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Abstract

With the rapid development of generative artificial intelligence, the integration of large language
models (LLMs) into STEM education has become an emerging research trend. This review synthe-
sizes 29 empirical studies published in international journals for the past three years. The results
of this review paper indicate that LLMs are mainly applied in higher education (62%), with compar-
atively fewer studies in K-12 contexts (38%), and no empirical studies were found in the context of
preschool or special education. At the disciplinary level, K-12 studies tend to focus on mathematics
and physics, whereas chemistry, biology, and engineering remain underexplored. Across these re-
viewed articles, three optimization methods in LLMs are often used: prompt engineering, model
fine-tuning, and retrieval-augmented generation (RAG). The most often used method is prompt en-
gineering. The integrations of LLMs into STEM education align with teaching, learning, and assess-
ment in instructional practice. The assessment gains the greatest research attention. Overall, cur-
rent empirical studies reveal that LLMs can increase instructional effectiveness, promote deeper
cognitive engagement, and strengthen students’ motivation. Future research should prioritize dis-
cipline-specific instructional design to advance more customized and higher-quality STEM instruc-
tion.
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1. [eEE

(A 5 1 R AN 22 (2024~2035 4F)) BHRASR H, “fRit N TREREE N ELE”, FHRE “Al
+ a7 MHBEEEA, TE AN TR R E KBRS AR E HAR[1]. ERRBHE RS HiEa
SN, IN5E STEM ZUH N & B 5 R 76 4 R oK Sk R Je il iy st (1) BE 2L RIS 2548 . STEM 2 E MY
SRR KB ANA Bk, TR HES E K QIR R I M SE 4 S E SO [2]. RS, WffEEhA
T EefE it STEM B2 M m i E @ W AR, CHONBE IS — 43 SEB 3L R DGR FUGE .

ChatGPT & Hi OpenAl T 2022 4 11 H kA AN LG5 EFK, DL ChatGPT NRER
KBERY COK 1 5 BB B T8 5 BAY), A5 5 K A AL B R 1Rz R 3% 5, AU BUM I B0
POt T AT TR S, O AR ) O O RE T AR R REME . BRI RO LBl AN A
LXZMINGE, FETH - ¥ - VPIE SR, B2 T)Z GER3].

MEPRE TR, KA STEM PR ZCE N A T PUEIR R B, IUE SCRAERF AR Ry T
FEig S NAER EEWEBERZER . B, AR SCEEX E R E A ICSTUE AT SRR, A ERRTI AT
FHES 25, DU RE IR E A U i RE, N KB RE N 2 JE STEM URE 25057 SEE SR A T £ 25
2. BT, ASCHESERUT DA B o) R T 4Rk -

(1) KABEZY (0 B FH 5 B2 A3 AT AE e 2 B 5 2 ) 2

(2) 7£ STEM REH =, W B R ARG B AR 2 A4 2
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ATt &%

(3) 1 STEM Wik, KBURAE “# - % - V7 R 2t 2
(&) JUA SR TR A7

2. XEHRR

L “large language model” (8% “LLM” “ChatGPT” “vision language model” “VLM”), “students”
(8% “education” “teaching” ) “STEM education” (& “STEM classroom” “science education” “biology
education chemistry education math education physics education” “engineering education” )%
§#i7, {E Web of Science Ll & EBSCO #u#s = A & SCHik. Ao Z I )96 FEI KR 8 A SClik AR T- 2023 42 1 A
%2025 F 6 H -

ORI NI FE R BT B AAR S, BTG ARAE AN . (1) ARRAEMELL [FAT PF o I 2 AR ) B 18
s (2) BT SHIERIFL: (3) WHIL AU R ) S AR TR B 2 A RS AR 7 AN 2 (SR I I A6 T RS A )
WRES: (8 AMEFEFAR SR (5) WEMASIE. X% E A 231755k, L4593 29
T A A R S
3. FIsTEER
31. ZERS5ERSH

PR RN, HETKBAAE STEM IRE AN B S TR E £2mEHE, EHHARRI &
FHITBE BB E T BRI BAR A 1 foR . IWRBOMEKRE, @S EE WIS
MR, It 18 F(62%), FEREEE CHREUE N 11 55(38%). MRV ARG, FEREECE MR 7 S0k
R RAC ). TRESESR. BEME, WA R RER RS S B E Atrm R e, NE
B B Bt A J AR AE 0, Wl I BOREE T AR S A BB AR, S HE M BONEE LA ) S
b gk fe R TR .

