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摘  要 

针对新建风电场缺乏丰富的历史数据导致功率预测精度不足的问题，提出一种基于特征迁移学习和数据

分解重构的超短期功率预测方法，用于提升小样本条件下的预测精度。首先，利用变分模态分解对历史

风电功率数据进行分解，并根据样本熵的计算结果进行分组重构，结合风速、风向气象数据构建输入特

征；其次，以数据丰富的源域风电场数据为基础，采用BiLSTM-CNN作为基础预测模型，结合最大平均差

异和相关对齐作为新的分布差异度量，最小化源域与目标域之间的特征分布差异，同时引入对抗训练思

想，利用域分类器作为对抗组件区分源域和目标域特征，促使特征提取器生成域不变的特征，从而实现

源域风电场知识向目标域的有效迁移。实验结果表明，所提出的方法在数据稀缺的情况下能够有效提高

风电场功率预测的准确性，为新建风电场的功率预测提供了新思路。 
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Abstract 
To address the issue of insufficient power prediction accuracy in newly constructed wind farms due 
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to limited historical data, this study proposes an ultra-short-term power prediction method based 
on feature transfer learning and data decomposition reconstruction to enhance prediction accuracy 
under small-sample conditions. First, historical wind power data is decomposed using variational 
modal decomposition and reconstructed into groups based on sample entropy calculations. These 
groups are then combined with meteorological data on wind speed and direction to form input fea-
tures. Second, leveraging data-rich source domain wind farm data, a BiLSTM-CNN is employed as 
the base prediction model. This is integrated with maximum mean difference and correlation align-
ment as novel distribution divergence metrics, minimizing feature distribution differences between 
source and target domains. Concurrently, adversarial training principles are introduced, employing 
a domain classifier as the adversarial component to distinguish source-domain from target-domain 
features. This compels the feature extractor to generate domain-invariant features, thereby ena-
bling effective knowledge transfer of source-domain wind farm characteristics to the target domain. 
Experimental results demonstrate that the proposed method significantly improves wind farm 
power prediction accuracy under data-scarce conditions, offering novel insights for power forecast-
ing in newly constructed wind farms. 
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1. 引言 

2023 年的统计数据显示，中国风力发电累计并网装机容量约为 4.4 亿千瓦，较上年同期增长 20.7% 
[1]。风电作为一种低碳环保的可再生能源，其发展一直备受关注。由于风能的时空随机性导致风力发电

稳定性差、波动明显，大规模风电并网增加了电网维持安全稳定运行的难度[2]。准确的风电功率预测对

于降低风电不确定性、保障电网调度和运行的安全稳定具有至关重要的作用。然而，新建风电场因为运

行时间较短，初始运行阶段的数据积累不足，难以建立高精度的预测模型，导致其短期功率预测精度无

法满足实际调度需求。因此，针对小样本条件下的风电功率预测方法研究，对于提升新建风电场的预测

精度、优化电网调度和确保电网可靠运行具有重要意义。 
风电功率预测方法可分为物理方法、统计方法和人工智能的方法。物理方法侧重于建立功率输出与

风速等气象信息之间的数学模型，通过数值天气预报(Numerical Weather Prediction, NWP)作为物理模型的

输入，尽管物理建模方法不依赖于历史数据，但它们缺乏准确性。此外，由于风功率的影响因素众多，

物理建模方法在求解高维模型或用简化模型实现高精度方面面临挑战[3]。统计方法主要通过建立风力发

电机输出功率与历史数据之间的映射关系构建预测模型。常用的方法包括自回归移动平均(Auto Regres-
sive Moving Average, ARMA) [4]、自回归积分移动平均(Auto Regressive Integrated Moving Average Model, 
ARIMA) [5]、卡尔曼滤波[6]等。人工智能的方法在处理非线性和非平稳数据时具有良好的预测精度，因

此在风电功率预测中得以广泛应用。考虑到卷积神经网络(Convolutional Neural Network, CNN)在提取局

部相关特征方面的优势，文献[7]通过使用重新设计的 CNN 模型，成功预测了短期风电功率，并取得了良

好的结果。长短期记忆网络(Long Short-Term Memory, LSTM)作为循环神经网络的变体，独特的门控机制

使其在建模时间序列的长期依赖关系方面表现出色，尤其适用于风电功率预测中的时序建模。文献[8]针
对海上风电数据的强波动性和随机性，提出了一种基于数据分解重构与贝叶斯优化 LSTM 的混合预测框
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架，通过降低输入数据的波动性干扰来提升预测性能。随后，为了实现时间序列信息的双向建模，引入

