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摘  要 

本研究系统评估了新疆兵团某典型工业园区大气VOCs的污染特征、环境效应及健康风险。结果显示，

TVOCs年均浓度为(103.6 ± 92.6) μg/m3，夏季最高，OVOCs为全年主导组分(占43.5%)。VOCs年均OFP
为3.81 μg/m3，主要贡献物种为丙烯和丙酮等；年均SOAFP为0.056 μg/m3，苯和甲苯贡献占比达81.0%。

苯、甲苯和正己烷为O3与PM2.5协同控制的关键前体物。健康风险评价表明，VOCs非致癌风险较低，但

萘、苯等存在潜在致癌风险，应作为优先管控物种。研究可为园区VOCs协同控制和重点物种管控提供科

学依据。 
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Abstract 
This study systematically assessed the pollution characteristics, environmental effects, and health 
risks of atmospheric VOCs in a typical industrial park in Xinjiang. The results show that the annual 
average concentration of TVOCs was (103.6 ± 92.6) μg/m3, with the highest levels in summer. OVOCs 
were the dominant components throughout the year (accounting for 43.5%). The annual average 
OFP of VOCs was 3.81 μg/m3, with propylene and acetone being the major contributing species; the 
annual average SOAFP was 0.056 μg/m3, with benzene and toluene contributing up to 81.0%. Ben-
zene, toluene, and n-hexane were identified as key precursors for the coordinated control of O3 and 
PM2.5. Health risk assessment indicated a low non-carcinogenic risk from VOCs, but potential car-
cinogenic risks were identified for species such as naphthalene and benzene, which should be pri-
oritized for control. This research provides a scientific basis for the coordinated control of VOCs and 
targeted management of key species in industrial parks. 
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1. 引言 

挥发性有机物(Volatile Organic Compounds, VOCs)，是指在常温常压下容易挥发的有机化学物质的总

称[1]。作为大气中一类重要的气态污染物，不仅对人体健康具有直接或潜在的影响，而且作为臭氧(O3)和
二次有机气溶胶(Secondary Organic Aerosols, SOA)的重要前体物，对区域大气的复合型污染具有重要贡

献[2]-[4]。随着我国工业化与城市化进程的加快，工业源已成为人为 VOCs 排放的主要来源之一，据文献

报道其贡献高达 46% [5]。尤其是在工业园区，源项较为集中，VOCs 的排放强度高、组分复杂，对局域

大气环境和周边居民健康构成潜在威胁[4] [6] [7]。鉴于此，学者们广泛开展了对京津冀、长三角、珠三

角等经济发达地区的工业源 VOCs 污染特征、来源解析及环境影响的研究[8]-[10]。然而，对于西部地区，

尤其是新疆这类典型干旱半干旱气候条件下的工业园区 VOCs 污染研究相对薄弱。新疆作为“丝绸之路

经济带”的核心区，近年来其工业化进程速度不断加快，如伊犁河谷、乌昌石城市群等区域的工业园区

规模不断扩大，大气污染问题也随之显现，尤其臭氧和颗粒物污染交错发生，开展与之紧密相关的 VOCs
污染研究至关重要[4] [11] [12]。据相关研究表明，工业园区的 VOCs 组成具有明显的行业特征和季节变

化规律。例如，化工园区以含氧挥发性有机物(OVOCs)和烷烃为主，而石化园区则烷烃、烯烃和芳香烃占

比较高；VOCs 的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)也因物种活性和环境条件差异

而不同[13]-[16]。此外，工业园区 VOCs 对人体健康的非致癌和致癌风险方面，尤其需要关注苯、1,3-丁
二烯、氯代烃等物种[17]-[19]。因此，本研究以新疆某典型工业园区为研究对象，基于 2024 年不同月份

