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Abstract

To address the issue of insufficient power prediction accuracy in newly constructed wind farms due
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to limited historical data, this study proposes an ultra-short-term power prediction method based
on feature transfer learning and data decomposition reconstruction to enhance prediction accuracy
under small-sample conditions. First, historical wind power data is decomposed using variational
modal decomposition and reconstructed into groups based on sample entropy calculations. These
groups are then combined with meteorological data on wind speed and direction to form input fea-
tures. Second, leveraging data-rich source domain wind farm data, a BILSTM-CNN is employed as
the base prediction model. This is integrated with maximum mean difference and correlation align-
ment as novel distribution divergence metrics, minimizing feature distribution differences between
source and target domains. Concurrently, adversarial training principles are introduced, employing
a domain classifier as the adversarial component to distinguish source-domain from target-domain
features. This compels the feature extractor to generate domain-invariant features, thereby ena-
bling effective knowledge transfer of source-domain wind farm characteristics to the target domain.
Experimental results demonstrate that the proposed method significantly improves wind farm
power prediction accuracy under data-scarce conditions, offering novel insights for power forecast-
ing in newly constructed wind farms.
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1. 5|8

2023 FHGETHEEE R, P EX KRR I RHLA R LN 4.4 0T 5, BLEFEFIEK 20.7%
[1]o REAE N —FRBRIA R AT A REYR, R —BE&ZRE. BT REER 2 BN S B R
FEMEZE . WIS, KRR XU I G0 1 FE R A5 22 AR T8 IS AT IO ME R (2] THERA FR XU FE T 8 T o)
TEARRE AT EE L CREE R RIS AT 2 e Ae e B B R HERMER . R, Br@ g s
AT VUL, MRS AT M B BE AR R AN A, M DU ST sk T PR TS 2, 3 B8O A 300 T 2 0 ks P T
A SEBR R R BRI, AR NEEAS SR A T B KR D R N VAR 7T, T 3R T KU 3 Y T
R D0 R o 3 P A DR FL X P S AT BT B 5

R T ZE T T7 V8 W] 53 R TTVE . G TR N R U7 . B D7 N T AL T R e
KRS G5 B 2 A AR, Ji s 30U R S Tk (Numerical Weather Prediction, NWP){E 4 FEAR A 1)
BN, AV TTEAEUT P s B, HEATs Z R . eAh, BT RIS R R AR Z
P B SRS T I SR At v AP A TR P FRT A Y S L vk P2 D7 T T e Bk R 3. Gt I ik R B @ R K
AT ) 3 55 T S e 2 TR R S 5 A TN AR o FH 0 75 - B4 E (el A A2 31 4 (Auto Regres-
sive Moving Average, ARMA) [4]. H FIAF 43 # 3" ¥J(Auto Regressive Integrated Moving Average Model,
ARIMA) [5]. R/RZUEPR[6]5F. N TR RERIITIEAEAL B AR G AP AS B N BAT R BURS Z
e M TR G AT 2 N . 25 BRI A 24 X 4% (Convolutional Neural Network, CNN)7E 2 EUR
BRSSP 7 T A3, SRR 7 A A BB T H I ONN R, s o) 0 F L Th 28, RIS T R
TP EE S KA 102 M 2 (Long Short-Term Memory, LSTM){E MG PR 1 28 I 45 A2 44, JuRF 16 1 145 L
Aok AR LIS (8] 51 AR AR 207 TR B, JUHE AT XU D A< T o (R i e gl 8. SCRR (8%
Xof i b K ) sRipe s BRI, St 1 — Mk T Bl 70 i A 5 DU AL LSTM TR & THUIAE
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28, I B A N EHE e Sh I RS T SR M R . B, DA 7SI R] R AIE B X A, Sl
7K HAE 2 X 4% (Bi-directional LSTM, Bi-LSTM)F1 X [ [ 142 f& ¥4 ¥ 7 (Bi-directional GRU, Bi-GRU),
TSR B A% [ I 478 $ N 1) P 70 B I ) RS ) A0 2R, SCHBR[9 11 H] Bi-GRU SR S8 XL 37 (0 T 22 T30
A TE NN T E R o3 BT BUX IR (1) G R AE, FEEE &) XA 22 AT A1 K-means++335%5 K AJHL
BEATHRIS, AT AF R B R A R R sg e, MNP m TS BE o H IR 7 VEE RO 56 4% (1 X L 3 R 3L
RIF, WTHradR iy, W o= @i soin R, X770 B4R v Re 2 2 R

R T R X — A, AR T 22O AR o6 B 4% (Generative Adversarial Network, GAN)
S R AR R A BB o SCHR[1018& H T —F 2T gt A A= ok o 0 4% () B dis A= i Y, B e adst 2% )
LS (032 B At A B e o R, DA SR I SR B S B, AT A R /N AR S A1 T 1 XL HEL ) S 00 1)
SR, A2 S 110 o v FEE RO T A p R 28 5 1) A AR 2 ) )T 2, GR35 e e T 4 SR A v a1k

