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摘  要 

高等代数以其高度的抽象性和逻辑严密性而著称，然而纯粹的代数演算往往掩盖了数学对象的内在直观。

本文旨在通过一系列具体案例，深入探讨将代数问题几何化的思想与方法。通过将抽象的代数概念(如线

性方程组、行列式、线性变换、二次型等)置于欧几里得空间等几何框架下进行解读，借助四个核心案例

揭示了代数运算背后的空间结构与几何解释。研究表明，几何化思想不仅是理解高等代数概念的有力工

具，更是启发新思路、简化复杂证明的有效途径。 
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Abstract 
In teaching, higher algebra is often presented as algebraic computation, which obscures the intrin-
sic intuition of mathematical objects. This paper aims to deeply explore the ideas and methods of 
geometrizing algebraic problems through a series of specific cases. By interpreting abstract alge-
braic concepts (such as systems of linear equations, determinants, linear transformations, quad-
ratic forms, etc.) within geometric frameworks like Euclidean space, and through four core cases, 
the spatial structure and geometric interpretation behind algebraic operations are revealed. The 
study shows that the geometrization idea is not only a powerful tool for understanding higher 
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algebra concepts but also an effective way to inspire new ideas and simplify complex proofs. 
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1. 引言 

高等代数是现代数学的基石之一，其内容主要围绕线性空间、线性变换、矩阵、行列式、二次型等

抽象概念展开，具体相关概念见文献[1]。然而通过多年教学发现，初学者往往陷入繁琐的符号运算和形

式推导中，而未能把握其本质。事实上，许多代数概念的诞生和发展都深受几何直觉的启发。正如数学

家弗赖登塔尔所言：“没有一种数学思想像它刚诞生时那样被发现，我们必须学习几何化的思考，因为

这是数学思想的源头活水”。 
将代数问题“几何化”，即为抽象的代数对象构造一个几何模型，从而将代数关系解释为几何关系，

将代数运算视为几何变换。这种几何化的思维方式具有下列优势：首先，它加强了直观想象，使得抽象

的定理和公式变得“可视”；其次，它能揭示不同代数概念之间的内在联系，构建相应的知识网络；最

后，也是最重要的，它常常能提供解决纯代数问题的简洁、巧妙的思路。 
目前，国内诸多同行对代数教学进行了一些探索。比如，刘与嘉[2]等指出对初学代数的学生来说，

几何图像要比代数定义更好理解，诸如向量空间、矩阵的特征值与特征量等内容均可展现其低维情况下

的几何意义；段景瑶[3]、郭杰等[4]将高等代数的某些抽象概念与其几何背景相结合，进而把数形结合思

想运用到高等代数的教学中，并针对一些具体的教学案例进行了分析；张颖等[5]以线性代数在计算机图

形学、图像处理和密码学中的应用为载体，利用 MATLAB 实验，形象直观地展示了线性代数的基本概念

和运算；徐铭[6]通过 MATLAB 软件可视化了线性代数中若干核心概念的教学设计，并以线性变换为纽

带，将矩阵、矩阵的行列式、线性方程组解的情况等知识点串联，形成了典型的教学案例。 
虽然已经有了一些案例成果，但是高等代数中的许多概念可以从不同的角度进行几何解释，因此代

数几何化的案例还有待进一步丰富。基于此，又考虑到在斯坦福大学数学系所制作的视频[7]中已经有很

多图片是对代数概念和运算的展示，因此下面将重点放在了案例的理论性阐述上，没有进行图形演示。 

2. 代数几何化的教学案例 

本节将介绍线性方程组的解空间与几何交集、行列式与多维有向体积、线性变换的几何效应以及二

次型的正交标准化与主轴化简等四个核心案例。 

2.1. 线性方程组的解与几何空间的交集 

考虑一个包含 m个方程、 n 个未知数的线性方程组： 
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其矩阵形式为 =Ax b 。 
纯代数视角关心的是解的存在性、唯一性以及通解的结构。而从几何视角，可以将该方程组重新解

