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Abstract

Methane (CH4) emissions from subtropical coastal wetlands are significantly influenced by wetland
type, region, and season. This study, through a comparative analysis of CH4 fluxes in typical wet-
lands of Fujian, Zhejiang, Shanghai, and Jiangsu provinces (municipalities), reveals the regulatory
mechanisms of different environmental factors—such as soil organic carbon content, total nitrogen,
and temperature—on CHs: emissions. Significant differences in emission fluxes were observed
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among native salt marshes, Spartina alterniflora wetlands, and bare mudflats, with the highest emis-
sions recorded in wetlands invaded by Spartina alterniflora. Seasonal variations showed higher emis-
sions in summer and autumn, primarily regulated by temperature and plant growth. The findings
provide important experimental data and a theoretical basis for understanding CHs+ emission
mechanisms in wetlands, which holds significant implications for ecological and climate change re-
search.
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1. 5|8

SEFR FFE(CH)SE I HECE N 248 Tg (1 Tg=1x 102 g) [1], U HHREZ T LB (CO) I 406
Gt (1 Gt=1 x 10?! g) [2], {H CH4 HJH FHGIETE 152 CO, 1) 32~45 £5[3]. {RHAE N EZER CHy HAAHEKL
U, FEHEBUR IS 164 Tg [4], 40 BRI BHEBE K 25% [5]. GRS I o B B4 4
CH4 FFHEBERIL 5~28 Tg, 1E4¥k CHy MBI HAREAER[6]. BT HUACRE A A, HERIRHAE
BRGNS, 15 ZIA A G- NR TS IR0 7]. B 1979 4, HACKE (Spartina alterniflora)
DRI BT ) NG, R A R AR v B ) DUROK v B 7 A A S B 1 R 52
IR AL AT B B 2020 4F, H AR CHEI 5.5 x 10* ha [8], B IGH BT EEHK
2RIy FoA TS5 WL A A A5 A I R N R FE S B N ™ 5, (5 AR S TR 91.64%
(9] HALKER) Z AR DTN ERAETER, DM AR AR, i ol I 4 1% o ik
TN IR AR IS B, I REE L CH, AR SHE . SN R (P) &5 =1 I A N ] e A
e S LB 9 1, 3900 CH AR IEER [10]. BEAh, NIRRT = F o B 1 SIS 4 vl LA Jin
CH, HES, Bl I 38 hn - 6@ S MR IE58 CH, K[ 11]. SR, ST AR CH, HERURFIE ) &R
G R R BT, SR AR RRE SRR ) CH, HERZE 57 R H RS RN AT 4 32t — 25
i

ARSCUAREE WiTE R RV 5 S840 (BLE T ) I S 28 0 A SV b VR N 0 B, A TRTSCSE 7 i b
) CHy HEGE R, EeB i 7 R RE SRS . 2R X VR ) CHL HEGE & 1) 2 4 e SR I . S8 it
SATEH EIE AN B AR AR, FESESFIER TN, B mREEH CH, HEK
N, b ARG S CHHEBCZ RN &R .

2. MRS RE*E

AR FCRF RGN SRR 507578, PAZRE VTS o L A ig b i) CH, HERO 78R .
FE “HREZIM” 5 “Web of Science” PI/NEE B P AT R 2, hC DL “IiE AR M/ H G HERC AR A,
PV L “Methane/flux/emission/coastal/wetland” A% CoAG ZR1d], 2 BIVCHECHR AR . SCBEIR A 22, A BT[]
i Lk PR, HLIRIGFHIE SRR 478 G o HCHE A6 AN AR UERT SCERIEAT 9712, 9NN SCHR L6 2503 /2 DL 26 4F
1) WHFCREHAL T rp [ A R I b s 2) BF 505 VR B A0 i 7 W (HERR 5256 == 4L i) 3) HLSCik

DOI: 10.12677/aep.2026.161002 11 LR AT U


https://doi.org/10.12677/aep.2026.161002
http://creativecommons.org/licenses/by/4.0/

RH A

FRAL T BRI e UL A AR H . &0, M2 32 ROCERFT & 2Kk . R F TR 3145
(10 H b B, 2 o [ S A VRV 32 AN A1 497 AWM (LK 1) oAt 3hiA 260 ASWMIME, N2
FhVH 154 ASWUIME, SeMEAE SR 83 A ALMIAE .