了双向长短期记忆网络(Bi-directional LSTM, Bi-LSTM)和双向门控循环单元(Bi-directional GRU, Bi-GRU)，
该模型能够同时捕捉时间序列的前向和后向依赖关系，文献[9]使用 Bi-GRU 来实现风电场的功率预测。

该研究引入了主成分分析提取风力机功率的关键特征，并结合广义极值分布和 K-means++算法对风力机

进行聚类，以更好地捕捉局部条件因素的影响，从而提高预测精度。上述方法在数据完备的风电场表现

良好，对于新建风电场，由于缺乏足够的历史监测数据，这些方法的直接应用可能受到限制。 
为了解决数据稀缺这一问题，已有研究尝试利用生成对抗网络(Generative Adversarial Network, GAN)

等生成技术来生成数据。文献[10]提出了一种基于二级进化生成对抗网络的数据生成模型，旨在通过学习

真实数据的边际分布生成高质量数据，以增强训练数据集，从而解决小样本条件下的风电功率预测问题。

然而，生成数据的质量高度依赖于生成模型与判别模型之间的博弈，其可信度直接影响预测结果的准确性。 
迁移学习可以利用源域中丰富的训练数据，将学习到的知识迁移到与之具有相似统计特性的目标域，

以解决数据稀缺的问题。文献[11]通过对源风机模型的迁移应用，降低了目标风机对本地历史数据的依赖

程度；文献[12]采用联邦学习在不损害数据隐私的情况下实现源域风机的知识共享并利用迁移学习传递

共享知识以更新预先训练的全局模型，个性化拟合目标风机；文献[13]采用“预训练–微调”策略，利用

正常天气下的充足样本对预测模型预训练，再针对极端天气下有限样本数据进行微调，大幅度提升极端

天气下的风电功率预测精度。在上述文献中，预训练–微调的方法用于实现迁移学习过程，该方法在深

度神经网络中能有效缩短模型训练周期。但是当目标域风电数据样本量有限且源域与目标域数据分布存

在差异时，经过微调得到的模型难以获得理想的泛化效果。 
针对以上问题，本文提出了基于特征迁移学习和数据分解重构的风电功率超短期预测方法。该方法

利用变分模态分解(Variational Mode Decomposition, VMD)和样本熵(Sample Entropy, SE)对历史风电功率

数据进行分解重构，并结合风速、风向气象数据构建输入特征；建立双向长短期记忆–卷积神经网络迁

移学习模型，结合最大平均差异(Maximum Mean Discrepancy, MMD)和相关对齐(Correlation Alignment, 
CORAL)作为新的分布差异度量，最小化源域与目标域之间的特征分布差异；引入对抗训练思想，促使特

征提取器生成域不变的特征，实现跨域知识迁移，提升小样本条件下风电场功率预测的准确性。通过与

传统深度学习预测方法进行比较，验证了本文方法的有效性。 

2. 问题描述 

具有丰富历史数据的风电场可被视为源域 SD ，表示为 ( ){ },S S SD P= X X 。其中 SX 是源域的特征空

间，包括风速、风向序列以及经过分解重构后的历史风电功率子序列等特征，这些特征构成了多维特征

空间，反映了风电场的运行状态和环境条件。 ( )SP X 表示源域中特征向量的边缘概率分布。源域的任务

( ){ },S S sT Y f= ⋅ 是通过学习特征 SX 与标签 Sy (即待预测的风电功率)之间的映射关系 ( )f ⋅ ，构建一个能够

准确预测风电功率的模型。 
目标域 TD 是新建风电场，表示为 ( ){ },T T TD P= X X 。其特征空间 TX 包含与源域相似的特征，由于

地理位置、设备型号等差异，目标域特征向量的分布 ( )TP X 与源域存在较大的不同。目标域的任务与源

域的任务一致，但由于数据量有限，直接训练模型的效果可能不理想。因此采用迁移学习的方法，通过

特征迁移学习对齐源域和目标域的特征分布，实现知识迁移，以提升目标域预测模型的性能。 

3. 原始数据的分解与重构 

3.1. 基于 VMD 的数据分解 

变分模态分解作为一种自适应非平稳信号处理方法，能够有效克服经验模态分解中的端点效应与模
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态混叠问题。该方法通过预设本征模态函数数量及其中心频率约束，可将源域与目标域的风电功率数据

