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Abstract

Student academic performance prediction, as a core research direction in educational data mining,
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is of great significance for achieving precise educational intervention and personalized learning
path planning. This study constructs predictive models using five typical machine learning regres-
sion algorithms based on a multidimensional student dataset from the Kaggle platform, aiming to
systematically evaluate the performance of each model in educational prediction tasks. The re-
search dataset contains 200 student samples, covering key features such as study time, sleep dura-
tion, attendance rate, and historical grades. Through rigorous experimental procedures including
standardized preprocessing, hyperparameter optimization, and cross-validation, the results show
that the linear regression model performs best on the test set, with a root mean square error (RMSE)
of 2.7860 and a coefficient of determination (R2?) of 0.8537. Feature correlation analysis further in-
dicates a strong positive correlation between study time and exam scores (r = 0.7768), while the
correlations of historical grades, attendance rate, and sleep duration decrease sequentially. This
study not only provides methodological references for educational data mining but also offers em-
pirical support for precision intervention strategies in educational practice.
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2. BIRESHIETEE
2.1. BHREFKIR
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https://www.kaggle.com/datasets/saadaliyaseen/analyzing-student-academic-trends).
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Figure 1. Histogram of key feature distributions in the dataset

E 1 BEEXESESTERE

DOI: 10.12677/ae.2026.161156 1161 HHHRE


https://doi.org/10.12677/ae.2026.161156
https://www.kaggle.com/datasets/saadaliyaseen/analyzing-student-academic-trends

IR S

1R T BE R TR g T A R EREENE, AE RS EZEQL2) KT L
J%£57(10.58), W] BE S I 2 A 2 28 T HE U S e AR AR LI R o B RRAIE IR W B R A I 0, R IIHL
Yoo An 5 IR ATAEL, T ARG B P4, XN A SESH G T iR RN IR At T Ak

Table 1. Descriptive statistics of the dataset (N = 200)
F 1. BuRSEmAM SN = 200)
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)% (%) 73.42 14.37 50.3 100.0
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LIRS (5Y) 33.96 6.79 17.1 51.3
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Figure 2. Feature correlation heatmap
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Table 2. Model performance comparison results
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Figure 3. Comparison of RMSE and R? across different models
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Figure 5. SHAP global feature importance bar chart
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Figure 6. SHAP feature contribution summary plot
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