” « ” « ” «
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Figure 1. Distribution of disciplines and educational levels in the integration of LLMs into STEM classrooms

E 1. KIERGENE STEM BEHZNERSEZE %

AN BOE S LA R N E RO SR A RO A S R . TN AN R AR TR
JEIIMIEH B, BT FT 2 B an T AR AME I R Fgiy, DAAE B2 A SE A b BE AR H - Hwang 55(2024) T 52
TER T /NFHCEN A R RS0, 83T TensorFlow SZEIMIAIR]. ARCore SEEIANI S, FKELE LY
SRR LA E, Figh 4 ChatGPT-3.5 57, Az il = AN P S5 2 AN 7] 0 JLART B2 FH A F e SR s, I
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BHEG SR SRR S SRR, Bef A RUE A A EIK 224 [4]. Patel %5(2022) 1)
5T f# F ChatGPT-3 A7t — 3 FAE iR % FH ¥ 250 18 B FH AT 4k, $emmlisetk, RILAER
REAT RS B0 @ H 47 = SR [5] . B B BOi o0 =6 -0 K e B (I 20 SR R Gt WP
Bl SR MBI % . R —FIZ5s, 2O RG0SR S, BTk, Malik %5
(2024)E R THUF IR BRSO T, A8 R AL A il 5 2805 H bR R 55 3BT 5%, B 1 80m 3 28
At gl “Hhgie” XA OMS6].

Y B LA R R AR, TR A Bl 2 A B AR A DL TN S A R .
VIR 2 QTR AT AR R Sk & IR, R, 22 B0 T 0d e RS 20 4l B SE IR A R 5 P10 IR S THI 11 SR
Bitzenbauer (2023) i 7 SR £E T B IRAE, 515 12 4EZ# A8 FH ChatGPT 4 Bhid Bt 1 BN A= B
KT PR IR 3 EMEEIMNARE, FEERZAEAEURA . SCHR S5 A FE YRR ORI A R P 25 A7 L
FIVES M, T ER T 2% AR A 5 ) i R R ) AL E B 327571

RS E BN OISR B R BT O R SR A I R RE ), WA RIS
e THIZRE K IE . Wu 55(2024) A 5145 & [F) £ PEAG JE B (Peer-Assessment Cycle), F & th PA-GPT 1A,
B0 Al LUESUFE S 5 5 K — TRHSAA R %0, 58 A 08 F RBALRD ChatGPT X HE 413
ITHCBE, KB PA-GPT ZE5 AL AR i LA RE ) 77 TH A5 T+ RACR 3500 1% B2 27 42 [8] . Reddy
(2024) DLAEL S G AL SR FE R FERT 5, 48 5 5 AR A8 T OS2 4 B 8 et M SCE AR, FRARTE A
T [ STk S AR RBHATABIT . WFFERIL, 75 KA AR Jl i SCAR R, SRR B v i, (HA 47
FE 5| FIASTLAI R 70 A B ASER 28 0 0, 75 B 2 b P A 24 5 B 0 [9] -

3.2. KEERUEER AR

DA BT EZE LRI g &, AR Gblas 5 IR o %d . FE RN, GPT R VIR 58K 1 H SR
i E A FE R D) S A AR M (S E S, HAE ORI AR SR AR B T IR, A R A S
Wit, 1 BLOOM. YOU I SRAG I /N 2 55 2 [l 2 BUME[10] . 7R KA (s F ik FE b, & Y 3 Pl
O S 2 HE N 1 T2 (Prompt engineering) . AU %4 (Fine-tuning) AR A 28 3 55 42 FU(RAG) -

