养模式存在的问题,主要还是体现在课程体系设计的不合理。这种不合理又主要体现在科学课程、科学实践课程和与科学本质相关课程的缺少[8]。建议在低年级必修环节中,增设如《跨学科科学导论》《STEM 教育理论基础》等课程。帮助师范生超越单一学科界限,理解科学知识的统一性,初步建立跨学科的思维方式,为后续深入学习打下坚实的观念基础。推动学科专业课程的项目化改造,促进知识融合。鼓励对传统的物理、化学、生物等专业课程进行教学改革,融入项目化学习(PBL)元素。例如,在以"能量转换"为主题的物理课程中,可引入"设计一款高效节能小屋"的微型项目,使师范生在解决真实问题的过程中,自然整合工程技术、环境科学乃至经济学知识,实现从"学知识"到"用知识"的转变。强化理论与实践课程的贯通设计,提升转化能力。加强跨学科课程与微格教学、教育见习的序列化衔接。建立"设计一实践一反思一优化"的循环机制,让师范生在学习理论后,有机会在模拟和真实情境中应用、检验并修正自己的教学设计,在大学与中小学导师的共同指导下有效衔接理论与实践。

5.2. 机制维度: 完善多元协同的培养机制, 畅通育人过程

机制纬度上要有效地培育需求开放、稳固的制度环境作为后盾。应对实践领域单一与指导力量缺乏的问题,必须努力完善大学内外的协作机制。深化高校 - 中小学(U-S)协作,达成供需对接。完善并推广"双导师制",邀请一线经验丰富、熟悉跨学科教学的杰出教师作为校外导师,与大学学科教学论教师构成联合指导团队,共同参与师范生的课程评价、项目指导与实习考核,确保培育过程紧贴基础教育一线实际。拓展高校 - 社会机构(U-C)合作,激活社会资源。积极与科技馆、博物馆、科研院所及高新技术企业建立战略合作伙伴关系,通过共建实践基地、合作开发课程、设立特邀讲师制度等方式,将优质社会资源引入培育过程,为师范生提供接触前沿科技、体验真实科研与工程过程的宝贵机会。建立校内跨学科教研共同体,激发内在动力。鼓励成立跨院系的"科学教育整合课程研究中心"或虚拟教研室,定期组织理科各专业教师与教育学者开展联合教研活动,共同解决课程整合中的难题,合作开发教学资源,形成支撑跨学科师资培育的校内学术共同体。

5.3. 平台维度: 搭建开放共享的支持平台, 优化资源环境

教师教育资源是教师专业成长和教育质量提升的重要保障,科学教师跨学科能力提升需要丰富的跨学科教师教育资源的支撑。跨学科教学具有综合性、实践性和跨学科性[9]。为了确保机制的有效运行,必须有实体与虚拟空间的双重支持。通过构建多样化的平台,我们能够为课程的实施和机制的运行提供充足的资源和便捷的载体。为此,我们着手建设一个跨学科教学数字资源平台,旨在汇集国内外优秀的跨学科教学案例、项目设计方案、多媒体素材以及最新的科技动态。这个在线资源库将对所有师范生开放,使他们能够基于真实案例进行学习、改编和创新,从而有效降低项目设计的门槛。此外,我们还创设了教师创新实训工坊,提供了一个实践空间。在高校内,我们建设了一个配备有基本加工工具、开源硬件和实验设备的实体空间。这个工坊不仅作为项目化课程的授课地点,更成为师范生动手实践、协作完成跨学科项目的"孵化器",在真实制作的过程中培养他们的工程思维和创新能力。同时,我们还运营着一个在线专业学习社区,以延伸交流空间。我们利用专业网络平台或社交媒体,建立了一个连接职前教师、一线教师、高校研究者及行业专家的线上社群[10]。通过组织线上研讨会、集体备课、优秀项目展示等活动,我们构建了一个突破时空限制的"实践共同体",促进了隐性知识的流动与共享,营造了一个持续反思、协同进步的专业文化。

6. 结语

"课程-机制-平台"三维耦合模型强调系统性改革思维。其中,课程重构是核心,为能力发展提供清晰的路线图;机制创新是关键,为培养过程提供制度性保障;平台建设是支撑,为学习和实践提供丰富的资源与环境。三者并非简单叠加,而是相互嵌套、动态关联的有机整体:课程的实施需要机制保障与平台支持;机制的运行依托于课程载体与平台工具;平台的效能则通过课程与机制得以充分发挥。

展望未来,推动我国职前科学教师跨学科整合能力的培养是一项长期而系统的工程。它需要教育主管部门的政策引导与项目支持,需要师范院校立足自身特色进行积极探索与模式创新,同时也需要社会各界力量的广泛参与。通过多方协同努力,逐步构建起适应中国国情、面向未来的科学教师职前培养体系,必将为全面提升青少年科学素养、培养创新型人才奠定坚实的师资基础。

参考文献

- [1] 王碧梅, 韩葵葵, 胡卫平. 国外科学教师研究进展与趋势[J]. 外国教育研究, 2015, 42(5): 69-79.
- [2] 胡久华, 李燕. 国外科学教师教育研究综述[J]. 教师教育研究, 2016, 28(4): 107-113.
- [3] 高潇怡, 孙慧芳, 小学科学教师的跨学科概念理解: 水平、特征与建议[J], 教师教育研究, 2020, 32(6): 68-75.
- [4] 王晓生. 小学科学教师队伍建设: 价值使命、现实羁绊与实践路径[J]. 中国教育学刊, 2023(6): 91-95.
- [5] 朱旭东, 张军. 新时代教师教育的内涵、使命与发展方向: 专访北京师范大学朱旭东教授[J]. 教师教育学报, 2024(3): 1-8.
- [6] 左成光. 2018-2030 年我国小学科学教师需求预测及对策研究[J]. 教师教育学报, 2019(6): 78-85.
- [7] 白秀英, 王较过. 美国科学教师教育及其对我国科学教师培养的启示[J]. 教育探索, 2009(2): 139-140.
- [8] 梁舒婷,李臣之.中小学教师跨学科教学胜任力测评与提升[J]. 全球教育展望, 2023(8): 7-99.
- [9] 董艳, 夏亮亮, 王良辉. 新课标背景下的跨学科学习: 内涵、设置逻辑、实践原则与基础[J]. 现代教育技术, 2023, 33(2): 24-32.
- [10] 陈凯, 曹慧英. 职前科学教师的学习共同体设计初探[J]. 教师教育论坛, 2018, 31(9): 14-23+37.