KHRE S AAR(AE . 457). LA HRSOC). HE(TN)LL I HHE, BRIk, o
GetData Graph Digitizer {4 (fi A 2.25) (http:/getdata-graph-digitizer.com/)if i ¢ FAL IR $2HL, KAZIK
PEAE B R SR T B ST T b B kS (599%) [12]-[14]. R TBk= ) B Bod st A, A 7 17
Ak (https://www.worldclim.org/), 73H% 7 30 SR (L) 1 P07 A B). X6k =z T 886 HLkSOC). &
ZUTN) ISR AR 0 i, (EH T 5 3850 FE(HWSD,  https:/www.fao.org/soils-portal/), 7% [H] 43 #ER A
1 kmo.

Fil Microsoft Excel 2020 Origin 2019 Visio 2021+ R 4.5.1 F1 SPSS 20.0 Ztit 4 #r 4 fF HEAT B ab 2
Mz Hordr, @it Microsoft Excel 2020 5 B 468U I~ I (E bR E R %2, F£T- SPSS 20.0 (I HH R
77 257 HT(One-Way ANOVA), 737 AN [l 24 780 S [ b [X HE 50 B2 [8) (1) 22 57t o DABE AL AR ARASE Y (Ran-
dom forest) 3 Hf7 FF ot HE I & AR TR0 K - [R] (1) ¢ &, dfid R 15 S W1 random forest fi#k47. k&l
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Figure 1. Literature screening and research flowchart

B 1. XEkiFE SRz

3. FELEMAE CHHIBAZE RAFHIE

ANFEREAE A 55 VR CH, AR E A B £ R . NMEHBEAEER CH, HSCEE(1.74 + 0.22
mg-m >-h )& T AR E(0.73 £ 0.07 mg-m2-h ) A HMEA (0,27 £ 0.04 mg-m2h ™) (p <0.001, JLEE
1), RIWANRIRE > ARhEhid > M. S8, At ERiEAEME 1 F) CH HE B E LR E £ R .

NIZERVA ) CHs HEBOE & = T A ShE A ME, X — 2515 DRI AR 15] [16]. X FhZ 57 1T fg
F B TR IR O, AN SR T T CH, 172 A RTHETS - 76 H LTS VR Hh R B 72 3R B,
AR BRI ) R WU S e T U MG, O CH, (A BRI T S 2 v R R EM[17]. Be4h, ABFT
RIMNIZERIAR) SOC &5 (9.65 +0.55 g/kg) i 3 iy T A E A AU GHE, I BB BEHLARMA A LI, SOC
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X NAZERTE ) CHy HECH R EFHm(p < 0.01, W3 2), X—BHFEHR T HLKENR FEHREED
(K170 Ak LA SR 22 70 s 1) 33 N KB HLYBR(18] [19], JUHGZE AL EWI(IN = %), XL “AR3ig
PE” RIS ZE G 4 H A AR V) (B e 253 S5 1 )T R, LT PR g = e iR R L, AT e et e o 9 7Y
BAEPE CHyo WKW, EHACKENIR 12 FH0EHA, = H 4 1 CH, 3 R E R N 1 6 v H
ANEG, (R E R E FRBRAIE RN EE 72 RU(H/CO) &2 [20]. BhAh, HACKE AR & HIEYT
TR A TR, R R A B T [21], IXEAR (b ] BEALHE = H e b 1 = S 3 I sl Ve R v, AT
it CHs MIAER[19]0 JUBIDIRHI I IR A BRI A ST IMIESE 1 DA B, BARKELNAR U8 1 3% D)
RETAEY), FEURESAAHERGIEIN16]. H—5H, HACKERR 25 8§ R R &8 B & R iE S
HZR[22], 1 CHy BIHEI

Table 1. One-way analysis of variance (ANOVA) of three types of wetlands
1. BB BERRSESH

T 2 HeOE B (mg'm2-h") F p R?

2 b 3 v 0.73 +0.07b

N2 1.74+0.22a 25.40 <0.001 0.09
G 0.27 + 0.04b

E: BELICTHME £ EIRER, AHEE n=260, NEEHB =154, J#MEn=83,

Table 2. Analysis of environmental factor contribution based on random forest

% 2. ETHENARMBIMEE FoTdkE o5

) At #hVH MNZ B JehfE
%IncMSE p %IncMSE p %IncMSE p
SOC 32.1388 0.0099 235115 0.0099 24.4553 0.0099
N 26.0463 0.0099 9.8948 0.0495 14.8609 0.0099
H ¥R 22.0735 0.0099 15.2209 0.0297 25.5390 0.0099
HifE 26.1070 0.0099 13.4646 0.0198 11.8570 0.0396