一致性地分解为具有明确物理意义的模态分量。VMD 的分解过程可通过求解如式(1)所示的约束变分问

题实现。 
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式中： TD 是狄拉克函数； t∂ 表示偏导数算子。通过引入拉格朗日乘子 λ ，方程(1)转化为无约束变分问题，

可表示为方程(2)： 
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式中：λ 表示拉格朗日乘子；α 为二次惩罚因子。通过 ADMM 交替更新 ku ， kω 和 λ ，如式(3)~(5)所示： 
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式中： ( )1ˆn
ku ω+ ， ( )ˆiu ω ， ( )x̂ ω ，和 ( )λ̂ ω 分别是 ( )1n

ku t+ ， ( )iu t ， ( )x t 和 ( )tλ 的傅里叶变换。 

3.2. 基于 SE 的子序列重构 

样本熵是一种基于近似熵的时间序列复杂度量化方法。样本熵的大小代表了时间序列的复杂性，样

本熵值越高，表示时间序列的复杂性越大，反之亦然，样本熵值越低，表示时间序列的规律性越强。对

于时间序列 { }1 2, , , NX x x x=  ，其样本熵的计算方式如下： 
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式中：N 表示数据长度，α 表示阈值大小，m 为嵌入维度， ( )1mB α+ 和 ( )mB α 分别表示在嵌入维度 1m +

和 m 下满足匹配条件的向量对数量，其表达式为： 
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样本熵值与 m 和α 的值有关，在实际应用中， m 通常设置为 2 或 3，且 ( )0.10 ~ 0.25 Sα = ， S 为非
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线性数据序列的标准差。本文中取 2m = ， 0.1Sα = 。这种特定设置在应对非线性时间序列数据的复杂性

方面已被证明非常有效[14]。 

4. 基于迁移学习的风电功率预测模型构建 

本文提出了一种基于 VMD-SE-BiLSTM-CNN-TL 模型的风电场功率预测方法，通过利用数据丰富的

源域风电场学习特征，将知识有效迁移至目标域小样本风电场，增强目标域风电场预测模型的性能。预

测模型的整体框架如图 1 所示。 
 

 
Figure 1. BiLSTM-CNN-TL prediction model architecture 
图 1. BiLSTM-CNN-TL 预测模型结构 

 
BiLSTM-CNN-TL 模型由两部分组成：一是 BiLSTM-CNN 基础模型，用于完成风电功率预测的基础

任务，包括特征提取和功率预测；二是域分类器，作为对抗组件用于区分数据样本的域来源。在训练过

程中，采用领域自适应方法，通过分布差异度量(Distribution Discrepancy Metric, DDM)最小化源域和目标

域之间的特征分布差异，同时引入对抗训练思想，利用域分类器区分源域和目标域特征，促使特征提取

器生成域不变的特征，在特征空间中实现源域和目标域的分布对齐，完成跨域知识迁移。 

4.1. BiLSTM-CNN 基础模型 

在采用 VMD-SE 方法分解重构得到风电功率的高频、低频和趋势三个分量后，将其与风速、风向序

列共同组合，构建输入特征 X。该特征构建方式通过将功率序列中不同时间尺度的波动特性，与风速、

风向等直接影响风电出力的外部环境变量相结合，共同构成了一个融合内部波动规律与外部驱动因素的

多维特征空间，使预测模型能够更有效地挖掘风电功率与风速、风向之间的深层隐含关系，进一步增强
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对未来功率变化的捕捉能力与预测准确性。基础模型旨在从输入 X 中提取特征，并将其映射到风电功率

预测值 y 中。该模型采用了混合架构，结合了 CNN 和 BiLSTM 的优势。 
LSTM 是一种具有门控机制的特殊循环神经网络，三个门控单元用于控制信息的输入、输出和遗忘。