释：在 n 维空间 nR 中，每一个方程 1 1 2 2i i in n ia x a x a x b+ + + = 定义了一个“超平面”(当 3n = 时是平面，

2n = 时是直线)。这个超平面的法向量即为该方程系数构成的向量 ( )1 2, , ,i i i ina a aα =  。方程组的解

( )T
1 2, , , nx x x=x  ，必须同时满足所有 m个方程。从几何上看，这意味着点 x 必须同时位于这 m个超平

面上。因此，线性方程组的解集，在几何上对应于这 m个超平面的交集。基于这一几何对应关系，方程

组解的各种情况可以用下面的空间关系来理解。 
① 唯一解的情况：当这 m个超平面相交于唯一一个点时，方程组有唯一解。这在几何上要求超平面

处于“一般位置”，且其法向量张成的空间维数足够高。例如，在三维空间中，三个法向量不共面的平面

相交于一点。 
② 无穷多解的情况：当这些超平面相交于一个公共的直线、平面甚至更高维的“平面”(即仿射子空

间)时，方程组有无穷多解。此时，解集可以表示为一个特解加上对应齐次方程组 =Ax 0 的解空间。从几

何上理解，齐次方程组的解空间是所有超平面的法向量的正交补空间，而解空间就是沿着这个方向平移

特解得到的。 
③ 无解的情况：从代数上看，这对应于增广矩阵的秩大于系数矩阵的秩；从几何上看是这些超平面

没有公共交点，比如三维空间中两个平行的平面。 
这种几何化观点深化了我们对线性方程组的理解。首先，它使得解的结构定理变得直观：齐次方程

组解空间的维数(即解空间的几何“厚度”)等于 ( )n Rank− A ，这可以被解释为“自由度”的个数，即可

以在一个 ( )n Rank− A 维的子空间中自由移动而仍然停留在所有超平面的交集中。 
其次，它为理解最小二乘法提供了便捷。当方程组 =Ax b 无解时，意味着向量 b 不在矩阵 A的列空

间(即 Ax 所能表示的所有向量的集合)中。寻找最小二乘解 x̂ ，即最小化
2−Ax b ，在几何上等价于在列

空间中寻找一个离 b 最近的点 ˆAx 。而这个点正是 b 在列空间上的正交投影。因此，残差向量 ˆ −Ax b 必然

垂直于整个列空间，从而导出法方程 T Tˆ =A Ax A b 。上面这种推导过程比纯代数的推导更便于学生理解。 
综上所述，将线性方程组的解集转化为超平面的交集，能更深刻地揭示解空间的代数结构，并为处

理无解情况的最小二乘法奠定了理论基础。 

2.2. 行列式与多维有向体积 

行列式从纯代数角度看，它是一个依赖于 n 阶方阵的、满足多重线性性和交错性的标量函数。然而，

其最本质的含义在于几何：一个 n n× 矩阵 A的行列式 A ，其绝对值等于 A的列向量(或行向量)所张成的

n 维平行多面体的“体积”，其符号表示该组向量的“定向”。 
例如，在二维空间中，设矩阵 ( )1 2,=A α α ，其中 ( ) ( )T

1 2, 1, 2i i ia a i= =α 。由 1 2,α α 张成的平行四边形

面积可以通过底乘高计算，其结果恰好等于 11 22 12 21a a a a= −A ；当 2α 相对于 1α 为逆时针方向时，行列式

为正；反之为负。在三维空间中，由向量 1 2 3, ,α α α 张成的平行六面体的有向体积等于这三个向量的混合

积 ( )1 2 3× ⋅α α α ，而这正是矩阵 ( )1 2 3, ,α α α 的行列式。这一关系可以推广到任意 n 维空间。 

基于以上几何解释，许多抽象的行列式性质变得不言自明。比如，“行列式有一行(列)为零，则值为

零”，这是因为此时向量组中包含零向量，张成的平行多面体是“塌陷”的，体积自然为零；“交换两行

(列)，行列式变号”，这对应于改变了向量组的“定向”，例如在二维中，交换两个向量会改变旋转方向

(比如原来是顺时针，交换后变成逆时针)；“行列式对某一行(列)是线性的”，这反映了体积的“可加性”