FEHMER) CH, HEBUE ERAK, IX T e 5 TR A & B A 0 WA 1) 18 S A(TN) & #(0.49 £ 0.03 g/kg)
BEMMTNREIE0.76 £0.05 g/kg) MIAH 257H(0.67 +£0.05 g/kg). EAFTER ML, AHF 70T Bl L AR AR
RIS B, TN W EMER CHy HECA B E 50 (p <0.01, W& 2), X5 LLE— L5 77 0 24 Br A T
VFZ s AT 7 B SE SOC BA A HLER(DOC) X CH4 HEBHIS2 23], flln, HF7REM, +HIFEC/N)
(78 A 22 52 M S A TE MR WLIT A, AT T4 52 00 CHL (7= A2 (24 (RFEARRRFEH, 3838 7 TN i3
DUBRIE, XA RE R E M B PR AE S RS, BUEIR S SE IR X 7= e 1 B9 P B R e 4
A B (3 FH B8 D 235 (250 X AT BB F T e AR 5l 5 32 W0 R PE IR B 1 Re ), S84
WIE RSN EAR . Al BRI (A A S 50 S AL R (s A A s il 1h) 5 S8 ALE T
FAFEYIM G EAEFMT, AMESRWMEERSHERES, Hafk b, SEMarsEaRT
CH4 A4b[26]. fETRAZ B IIMEE T, FHIHI AT Re 0 IR A= Y A BRI DB, AT 5206 CH, 1
PRI AR T . e AESEIC CH, HERUW R R T e 5B Z MM B A 0%, — 7, M =
B, ESEIKIAE BRI E S E R AR VAR, ATIBEAR T v CHy 2E SR BERRY), k> T CH,
Heif[27]0 H— 77T, B2 G CH, okl i 38 S A 236 R 21K [26]. Bhah, 18K
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OrERAEREI CHy Po AR AV AL B R 3R (28] 0 St A= 5 il T LR BRI, WTRESE 5 2 2K AR A 52
ma, LI R 9 A G B R VR AR A AL T PRAACIRAS, X AR T B b 003 M, AT 3 3
AR CHy 72 4E[29]0 BEAN, AR E(DOC)IKE 5 CH, il & 5 k2%, DOC K i, CH, 3l Sl [30].
HMEASEH DOC & &8 m, MR R b A B T M, BRI CH HER . X 2R R ILFME A, fifok
PREAE AT 2R b ) CHL HETBORS J53 7R DTk 311K

4. FEIFY CH,HEHE RFHE

SRR L) CHs HERRHER I R T 2 5. AHERVE T CHy HE R B0 BB URFE, 1
A AR 5 %(0.10 + 0.03 mg-m>h™"), FE/FARRCEETTG A, 4 ATbdmk, £ 7 HisB&EME(1.24
+£0.25mg'm >h), HEHBORHEAOLE 2). M2 T, NMZEER CHaHEBUHHE R EAF ., B 1 A
Fus, HEcERE BT, 9 Hik B E1E@4.73 £ 0.68 mgm2-h™), BERIZE 10 i T 4% 0.48 £ 0.20
mg-m 2hl), ZJE4EETFREROLE 2). YeMAEBN CH, HERAS (b A 5 A b 25 77 HAT AR o HEBGHE & A
1 Hikg ETF, 5 A BT, 8 HikFIE{E(0.77+£0.16 mg-m 2h™"),9 F &Rl TP (0.23 £0.09 mg'm2-h ™),
I JE R NS N BEIRES(LE 2).
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Figure 2. Monthly variation characteristics of CHa emission fluxes in three types of wetlands (error bars represent =SE)

2. ZHKALE M CH, HEUIE 8 B 1 B IHHE(REHFRRLSE)

=RE SRR ) CH, HEE S R B W IAE 79 H, =T 2P E Kk m . BRI,
X505 O I RS R A — 5311 [32]. CH, HEACHE & (1 535 1 M sl T fg FE EAZ LR R ZE -
IRFEAE CHy ARG Al KOS R it B 2R, R4EH] CHy BT R R R e —. &
W5 I8 BEATLARRAR Y, 30 H S350 A 1l 36 VA AN A= 555 ¥ CHL HEBOR 582 2 52 (p < 0.01, L4 2),
SR B IR ELW(p < 0.05, W7 2). WHhT) CH, HeoE S8 & 2 b & i T m S fui k. 78
HEFRT, PG s g, S CH, A EIE R, TAEKZREN, BEMETE
ZEFNH], CHy HECE R 2 5 AK[33]. 59— 77, CHsHE SHEY A2 83 EAHX. MyEyEE
WA KRB, VAR I WA WL AN o3 08 T4 40 R 3 i 7= B e T 4R 48 7 2 I B Y AN
RER. BRI AR AT RENCR SR & T LIRS YRR R s, SECL AR EEIE R
H SOC i, N CHy P AEFRHESE Z R HRY), (23 CHa IR [34].