大气 VOCs 监测数据，系统分析其浓度水平、组成特征、季节变化规律、臭氧与 SOA 生成潜势，评估其

对环境空气质量及人体健康的潜在影响，以期为该区域 VOCs 与臭氧协同控制及人群健康保护提供科学

依据。 
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2. 材料与方法 

2.1. 研究区域概况与采样点布设 

本研究选取新疆生产建设兵团某市的典型工业园区作为研究对象。该园区位于城市主导风向的上风

向，聚集了有色金属加工、煤电、煤化工、新材料等多种产业，是重要的煤电煤化工基地。园区地处内陆

干旱半干旱气候区，冬季寒冷漫长，夏季炎热干燥，大气边界层高度及气象条件季节差异显著，对污染

物的扩散与转化具有重要影响。 
在研究区域内，根据企业分布类型、主导风向及园区功能分区，共选择 7 家企业，布设了 10 个环境

空气采样点，以期全面反映园区 VOCs 的整体污染水平及空间分布特征。 

2.2. 监测时间与数据来源 

监测时间为 2024 年 3 月至 2025 年 2 月，覆盖春(3~5 月)、夏(6~8 月)、秋(9~11 月)、冬(12~2 月)四
个季节。采用 3.2 升规格苏玛罐和 ENTECH 积分采样器组合方式采样，每点位每次采样时间 24 小时，采

样频率为每月 0~3 次，合计 24 次。共获得有效样品 225 个，分析了包括 4 种烷烃、2 种烯烃、9 种芳香

烃、36 种卤代烃、10 种 OVOCs (含醛酮类)及乙炔等在内的 65 种 VOCs 物种。 

2.3. VOCs 组分分析方法与质控措施 

VOCs 样品进行低温浓缩后，进入安捷伦气相色谱–质谱联用仪(GC-MS，安捷伦，7890B-5977A)分
析。分析方法参照《环境空气挥发性有机物的测定罐采样/气相色谱–质谱法》(HJ 759-2023) [20]。采样

前，使用经认证的 PAMS 和 TO-15 标准气体对 GC-MS 系统进行多点校准(2, 5, 10, 15, 20, 40 ppbv)，所有

目标化合物的校准曲线相关系数(R)均大于等于 0.990。每批次样品分析前，使用 20 ppbv 标准气体进行单

点校准，均满足分析标准中各组分浓度与理论值的偏差在±30%以内的质控要求。现场空白样品(高纯氮气)
的检测结果均低于方法检出限。样品的总离子流图均经人工核对，确保定性定量的准确性。 

OVOCs 采用苏玛罐采样测定的方法具有一定的局限性。OVOCs 通常具有较大极性且化学性质较为

活泼，易吸附在罐体内壁或与罐内其他化学物质发生反应。相比于极性较弱的烷烃、芳烃等 VOCs，OVOCs
在罐中的储存稳定性较差。尤其是低分子量醛类，可能在短时间内出现明显的浓度下降，导致测定结果

偏低。分析过程中，OVOCs 测定标准样品校准点 20 ppbv，回收率范围在 82.7%~109%。 

2.4. OFP、SOAFP 计算方法 

臭氧生成潜势(OFP)采用最大增量反应活性法(MIR)计算[21]，公式如下： 

i i iOFP VOCs MIR= ×                                      (1) 

式中， iOFP 为物种 i 的臭氧生成潜势(μg/m3)； iVOCs 为监测的 VOCs 物种 i 的浓度(μg/m3)； iMIR 为其最

大增量反应活性系数，取值参照 Carter 更新的 MIR 标尺[22]。 
二次有机气溶胶生成潜势(SOAFP)采用气溶胶生成系数法(FAC) [23] [24]估算，公式如下： 

0i i iSOAFP VOC FAC= × .                                   (2) 

( )0 1t i VOCriVOCs VOCs F= × −                                   (3) 

式中， iSOAFP  为物种 i 的二次有机气溶胶生成潜势(μg/m3)； 0iVOCs 为物种 i 的初始浓度(μg/m3)； iFAC 为

物种 i 生成 SOA 的生成系数(%)； tVOCs 为某物种的实测浓度(μg/m³)； VOCriF 物种 i 参与反应的质量浓度

百分比(%)。其中， iFAC 和 VOCriF 的取值，参照 Grosjean 等及后续相关研究的实验数据[23]-[25]。 
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2.5. 健康风险评估模型(HI、LCR) 

采用美国 EPA 推荐的吸入途径健康风险评估模型[26]。非致癌风险和致癌风险，分别用危害指数(HI) 
和终生致癌风险(LCR)评价[26]。 

1
365 24

VOCs

nca

C ET EF ED
HI

AT Rfc
× × ×

= ×
× ×

                               (4) 

365 24
VOCs

ca

C ET EF ED
LCR IUR

AT
× × ×

= ×
× ×

                              (5) 