POl ARG 7 Ui R R AR By, i il R A F T 2 5] SR A BT e R S .
TRAAR, (A2 R THEAL G AR, 7E Chen %5(2025) st , W74 K] GPT-3.5 5 GPT-4o it
el ABHEELAE, FRiE TP RTE TR NG R R n . @ AR VR o b M VE QAR B, DR 15 R AR
RUBEATHERE, I T DUMOAR R A2 BT /0 bRt 37 8 8 . ff B0 B 4EBE(COT) . TR 4ERE . VEL4IXT LL
L5t Lo S YEEE(COT) AR BRI R B0 I, O bl 1 4 B AR 20 2B SRS A 2 T30
P 22 A B 5P b . SEIGSE R, B KBS B85, MRt “mrEEzRiamR”
(IVEANARI, 24 GPT-40 iE BN T4 K P (8 o 78 o ] o WA 0 5 [ 204 X AB B /N IE R T 20 1
e SR, 3ok B 5 A 10 P B R (G s % bE) ST 2 S A 2 T [11]. Tsai 45(2023)7E K Ik
TR b, DAZREHIRCE T EO A A #E, 51 %G ChatGPT MH&/m 17 DI 58 B FE I H /E Mk H 1
HAR R AT S5 [12] -

AR AR R R S B M BRI 3l P RS, TR 2, AT 89 i KA L A A e ol ) 3t
HIRETT . 0 Yang 55 (2025) R 7T AS A 1 R SOSOARI N T VE 4 Bl 740 ChatGPT-3.5-turbo, i
VG SRR ) 5 R 22 A B IR I (B 2 N 25, SR BT AT 45 VT oy e R 8 3 75%,
REAS U 35 2 B3 A PPN I B k3 5 7R SR [13]

Hor R A SR A il AR AT [0 5 e R BT, S AR P (U Bt 2 . SRS SERF R RAHSAE R, RIS HAE N
R SCRR LAY . EANTR EE ISR, e BB S A AN SR AR, SR A BERL. Long S
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(2024) A1 PR B X5 73 BT 90 R F 8 A0 ) GPT-4 AR, 4G R R IEsmAE (RAG)H AR, 1 IR s G m iD HE
AL RN A, AR GRS RN, PR AR 1A 5] S 4 4y SRR X R R A AT S,
B 2% SEPUNA) B A R AL T AR X (K E B o X — ML ARG AR N Lwhg i 30 fif, H5 A Lg%
—HEIA #) 90% LA F[14].

BeAh, ARG 2 IR HE AR LS B TR, AT SRR R iR 355 9%, Urrutia 25
(2024)7EMFiH, ¥4 XGBoost. BETO-mt %% 4t Al #5715 GPT-3. BLOOM %5 KA A ) % Itk 47 L%,
g5 R R AL SRR BETO-mt 1) F1 /3% 79.15%, L2 m T AR R . iX R BITERS & A7 26
L5, ARGIRRLY 4% — 524 11[10]. Fussell (2025) (IR 78 & B,  KASE 7Y i 388 1o A7) B S 06 2 10
FAE E B RS S IR R RE AL . BEAE, AREEAY . BERT 5 LLaMA BRI RAE LR, Jorh,
BERT £ B U5 FEAIIE e < [HIA BB, B A FRIBE S S it 1%, MRIL 7 4% Gom B g
R AE[15].

33. H-F-TFES

KEHAE STEM BRE ZUFE TP S O RAE BN BUE () FAESF () 2P () AR S
e, e, PPN AR SCIREE R 2, 05 SCHR W K- VP R AN L BA E4E B2 2R G VR AL,
Wi 2 Fros. M E BUM 0t 70 DLSCREBUM U Wit . $REMR R BUE TN L, BRI 20N T4
AR, JRAFEERCE . i, Yu 55 (2024) I Fide R IRIE TIRA R R R IB(HIF) RAE A M, HIF &
gum i B A FEE RS, B SCE T EUEC A P I R L . BRI, X — RS
WESTERMG IR FUEES 5 5 B BT PR e A7 A% O 17 R IR e 71[16]

ws
+>

&

Figure 2. Distribution of LLM applications in STEM instruction: Teaching, learning, and assessment