基本结构如图 2 所示。 
 

 
Figure 2. LSTM network architecture diagram 
图 2. BiLSTM-CNN-TL 预测模型结构 

 
相较于传统 RNN，LSTM 的多门控与细胞状态协同运作，有效克服了梯度消失和爆炸问题。各“门”

单元的计算如式(9)~式(14)所示。 

 [ ]( )1,t f t t ff h xσ −= +W b  (9) 

 [ ]( )1,t i t t ii h xσ −= +W b  (10) 

 [ ]( )1 0,t o t to h xσ −= +W b  (11) 

 [ ]( )1tanh ,t c t t cc h x−= +W b  (12) 

 1t t t t tc f c i c−= ⊗ + ⊗   (13) 

 ( )tanht t th o c= ⊗  (14) 

式中： tf 、 ti 和 to 表示遗忘门、输入门和输出门的输出；W 表示权重； b 表示偏置；σ 表示 Sigmoid 激

活函数；tanh 是激活函数。 
在单向神经网络结构中，信息始终沿从前向后的方向传递。然而，由于时间因素对预测效果具有重

要影响，本文采用 BiLSTM 模型捕捉正向与反向时间依赖关系，以实现更深层次的特征提取。 
CNN 具有很强的非线性特征提取能力，可以有效提取时序数据的局部特征。其核心结构包括卷积层

和池化层，通过多层交替堆叠实现对原始序列数据的深度特征提取。为进一步优化网络性能，模型中引

入了批量归一化(Batch Normalization, BN)层和全局平均池化(Global Average Pooling, GAP)层，用于加速

网络收敛并缓解过拟合问题，这种多层次、多模块的设计使得 CNN 在时序数据处理中能够高效提取局部

特征并保持较低的算法复杂度。 
BiLSTM-CNN 基础模型的特征提取器包含一个 BiLSTM 模块、三个“Conv1D”模块、一个 GAP 层

和一个全连接(Fully Connected, FC)层。每个“Cov1D”模块由卷积层、BN 层和最大池化层组成。功率预

测器是一个 FC 层，将特征提取器的输出映射到预测的风电功率。 
在模型训练过程中，采用均方误差(Mean Squared Error, MSE)作为损失函数来满足预测任务，其表达

式为： 
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2
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1

1 ˆ
SN

S S i S i
iS

L y y
N =

= −∑  (15) 

式中： SN 表示源域样本的数量； ,ˆS iy 表示源域第 i 个样本的预测值； ,S iy 表示对应的真实值。通过最小化

源域预测损失，模型能够学习到源域数据中的有效模式，从而为迁移学习提供基础。 

4.2. 域分类器 

为了促使特征提取器生成域不变的特征并增强模型在跨域任务中的泛化能力，设计一个域分类器来

区分输入特征的来源域，即是来自源域还是目标域。通过对抗训练的方式，模型能够学习到更具域不变

性的特征表示。域分类器的结构包括一个 BN 层、一个 Dropout 层和一个 FC 层。域分类器的损失函数为

二分类交叉熵损失函数，其表达式为： 

 ( ) ( ) ( )
1

1 ˆ ˆlog 1 log 1
S TN N

C i i i i
iS T

L y y y y
N N

+

=

 = + − − + ∑  (16) 

式中： TN 表示目标域样本的数量； iy 表示第 i 个样本的真实标签； ˆiy 表示第 i 个样本的预测值。 

4.3. 领域自适应 

在风电功率预测任务中，源域和目标域的数据分布差异往往会导致模型在目标域上的泛化性能下降。

针对这一问题，本文采用域自适应(Domain Adaptation, DA)方法，通过特征对齐和对抗训练两种机制，最

小化域间的特征分布差异，提高模型的跨域预测能力。 
将源域与目标域的特征矩阵 SX 和 TX 分别输入到 BiLSTM-CNN-TL 模型的特征提取器 feG 中，提取

到的特征分别为源域特征 SF 和目标域特征 TF 。 

 ( )S fe SG=F X  (17) 

 ( )T fe TG=F X  (18) 