式中， VOCsC 为物种的浓度(μg/m3)； ET 为暴露时间，取值为 8 h·d-1 [27]； EF 为暴露频率，取值为 260 
d·a-1 [28]； ED 为暴露持续时长，取值为 30 a [28]； ncaAT 和 caAT 为非致癌作用和致癌作用的时间，取值

分别为 25 a 和 70 a [29]； Rfc 为参考浓度(μg/m3)； IUR 为单位吸入风险(μg/m3)。其中， Rfc 和 IUR 的取

值采用美国 EPA 的参考值[30] [31]。 
当 HI > 1 时认为存在非致癌风险；当 LCR > 1 × 10−6 时认为存在潜在致癌风险。 

3. 结果与讨论 

3.1. VOCs 浓度水平与季节变化特征 

 
Figure 1. Trend chart of daily average concentration of TVOCs in ambient air of an industrial park in a city of Xinjiang 
production and construction corps in 2024 
图 1. 2024 年度新疆兵团某市工业园区环境空气中 TVOCs 日平均浓度变化趋势图 

 
由图 1 可知，在 2024 年度观测期间，工业园区环境空气中 TVOCs 的年均浓度为(103.6 ± 92.6) μg/m3，

浓度范围在 2.3~846.4 μg/m3之间。TVOCs 浓度呈现显著的季节差异，表现为：夏季(179.3 ± 112.4 μg/m3) > 
春季(111.9 ± 58.9 μg/m3) > 秋季(54.2 ± 3.6 μg/m3) > 冬季(27.2 ± 7.2 μg/m3)这可能是温度主导的挥发效应。
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例如，夏季高温极大地促进了原料、溶剂的无组织挥发与光化学反应，成为浓度峰值期；春季随温度回升，

加之大风天气较多，排放增强使其浓度次之；而在温度较低、日照减弱的秋、冬两季，VOCs 的挥发被有效

抑制，排放源强大幅减弱，致使浓度降至最低水平。图 2~图 5 分别展示了工业园区风玫瑰图，以及气温、

湿度和风速与 TVOCs 的关系。由图 2 可知，该工业园区以西风和西北风为主。图 3 显示了 TVOCs 浓度与

温度呈现显著的正相关关系(r = 0.62, P = 0.0013)。图 4 显示 TVOCs 浓度与风速尽管呈现正相关关系，但不

显著(r = 0.23, P = 0.287)。图 5 显示 TVOCs 浓度与相对湿度呈现负相关关系，但不显著(r = −0.40, P = 0.053)。
气象参数分析进一步验证了上述假设，工业园区 TVOCs 浓度呈现显著的季节差异是由温度主导的挥发效

应。以上分析表明，对于该工业园区，由温度控制的排放源强变化可能是比大气扩散条件更为关键的因素。 
 

 
Figure 2. Wind rose diagram of an industrial park in a City of Xinjiang production and construction corps in 2024 
图 2. 2024 年度新疆兵团某市工业园区的风玫瑰图 

 

 
Figure 3. Correlation analysis between daily average TVOCs concentration and daily average temperature in an industrial 
park of a city of Xinjiang production and construction corps in 2024 
图 3. 2024 年度新疆兵团某市工业园区的日平均 TVOCs 浓度与日平均温度的相关分析 
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Figure 4. Correlation analysis between daily average TVOCs concentration and daily average wind speed in 
an industrial park of a city of Xinjiang production and construction corps in 2024 
图 4. 2024 年度新疆兵团某市工业园区的日平均 TVOCs 浓度与日平均风速的相关分析 

 

 
Figure 5. Correlation analysis between daily average TVOCs concentration and daily average relative humidity in an 
industrial park of a city of Xinjiang production and construction corps in 2024 
图 5. 2024 年度新疆兵团某市工业园区的日平均 TVOCs 浓度与日平均相对湿度的相关分析 
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Figure 6. Trend chart of average TVOCs concentration and composition changes in ambient air across 
different seasons in an industrial park of a city of Xinjiang production and construction corps in 2024 
图 6. 2024 年度新疆兵团某市工业园区不同季节环境空气中 TVOCs 平均浓度及组分的变化趋势图 

 
由图 6 可知，从组分构成来看，OVOCs 是全年最主要的组分，年均占比达 43.5%，其次为卤代烃

(13.5%)、芳香烃(13.0%)、烷烃(7.6%)和烯烃(3.7%)。季节变化上，OVOCs 不同季节占比均较高，夏(59.4%)、
秋(50.3%)两季明显高于春(31.8%)、冬(32.6%)季节；烷烃春(9.1%)、夏(9.0%)、冬(11.3%)季节占比较高；