2. KIRBTE STEM REFH) “B - F - 2%

T A 2 A 2 ST 90 3 BRI A G e g b 2 A R R L B R R DA R SIS BRI . Ng %5
(2024) (I FE LA 74 24 AN S R, X ELJE T ChatGPT 7 Al IR AL A (SRLbot) 51448 Al iR
HL#s A (Nemobot) FEA B “ Jy 5iaa)” i > et 2 A2 B A% 21 (SRL) I RENA o« BF 78 R I Al BIIR AL
#5 N(SRLbot)fEHTH44: SRL e /) BIEEAIRSZNLT T, WM T Nemobot, R iEME S5 AR
BRI, AL, BFAREISTE T ANLAE HARBUE M SRL BUR IO R [17].

TEANMV AR BER i R e S5 B0 A, AL B4 B Y [ RE B 22, Coban(2025) A 78 AR BB ERFE
TR TSI N R, e AR TTALAT ChatGPT ML T B 2 68 B E3R— TH 24 BONE & F A AN
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MU R I B [18] . ESAERAESS T, KR ERERENS Jy 2 A2 I 4RI KR . Behrens 45(2025) 58 5
KRR F IR, (EERY e B R Ss . FAAT] RIEBIAE AR BB VRN SRR 1 5t
FE. AR E SRBIAIAHEIER, 89%I1 2% AL R AR AR AL B At T SE RN B a4 A A0 B ) JR[19]

W EE 22 2P B T B0 TR AP 8% . IAPE L2, 3 PSR SR Rk H5 . Wan (2024) 1)
WEFUR AR B R AN R R, IR R A g 2 AR S i S it . 22 AR N ChatGPT e it 5 N\ L R Wt E TE A 1
FHREZER, H ChatGPT U EAM. T HEAFX1[20]. Xu 55(2025) ¢ Ty H 4 B {7 2 0 B () 5
DM F R RS 5 N T4 306 80 4 2 AR B kAT V23 T LU VP A 5 R, R IR R D1 7345 R — Stk v 1
N5, HUERRHERT AN Ty X — RN ESARL AL VER T H . I8 ANUME T/ S5 44 7 B
FI7m[21]. EFEIENIFN T, KR EIRE A R . Kortemeyer (2023) I 7t 45 KB, KA
AT AR M ARl 2 AR AR L BE - R R ) VRS O, HORBRL VT 0 5 N Lo i — B B
X W R IIE T T PRV 5 s 5, i — B4R e 1 B AE AR ML T v 1) B2 Y8 L [22] « Kieser (2023)
R REL, EVFREE SRR, ChatGPT RERCIFHUR DL 22 A (& AR . T 70 28 W) KA
B8 A5 B B0 AE BCEAR 205 S BB s U R PR IR A . s R 2 S R 23]

TELRETEREFE T, Krupp 55(2025) 5 A48 R AL A e s T A B 2 AR kAT B it . WF T4 R
7N, GPT-4 ARt miE MU AE 5| B F A ME B IFE P RIEEE, Rl R igEm 4 M EE i |
X2 B REREAT A B R, AT SEIA 2 A SR A B I UE AR I Th g . 1E AR & KRR A 24 A 5 o) 5
A PEOY 5 T 254 R FH[24]. Martin (2023) )Wt 5 i H T BERT base uncased #24!, FH T-#EB ARG HL
ERFE R RN FRE R . TR R R, AN 45 AR, HLESVP o IAER 205 87%. 1ELIE
HLEs2 24BN, MR AEE A BE PR 22 MBTEREER, RIEAE N HEE Il “HiRME" o Bk
PE” R, CERMER” R, IR g R UM AR A TR e A SR e 3 ot . Bk, (R
IR — I8 K I R RLAEA ML P LR 8Om0 R 255 B FH [25]