和“齐次性”，例如固定一个底边，当高线性变化时，面积也线性变化；“矩阵乘积的行列式等于行列式

的乘积，即 =AB A B ”。可将矩阵 A和 B 视为线性变换，变换 B 将单位立方体(体积为 1)映射为一个
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体积为 B 的图形，随后变换 A再作用于这个图形。变换 A会将任何图形的体积放大 A 倍。因此，复合

变换 AB 最终将单位立方体的体积变为 A B 。 
除了上述性质可以用几何解释之外，对于经典的克莱姆法则而言，它不仅是表面上给出了解线性方

程组 =Ax b 的一个公式化表达，从几何角度看，它同样可以被体积关系所解释。以二元线性方程组：

1 1 2 2x x+ = bα α 为例。求解 1x 时，我们用 b 替换矩阵 A的第一列 1α ，得到矩阵 1A 。那么， b 和 2α 张成的

平行四边形面积，与 1α 和 2α 张成的平行四边形面积之比，恰好等于 1x 。因为从面积上看，当底边固定为

2α 时，高之比就是系数 1x 。这正是 1 1x=A A 的几何含义。 
因此，将行列式理解为有向体积，不仅赋予了其直观的物理意义，更使得一系列复杂的代数性质和

定理的证明变得清晰易懂。 

2.3. 线性变换的几何效应与特征理论 

线性变换与矩阵的相互转化不仅为高等代数问题提供了多维度的解决路径，更体现了代数问题几何

化、几何问题代数化的核心思想[8]。在几何化观点下，一个 n n× 矩阵 A不仅仅是一个数字阵列，它还代

表了一个从 nR 到自身的线性变换： →x Ax ，这个变换具有“保线性”结构的特点。而研究线性变换本

质上就是研究它如何“扭曲”和“变换”空间。事实上，一些简单的几何变换可以直接用矩阵表示，比如

伸缩变换用矩阵
0

0
k

k
 
 
 

表示均匀缩放 k 倍；旋转变换用矩阵
cos sin
sin cos

θ θ
θ θ

− 
 
 

表示绕原点逆时针旋转θ 角；

剪切变换用矩阵
1
0 1

k 
 
 

表示水平剪切；投影变换用矩阵
1 0
0 0
 
 
 

，表示投影到 x 轴上。 

在线性变换的几何效应中，最核心的概念是特征值与特征向量[9]：若 λ=Av v ，其中 ≠v 0 ，则称 λ
为特征值， v 为对应的特征向量。从几何上看，特征向量的方向在线性变换 A下具有极其特殊的性质：

变换后的向量与原向量保持共线。也就是说，变换 A在特征向量方向上的作用，仅仅是进行一个比例为

λ 的伸缩，并根据 λ 的符号决定是否反向。事实上，当 1λ > 时，是拉伸；当 0 1λ< < 时，是压缩；当

0λ < 时，是反向；当 0λ = 时，整个方向被压缩到原点。 
线性变换特征理论是高等代数的重要理论之一[10]。它的主要作用是通过找到其作用最简单的“主轴

方向”，可以分解一个复杂的线性变换。如果一个 n n× 矩阵 A有 n 个线性无关的特征向量，那么它就可

以被对角化，即 1−=A PDP ，其中 D 是由特征值组成的对角矩阵， P 的列向量是这些特征值对应的特征

向量。从几何上理解，对角化意味着通过 1−P 实现了一次坐标变换，即将坐标系转换到以特征向量为基的

“新坐标系”下。在这个新坐标系中，线性变换 A的表现变得极其简单：它仅仅是在各个坐标轴(即特征

方向)上进行独立的伸缩变换(伸缩比例即为特征值)。变换完成后，再通过 P 变回原坐标系。 
特征理论的思想在二次型的主轴定理中达到了顶峰。众所周知，一个二次型 ( ) Tf =x x Ax 对应的几