EREERE, NMRERAN CHy HRTE 9 Hik2RmE, JHE 10 Al FR, RIH AR5
P X 5SS M L AR KB AR AR A I ZR AT AR N [ . I AT R T E DKV Rl b 3 RRE )
TN, SRR E IR, AR B R R A iR AR NZ #h7E 1) CH,
Heom #3594 B W(p <0.05, LK 2). XFhE S EZRKSEM 50RO T . TR B
IKALI R B, NAR ARG 1 A 0 RS DB Ak A A e o T e BRI AR A, 1) B2 i 7 3 [ P 7 45
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5. TEMX CH4HEHHYZE RAFIE

BT SCREE, AR AR T ANE X3 CH, HEBCEE M. B S, 48 g 6 M R CH,
HOEEME A 1.12+0.12 mg/(m>h);  HFVTIE M RE VT 1 HERGE & 518 N 0.15 +£0.06 mg/(m2-h), HMN )
55 1.05 £ 0.18 mg/(m*h); _EHFEEIIARMELIME N 0.80 = 0.13 mg/(m>h), JLIFHER NHEFITA 0.48 £ 0.05
mg/(m?h). FRENY, ARMIXH) CHy HFBCRZ RECR, HIFAR 2 IR R

R I S AR W CH HEBUZ BRI IE 2500 . K SUAR R SR R TS S5 GBI 858 IR 1 2L [FUAE FH 1)
ZER . HOG, WCEVIBEE SRR CH HECP R R ER . IBHAES RGP CH, I & B 5L 1)
A R R G S A TR BT FE SR TR B [10]0 77 FBE BRZE P2 IR B2 N 20 A ML 7= A CHL., T AR G2 S8 AL
BRUKE CH, 246 COo, ANTTIRRZD CHa RS HE . AN RV b E T MO R A7 B L R R AL AR SOIR B
IZE 5, PR E HAS AR b i A R e S8 TR VA (35 o 20 SRS AN T i L & s iy M 1) 7 B o o R s A
AR B G A A B S, e CHy HEBUE & B R . IbAk, = FE R 5 bt B 2 [ 1) 5 5+ 5
PrlEl, R E B CH, ISEE10].

HWR, KOOSR CH, HEBUR SR BRI 1o KIR . WE/KIHE] . IR S R BB kE T
A ) PRAEFE S, HEMI IS CH, I AR ORGSR [36] . RRERH K 2 Gl 7 F ot 1 1) PR A 858,
B0 CHs HEK[37]. 3=, THERMEEMPTEN CHy AR E K EE, B 58 CH, = A 2157
ALK T IAA LK I BI(DOC:SOC) LA KRR AL (U .18 « Ho FIH B4k & W) 4% [38]. filln, ik
(RIS 8 L (C:N) RIS 5 ) DOC:SOC HUAR I % T 35 345 ML S8 25 2 9 E M R L, AT = B e
R TE Z 0 R Y, (RRE CHy HEBO% IN[39]. thah, L3 il BUE ML (EOC) 5 CH, HEBCR 2 1E
AHR[40].

BE, BEREREIA RN CHaHE . AR, HEZWNO3I )P A 4] CHy =2k, It
R R B T AT L SE IR [41]. 7S B IR U R R, il i CHy HEOs > o7 DASE I L, [
N CHy 22 A I R AE A BRUR[42] . REASEAE N —FP AR, B REFR B 577 B b i e 5 L7 32 4K
AEHUBRIERYD, M0 = R e #e . AR RYT, B N2 7 ek o Jo 0 b 5 ). CHL, 3 &7 A 5 )
[41].

6. REERE

BT FIRNFS T W RAHHEIFR I CH, HFBRHE SRS R R, @ e, WL, b
ANLIFAEH) CHy HFBCEEHE, A ALK Rl e E PR 5T, B8 3 1 CH, A R
T FERIRNREETE M SOC &8 &3 T HAIBH SRR, 1K CHy IR RER B T Z TR IR . 1k
A, BT FU R BDEHMEAE S R A S B 5K CH. HEBCEDIAR G, SEn B N B CH, IR 5 B2
{EH CH HERUNZIVER A SR . IR R E VMG, ARSI S BRI 7 2R, &
ARSI N A A BN b AT, M) CH, HEE 2 B 2 R R LR S T, Ry
BN IR ER AR, BoR T AR AE BAS A Bk . AROR PRI A BN 45 4 DX IRy
R BERASFERE SR ARR I A PR I, R AR AR RR B B A S R T AT
EEXER I DAEE CH, HEBOF T I B D RE, N0 U3 Tk &

&E 3k
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