冬季烯烃占比最高(11.1%)；芳香烃和卤代烃均在春(17.0%)、秋(17.9%)、冬(13.0%)季节占比较高。以上

分析表明，OVOCs 是该园区 VOCs 污染的重要组分。值得注意的是，OVOCs 具有复杂的来源特征，既

可来源于人为活动的一次直接排放，也可通过大气中烷烃、烯烃及芳香烃等前体物的光化学氧化反应二

次生成。 
与其他工业园区相比(表 1)，该工业园区 TVOCs 年平均浓度与其他工业园区相差不大，但该工业园

区组分构成与其他工业园区相比差别较大，但该工业园区 VOCs 的组分构成基本上与陕北某煤化工园区

VOCs 的主要组分基本一致[19]。 
 

Table 1. VOCs concentration levels in the industrial park compared with other urban industrial parks 
表 1. 工业园区与其他城市工业园区 VOCs 浓度水平 

年份 TVOCs 
浓度/μg/m3 

烷烃 
占比/% 

烯烃 
占比/% 

芳香烃 
占比/% 

卤代烃 
占比/% 

OVOCs 
占比/% 文献 

2022 148.3 26.6 3.1 8.2 16.0 45.0 [29] 

/ 89.3 42.3 6.8 28.1 4.2 18.6 [32] 

2020 110.1 33.3 3.7 29.6 21.5 / [33] 

2020 95.8 35.1 4.8 23.4 23.6 / [33] 

2022 34.5 61.05 16.42 17.02 / / [34] 

2024 103.6 7.6 3.7 13.0 13.5 43.5 本研究 

3.2. VOCs 臭氧生成潜势分析 

园区 VOCs 的年均 OFP 为 3.81 μg/m3。由图 7 可知，关键活性物种识别显示，丙烯、丙酮、正己烷、
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乙酸乙烯酯、甲苯、氯乙烯、苯、四氢呋喃、甲基叔丁基醚和丙烯醛是对 OFP 贡献排名前 10 的物种。这

些物种共同构成了园区 OFP 的主要来源，其中丙烯、丙酮等组分的贡献尤为突出，这些物种也被认为是

化工行业的特征物种[13]。这些物种一定程度上揭示了该工业园区作为煤电煤化工基地的特征，与化工相

关的排放源应为后续管控的重点。 
苯与甲苯(B/T)比值被用于初步判断环境中 VOCs 的来源，一般认为：当 B/T < 0.2 时，主要受溶剂使

用源的影响；当 B/T 在 0.5 左右时，机动车排放影响较大；当 B/T > 1 时，燃烧源贡献较大，特别是 B/T
在 1.5~2.2 的范围内；当 B/T 为 2.5 时，生物质燃烧影响较大[35]。甲苯的大气寿命短，易被 OH 自由基

氧化，苯的大气寿命长，更稳定，空气团经过长距离传输或长时间滞留，甲苯被消耗，致使 B/T 升高。

该工业园区 B/T 均值为 4.6，明显偏高，单纯老化通常难以达到，表明该工业园区除受到本地排放的影响

外，还存在叠加老化气团的影响。 
 

 
Figure 7. Top 10 VOCs species contributing to OFP 
图 7. 对 OFP 贡献排名前 10 的 VOCs 物种 

3.3. 二次有机气溶胶生成潜势分析 

 
Figure 8. Top 9 VOCs species contributing to SOAFP 
图 8. 对 SOAFP 贡献排名前 9 的 VOCs 物种 
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对二次有机气溶胶生成有贡献的 VOCs 主要包括 25 种非芳香烃类和芳香烃类物质。通过气溶胶生成

系数法估算可知，园区年均 SOAFP 为 0.056 μg/m3。由图 8 可知，苯和甲苯是 SOAFP 的绝对主导贡献者，

占比高达 81.0%，这与国内多数工业园区研究结论一致[36]。 
关键前体物识别表明，苯、甲苯、间/对–二甲苯、邻–二甲苯、环己烷和乙苯是 SOAFP 贡献最大的 6