在风电功率预测任务中，源域和目标域的数据分布差异往往会导致模型在目标域上的泛化性能下降。

针对这一问题，本文采用域自适应(Domain Adaptation, DA)方法，通过特征对齐和对抗训练两种机制，最

小化域间的特征分布差异，提高模型的跨域预测能力。 
特征提取器的作用是将输入数据映射为能够有效支持功率预测的特征表示，这些特征表示不仅需要

捕捉输入数据与功率输出之间的内在关系，更重要的是在源域和目标域之间实现特征分布的一致性。为

了实现这一目标，特征提取器通过学习一个域不变的特征空间，使得在该空间中源域和目标域的特征分

布差异最小。采用 DDM 对特征空间 F 中源域和目标域特征分布相似性进行量化，并将其作为衡量所提

取特征的分布距离的损失函数： 

 ( )DDM DDM ,S TL F F=  (19) 

 ( ) ( ) ( )DDM , MMD , CORAL ,= +A B A B A B  (20) 

DDM 由两部分组成：MMD 和 CORAL。MMD 是最常用的分布距离度量，计算特征在再生核希尔伯

特空间(Reproducing Kernel Hilbert Space, RKHS)中的均值差异，其数学表达式为： 

 ( ) ( ) ( )
2

1 1

1 1MMD ,
S TN N

i j
S T S T

i jS T

F F F F
N N

φ φ
= =

= −∑ ∑


 (21) 

式中： h
 表示再生核希尔伯特空间； ( )φ ⋅ 表示 RKHS 中的映射函数；i 表示源域特征索引编号；j 表示

目标域特征的索引编号。 
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CORAL 通过匹配源域和目标域的二阶协方差统计量来减少两个域之间的分布差异，使模型能够学

习到在两个域中都有相似统计特性的特征表示： 

 ( ) 2
2

1CORAL ,
4S T S T Fd

= −F F Cov Cov  (22) 

 
( ) ( )

( ) ( )

1 1
1

1 1
1
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  
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
  = −  −  
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  

  

 (23) 

式中： SCov 、 TCov 表示源域、目标域的协方差矩阵； I 表示所有元素都为 1 的行向量。 
DDM 通过结合 MMD 和 CORAL 两种度量方法，能够从均值和协方差两个方面综合评估源域和目标

域之间的分布差异，为后续的特征对齐和模型训练提供可靠的量化依据。这种综合性的度量方法不仅能

够准确反映域间分布差异，还能指导模型学习到更具泛化能力的特征表示。 
为了进一步增强模型的域自适应能力，本文引入了对抗训练机制，并通过梯度反转层(Gradient Rever-

sal Layer, GRL)实现。在训练阶段，GRL 连接了特征提取器和域分类器，在正向传播时对特征不做任何改

变，但是在反向传播时会将梯度的方向反转，并乘以一个缩放因子。这种机制使得特征提取器收到的梯

度信号与域分类器的目标相反，特征提取器致力于生成域不变特征以混淆域分类器，而域分类器则尽可

能准确地区分输入特征的来源，以实现对抗训练的效果。通过 GRL 的引入，特征提取器能够学习生成更

鲁棒的特征表示，提升模型的跨域泛化能力。 
在 BiLSTM-CNN-TL 预测模型的训练过程中，为了同时优化特征提取器和功率预测器的性能，模型

的总损失函数可以表示为： 
 2 DDM 3total S CL L L Lλ λ= + −  (24) 

4.4. 模型评估指标 

本文采用了平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)作为指标，来对所提出的方法

进行评价。 

 
1

1 ˆMAE
N

i i
i

y y
N =

= −∑  (25) 

 ( )2

1

1 ˆRMSE
N

i i
i

y y
N =

= −∑  (26) 

 
( )

( )

2

2 1

2

1

ˆ
R 1

ˆ

N

i i
i
N

i i
i

y y

y y

=

=

−
= −

−

∑

∑
 (27) 

式中： iy 表示 i 时刻实际风电功率值； ˆiy 表示 i 时刻预测的风电功率值。其中 MAE、RMSE 越小，说明

预测精度越高；R2 越接近 1，模型拟合效果越好。 

5. 算例分析 

本文采用两个风电场 WF1 和 WF2 的实际运行数据对模型进行验证，数据采集分辨率为 15 分钟。

WF1 的数据涵盖了 2021 年 3 月至 6 月，WF2 的数据涵盖了 2021 年 6 月，在本研究中，成熟风电场 WF1
作为源域，WF2 则被设定为目标域。数据集划分方面，训练集包含全部源域数据及目标域数据的前 90%。
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目标域剩余 10%数据构成测试集。模型训练与预测均采用长度为 7 的输入序列。 