何图形是一个二次曲面。通过求解实对称矩阵 A的特征值和特征向量，我们总能找到一个正交矩阵 P ，

使得在旋转后的新坐标系下，二次型不再有交叉项，其图形的主轴与新的坐标轴对齐。这深刻地揭示了，

一个看似倾斜的椭球或双曲面，本质上只是标准图形在空间中“旋转”了一个角度而已。而寻找特征向

量的过程，就是在寻找这个图形内在的、对称的主轴方向。因此，通过特征理论这一桥梁，可以将复杂

的矩阵运算和二次型化简，转化为寻找几何变换中不变方向的问题，这在一定程度上简化了分析与计算。 

2.4. 二次型的分类与二次曲面 

n 元二次齐次多项式称为二次型，其一般形式为 ( )1 2
, 1

, , ,
n

n ij i j
i j

f x x x a x x
=

= ∑ ，其矩阵形式为 

( ) Tf =x x Ax ，其中 A为对称矩阵。已知在二维情况下， ( ) 2 2, 2f x y ax bxy cy d= + + = 代表一条圆锥曲线，
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在三维情况下， ( ), ,f x y z d= 代表一个二次曲面。一个核心的几何问题是：如何通过代数手段，判断一个

给定的二次型对应何种几何图形？答案就在于上面案例中提到的主轴定理。由于 A是实对称矩阵，根据

谱定理[1]，它必然可以被一个正交矩阵 P 对角化。即存在正交变换 =x Py ，使得 

( )T T T T 2 2 2
1 1 2 2 n ny y yλ λ λ= = = + + +x Ax y P AP y y Dy  ，其中 1 2, , , nλ λ λ 是 A的全部特征值。 

这个代数过程的几何意义为：正交矩阵 P 对应一个旋转或反射。因此，上述过程相当于说，我们通

过旋转坐标系(新坐标是 y )，使得二次型的图形在新的坐标系下，其主轴与坐标轴平行。在新的方程中，

交叉项全部消失，方程化为标准形。因此，在对角化之后，可以仅根据特征值的符号来对二次曲面进行

几何分类。以三维空间中的二次曲面 ( ) T 1f = =x x Ax 为例。如果三个特征值 1 2 3, ,λ λ λ 都为正，则标准方

程为
22 2
31 2

2 2 2 1
yy y

a b c
+ + = ，这是一个椭球面；如果 1 2 3, ,λ λ λ 中两个为正，一个为负，则标准方程为 

22 2
31 2

2 2 2 1
yy y

a b c
+ − = ，这是一个单叶双曲面；如果 1 2 3, ,λ λ λ 中一个为正，两个为负，则标准方程为 

22 2
31 2

2 2 2 1
yy y

a b c
− − = ，这是一个双叶双曲面；如果 1 2 3, ,λ λ λ 中有一个特征值为零，则图形会出现“柱面”等退

化情况。 
通过以上案例发现，二次型的标准形化简从几何角度是在寻找二次曲面主轴和分类，其中特征值充

当了连接代数(矩阵的谱)与几何(图形的形状)的桥梁。这种几何化的观点实现了从形式操作到本质理解的

飞跃。 

3. 结论 

本文通过线性方程组与空间交集、行列式与有向体积、线性变换与特征理论、二次型与二次曲面这

四个层层递进的案例，充分论证了要想理解高等代数并非一个孤立的、纯形式的符号体系，需要借助几

何化思想。它的意义在于：将抽象的定义、定理和公式转化为可视的空间结构和变换，降低了理解门槛，

加深了记忆；揭示了线性空间、矩阵、行列式、特征值等概念之间的内在统一性，将它们整合在一个连

贯的几何框架之下。 
这为学生提供一种有效的思考方式，即在面对一个复杂的代数问题时，尝试构建其几何模型，往往

能揭示出被符号掩盖的简单本质，从而找到解决问题的方案。因此，在教授高等代数的过程中，教师要

有意识地培养和运用几何化的思维方式，这是帮助学生深刻理解和创新应用的关键。 
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