3.4. EEMRFZE

TR ARERSCER I, I SCRAE I OBV e L TR AT LSRR ST A T i E R
SO E R KA (A R S AT S, T BRI T U B AR R SR AT ANLAE B R AT N R IE SR S . E
B, SRS B S S a b, OB T BRSO LB R . Hh TR
BONH L, BT 1 S 4 S IR A LA e AR . Stadler 25(2024) I 70K 91 4 A K BA S 56 S
PR 22 LE BN 2 S B 41 (f F ChatGPT 3.5 &5 B) 5 X IMAH(E AT RS E), WL 5E A F 1
YR BORL DTG 2R UEAR 55, I R SRR AR R A 5, R T 2000, TR Rvis:
WEGT PR EAT IO . SRR, SRIRATEAME AT WIESAT . ORI =N g B R
CF XA, T KA AR SR A N fter B 35 26]

JRAERRE T 712 R AMLAE LR R 70 bT s IR AR FE AN R R PR o P P9 25 20 b i
PIRACT . ORISR RS ML B () 2 4E P gmis, fENTF P (UM 4) 5B 22 B, b,
& Dilling (2024)#fF i, @i xf BUM 5 KRB 5 22 HAd sk M gmis, PRE B 20E IRATH B0 5
ChatGPT 28 HLI s F I/ I R B S HEME . 45K, ZHEUMIA HAT REC B —, BULEE &R
], DA RTE A G DIRE[27]. HhAh, A L EIAEE INAITVTIRIESE 7 WA I P BN 4%
1 FE RN TR FCIR S

BEM R EE B SRR RS S, BE - H . thin, FFRPEWT RN S 2 BT 5T i 45 5L,
BCH i BT TR SR T a5 RO — D R, AN S A 58 45 SRAE B A B S AR /). fE Klchemann
(2023)Wt5iH, 26 L HRRT UM ChatGPT 3.5 N 2= AL Wit P4 )M, FE 520k 1Bt xt
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HEZHAH U3 o a6t A2 B ) R H R s AT AL AT, R B 4L A i R E FEAERA R . M A T TG R
FES, HAETEMT A BOE )M 7T, ChatGPT HAFRAE — & R MR . AE 3k — 54 FH SCA 40 B A 24 4t
WG R, XL IR IERILE ChatGPT 24 i H 7 — & AL FE bk = s 3 1% [28]

4. EREEW

I RGP BRAE STEM BREZUE BRI HTBIT S R] LA H, X EEF 58 R O FRE M A AR Y
CRIERRAE STEM H A" #AIRM ¥ 2%, tONHUTIRME T BB Sk . BAmE, KA
4t STEM BRELHIK VT INIE /1. £ RAEEESteh, KRR EE RS “TR” , HhIh#UnkE
WL, AEFREBUEINE M FE . BEE U AR AR R B ) SR R R, R A B T
JEAAE BB # . 22 AE 5 A A T A h S B At , AR DU a3t 22 AR PR P B 3 ) ) 22 ) 1 R
BEAt, FERLECE BRI SCERARWS S fb s AEMIM TR B A . TR, AL A A 1R 2 Bk
WS BTN 2 e R . R IR SE it s S BB REUINIR B RE 2 51 R R e 5TUEE, Lo,
R NSES I AR S BUBK . LI C 3 52 BOMHE R R B T A R SER RS B, B ks
UERTFUR D o ARRMT FE T 482 ] ) P A TR A R R ARSI 36 A R R 4 2 BB S R S B A AR
[, AR AR TR BN L SE 6

KK, BOTRARSE STEM B A AR B2 R 5 % 52 3] BAR BTN S EREE 3, BLIe 70 A% KA
RIEAVEA A T ). R R AE S BAL BRI RN S 07 R A R, B TEiE B ARBUMAE Ll A
T 5 R RS 5 T (KA O P o ARORAT T REBON T NS RS N TR RE AN IR S, AT ST
R

E&WE

T2 B K ARG LI H R PR AT A TR R K T S BT R R AR SR
I8 /1 KL (Yn'5: 22573064) 51 1.
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