5.1. 数据分解与重构结果 

为提升数据质量，首先对源域历史风电功率序列进行分解，采用沙猫群优化算法(SCSO)对 VMD 的

参数进行优化。算法参数设置如下：沙猫种群数量为 10，最大迭代次数为 30，变量数为 2，惩罚因子α

区间设为[100, 2000]，模态分量数 K 的取值范围为[3, 10]内的整数。从图 3(a)可以看出，SCSO 在进化四

代后逐渐趋于收敛。图 3(b)所示的惩罚因子优化曲线表明，在进化至第四代时获得最优惩罚参数为 100。
同时，图 3(c)显示 IMF 的最优个数为 4。对目标域训练集数据采用相同的 K 和α 进行分解。源域的 IMF
分量如图 4 所示。 
 

 
(a)                                                (b) 

 
(c) 

Figure 3. Schematic diagram of the VMD optimization process based on SCSO 
图 3. 基于 SCSO 的 VMD 优化过程图 
 

 
Figure 4. Decomposition results of historical wind power VMD (source domain) 
图 4. 历史风电功率 VMD 分解结果(源域) 
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通过计算所有 IMF 的 SE 对历史功率子序列进行重构，以便更好地量化时间序列的复杂度。表 1 列

出了各 IMF 的样本熵。 
 

Table 1. Entropy of subsequence samples 
表 1. 各子序列样本熵 

源域 
IMF IMF1 IMF2 IMF3 IMF4 

SE 0.0386 0.2084 0.3532 0.0679 

目标域 
IMF IMF1 IMF2 IMF3 IMF4 

SE 0.0424 0.2541 0.4645 0.5077 

 
根据表 1 所示，对于源域数据，IMF1 和 IMF4 的样本熵值显著低于其他 IMF 分量，说明其复杂性和

波动性较小，表现出明显的趋势特征，将其重构为趋势序列；IMF2 为低频序列，IMF3 为高频序列。对

于目标域数据，IMF1 样本熵值较低，可视为趋势序列，IMF2 为低频序列，IMF3 和 IMF4 的样本熵值远

高于其它 IMF 分量，这表明其具有较高的复杂性和波动性，但未呈现出明显的规律性模式，因此将其重

构为高频序列。 

5.2. 分解有效性验证 

为验证分解的有效性，本研究对三种预测模型分别应用了 VMD-SE 算法进行数据预处理。表 2 展示

了各模型在数据分解重构前后的单步预测结果。 
 
Table 2. Comparison of decomposed and undecomposed prediction performance across models 
表 2. 各模型分解与未分解预测性能的比较 

预测模型 MAE/KW RMSE/KW R2 

CNN-TL 4499.49 5536.94 0.9178 

VMD-SE-CNN-TL 3681.38 4766.41 0.9395 

BiLSTM-TL 4590.43 5330.34 0.9244 

VMD-SE-BiLSTM-TL 3337.94 4318.38 0.9489 

BiLSTM-CNN-TL 3264.54 4184.39 0.9534 

VMD-SE-BiLSTM-CNN-TL 2148.02 2793.13 0.9792 

 
为验证分解的有效性，本研究对三种预测模型分别应用了 VMD-SE 算法进行数据预处理。表 2 展示

了各模型在数据分解重构前后的单步预测结果。结果表明，CNN-TL 模型的 MAE 和 RMSE 分别降低了

818.11 KW 和 770.53 KW；BiLSTM-TL 模型分别降低了 1252.49 KW 和 1011.96 KW；BiLSTM-CNN-TL
模型分别降低了 1116.52 KW 和 1391.26 KW。上述结果表明，VMD 分解算法能够有效降低原始风电功率

序列的非平稳性和复杂性，提高各模型的预测精度。 

5.3. 不同预测模型性能对比 

为进一步验证所提出方法的有效性，将其与四种主流深度学习预测模型和基于模型的迁移学习方法

(源域预训练 + 目标域微调)进行对比分析。其中，基于模型的迁移学习方法采用与本文方法相同的模型

结构，将其命名为 VMD-SE-BiLSTM-CNN-Model-based TL。同时还建立了 VMD-SE-CNN-TL、VMD-SE-
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LSTM-TL、VMD-SE-BiLSTM-TL、VMD-SE-LSTM-CNN-TL 等一系列对比模型，以全面评估所提方法在