个物种，累计贡献超过 99%。这些物种是典型的化工原料、溶剂和燃料组分[37]。苯、甲苯和正己烷同时是

OFP 和 SOAFP 的关键前体物，表明对烷烃和苯系物的排放控制是实现 O3和 PM2.5协同治理的关键抓手。 

3.4. 健康风险评估 

 
Figure 9. Hazard index of different VOCs species 
图 9. 不同 VOCs 物种危害指数 

 

 
Figure 10. Carcinogenic risk of different VOCs species 
图 10. 不同 VOCs 物种致癌风险 

https://doi.org/10.12677/aep.2026.162013


江宜霖 等 
 

 

DOI: 10.12677/aep.2026.162013 123 环境保护前沿 
 

本研究监测的 VOCs 物种中，年均浓度较高的丙酮、正己烷、氯乙烷等 19 个 VOCs 物种属于美国环

保署(EPA)公布的有毒有害空气污染物，其中氯乙烯、一氯甲烷、苯等 11 个物种属于致癌类物质，具体

见图 9 和图 10。 
由图 9 可知，18 个有毒有害的物种的 HI 值范围为 1.17 × 10−5~0.28，均小于 HI 的可接受风险水平(HI 

< 1)，说明在工业园区工作的人员通过吸入这些大气中的 VOCs 而引起非致癌的慢性健康的风险较低。从

单个物种来看，丙烯醛、苯、萘等化工特征物种的 HI 较高，分别为 0.28、0.074 和 0.044。 
由图 10 可知，11 个致癌物种的 LCR 值范围为 1.27 × 10−9~1.61 × 10−5，这些物种中萘、苯、氯乙烯

和四氯化碳超过了 EPA 提出的可接受风险水平(LCR < 1 × 10−6)，低于 EPA 提出的容许风险水平(LCR < 
1 × 10−4)，表明观测期内该工业园区环境空气中 VOCs 存在潜在的致癌风险。从污染物对人体健康风险角

度来看，萘、苯、氯乙烯和四氯化碳等物种应作为该工业园区的优先管控目标。 

4. 结论 

本研究系统分析了新疆生产建设兵团某典型工业园区环境中 VOCs 的污染特征，估算 VOCs 组分对

臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)的贡献，并评估其主要物种对人体的健康风险影

响，具体结论如下： 
(1) 工业园区环境空气中 TVOCs 的浓度范围为 2.3~846.4 μg/m3，年均浓度为(103.6 ± 92.6) μg/m3。

TVOCs 浓度的季节变化特征显著，按浓度高低依次为：夏季、春季、秋季、冬季。从组分构成看，OVOCs
是全年主导组分(年均占 43.5%)，其占比夏秋显著高于冬春，且整体组成与同类园区基本一致。 

(2) 园区 VOCs 的年均 OFP 为 3.81 μg/m3。丙烯、丙酮、正己烷、乙酸乙烯酯、甲苯、氯乙烯、苯、

四氢呋喃、甲基叔丁基醚和丙烯醛是对 OFP 贡献排名前 10 的物种。其中丙烯、丙酮等组分的贡献尤为

突出。 
(3) 园区年均 SOAFP 为 0.056 μg/m3。苯和甲苯是园区二次有机气溶胶生成潜势(SOAFP)的绝对主导

贡献者，两者占比高达 81.0%。关键前体物分析进一步表明，苯、甲苯、间/对-二甲苯、邻-二甲苯、环己

烷和乙苯六类物种的累计贡献超过 99%，它们均是典型的化工原料与溶剂组分。值得注意的是，苯、甲

苯和正己烷同时是臭氧生成潜势(OFP)与 SOAFP 的关键前体物，因此控制其排放将成为实现臭氧与 PM2.5

协同治理的关键环节。 
(4)工业园区内 18 个有毒有害的 VOCs 物种的 HI 值，均小于 HI 的可接受风险水平(HI < 1)，表明由

VOCs 引起非致癌慢性健康的风险较低。11 个致癌物种的 LCR 值中萘、苯、氯乙烯和四氯化碳超过了

EPA 提出的可接受风险水平(LCR < 1 × 10−6)，低于 EPA 提出的容许风险水平(LCR < 1 × 10−4)，表明观测

期内该工业园区环境空气中 VOCs 存在潜在的致癌风险。从健康角度考虑，萘、苯、氯乙烯和四氯化碳

等物种应作为该工业园区的优先管控目标。 
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