风电功率预测任务中的优越性。 
由表 3 可知：在与四种主流深度学习预测模型的对比中，VMD-SE-BiLSTM-CNN-TL 在 MAE、RMSE

和 R2 三项指标上均表现最佳，其预测误差最小、稳定性最强、拟合度最高。与表现次优的 VMD-SE-LSTM-
CNN-TL 模型相比，该模型在单步、两步及三步预测中，MAE 分别降低了 464.96 KW、345.62 KW 和

1264.86 KW；RMSE 分别降低了 1031.26 KW、570.43 KW 和 1257.03 KW；R2 则分别提升了 0.0181、0.139
和 0.0383。上述结果说明，双向结构相较于单向结构能够更充分地提取序列中的深层信息。相较于基于

模型的迁移学习方法，本文提出的基于特征的迁移学习方法在单步、两步及三步预测中，MAE 分别降低

了 250.57 KW、232.73 KW 和 801.48 KW；RMSE 分别降低了 301.17 KW、689.11 KW 和 689.11 KW；R2

则分别提升了 0.0047、0.0089 和 0.0195。原因可能在于源域与目标域之间存在显著的分布差异，基于模

型的方法因其浅层网络参数被固化，限制了模型对目标域特有模式的适应能力；而基于特征的方法，通

过显式的特征空间对齐，有效缩小了域间分布差异，使模型能够学习到更具泛化性的特征表示，从而在

目标域上表现出更优越的预测性能。 
 
Table 3. Comparison of evaluation metrics across different models 
表 3. 不同模型评价指标对比 

模型 
MAE RMSE R2 

1 步 2 步 3 步 1 步 2 步 3 步 1 步 2 步 3 步 

VMD-SE-CNN-TL 3681.38 4922.17 5276.06 4766.41 6238.00 6417.24 0.9395 0.8945 0.8893 

VMD-SE- LSTM-TL 3396.75 4610.38 5374.63 4630.35 5602.55 6567.12 0.9429 0.9140 0.8840 

VMD-SE-BiLSTM-TL 3337.94 4034.14 4840.56 4318.38 5024.54 5840.28 0.9489 0.9320 0.9078 

VMD-SE-LSTM-CNN-TL 2612.98 3658.63 5072.53 3824.39 4789.03 6273.84 0.9611 0.9377 0.8938 

VMD-SE-BiLSTM-CNN-
Model-based TL 2398.59 3545.74 4609.15 3094.30 4592.34 5705.92 0.9745 0.9427 0.9126 

VMD-SE-BiLSTM-CNN-
TL 2148.02 3313.01 3807.67 2793.13 4218.60 5016.81 0.9792 0.9516 0.9321 

 

 
Figure 5. Prediction results of different models 
图 5. 不同模型的预测结果 
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为更直观地展示各模型的性能差异，图 5 绘制了各模型的预测曲线。综合分析表明，该模型不仅作

为预测模型发挥作用，更承担了关键的特征提取任务：BiLSTM 模块能够有效捕捉时间序列中的长期依

赖关系，而 CNN 模块则增强了对局部特征与高维模式的识别能力。两者的结合充分发挥了混合模型在多

层次特征学习方面的优势，为整体预测性能的提升奠定了坚实基础。预测误差结果表明，混合神经网络

模型在预测精度方面均优于单一神经网络模型。 

6. 结论 

针对新建风电场小样本条件下功率预测精度不足的问题，本文基于迁移学习和原始数据的分解重构

提出一种风电功率超短期预测方法，根据仿真实验结果，验证了模型的有效性并得到以下结论： 
1) 通过对历史风电数据进行分解与重建，可降低原始数据固有的波动性和随机性，为风电预测模型

提供更平滑、更规律的输入，从而提升预测模型的准确性和稳定性。 
2) 相比较于单一的预测模型，合理组合不同的模型可以实现优势互补，提高模型的鲁棒性与可解释

性，减小预测误差，提高整体预测性能。 
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