I F% 2% 2] ] DL RS A 3= 5 ISR , 3 2 ) B EnRT # 311 5 2 B ARG TR i B AR,
DA AR AR R IR 1] R0 SCHR[ 11 38 R XU AL PRI RS B BRAIR 1 B A KT XS A 3 77 56 B3 1) 4t
FEEE ;s SCHR[12]R BRI 5 >) 78 AN 400 5 B0 B AA 1 17 100 T S Y5 RUATL IR R =2 360 F I 8 2 ) A 3k
L HIA LS WA I 2RI 4 R, MRS HAS L SCBRII31RA “IIER - ol seng, I H
IEH RAF AR A TR R TN SR, PR R AR R AT A PRAE A AT 0, X B2 528 T Ao
KA W R LT 2R TR B2 o AE Bk SClRe,  FIZR - ROR 7 T Se T % 0 id 18, %07 VBRI
JEE R 228 ) 2% vh REAT AR R RS AU 20 T o L 2 H bt X L BB A AR R B ELRIER S H A S o A A7
FEZ eI, 25 B 15 3 i B HE LR A5 B AR A2 AL ROR

BEXF LA B A, AR T B TRE I A% 2 o FECHE J3 fide SR 1) XU H D SRR A A T v . T
T F 25 43 #4543 iR (Variational Mode Decomposition, VMD)FIFE A (Sample Entropy, SE)X [Jj 52 XU HL I 2
AR AT MR, JREEGRGE U R B A AN RRE s B KA AL - BRI 253 E
Fo2a S R, 44 B KT 34 2% 5 (Maximum Mean Discrepancy, MMD) A1 %%} 5% (Correlation Alignment,
CORAL)E S i 3 A 22 S FE &, S/ MR H AR 8] IRRAE 20 A0 22 53 I AR ZR AR, (R Af4s
TEFR IS A AN KRR, SCILBS IR RE R, ST /FEAR SR AR I HL I D 2 i v it 1 . it 5
FE SRR E 2 SV PN T V34T LU, 38k 1 A SOV A R
2. [E]REHHIR

BAFE P 5 0 R W AR Dy . Ron N Dy = {XS,P(XS )} o Horh X R TR I RHIE
(), ELFE KU XU 30 DA S 48 3 4 fife B ) i P g S R D 26 1 R B S5 ARRAIE, X SRR AL i T 22 4EARFAIE
], BT RIS ATIRE MR, P(X ) R T PR n) & A G2 o0 A o PRI AT 5%
T, = {Ys,fs ()} FEIS 2 STRHIE X SHRAE g (B TR UL Zh ) Z R B G 2R f (1), M — N Ret
JREAFA IO X R T AR AR A

HErE D, XY, £RA D, ={XT,P(XT)} o HRHIEZA) X, A SURSAR LR RHAE, BT
WEALE ., WRRSEER, HARERHER R0 P(X, ) SIREAAEECRIARE . B RES 508
BHAES—3 HHTHEEAR, BRIISGERNRBCRTRAMEAE ., KRR W%, il
FRAEL A o D0 SRR H AR R AR 20 A0, SCBIANIRIE RS,  DASR T B AR i 2 i 1t e

3. RREEN S BEER
3.1. £F VvMD BEE S R
ARSI RAE N —Fh B iE N AR T Fa(E S AL 53, Beus1E R0 AR TR A 24540 FE v 1) i s 300 B 5 4
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VRS . 1207V I PR A RS B = e AR 200, a5 B AR 3800 X L T 2 2 8
#ﬁlﬁﬂﬁ"ﬁ%’:ﬁﬁﬁﬂﬂf%%fiaXﬁﬁi‘%j‘/\%o VMD 173 fift i F2 ] @ik SR A dn =X (1) B 1R 20 R4S 53 i)
ARSI

j (1)

KA D, Rk sk EG 0, Bt FEE T @i S NFAE B H T A4, HRE() AN TELI WA 3 1) 43,
AR A FTFEQR):

: 2

k=1

KA ARRHMMHTET; o AZIRETIHET . 8d ADMM 2B EHiu, » o M1, 0G)~5)FR:
(o) it (@) 1)

A+l )= 2
. ( ) 1+2a(a) ) ®)
n+l1 J' C()|u (a))|
o = @
jo |uk a))| do
inﬂ(m):in(w)w()e(w)_;ay“(w)j )

e @ (o), @ (o), Ho), BA(0)4BR(6), (), x(6)FA>) FHENA S,
3.2. EF SE FFIIER

FEAIR A& — i B T30 ABLJG P IR 8] P 51 B2 B A T vk o REARI I R/IMREE 1IN TR) PR S0 S 2% 1,
AMERE, RN A RO, [ INAR, FEARSMEARAC, IR (] Fp 21 i MR PR . X
THEFH X ={x, %y, %y} HREARR TR 7 T

o Bm+1 ((Z)
SampEn (m,a,N) = ln{—B"’(a) } (6)
K NFREIRKE, o FoRBIERAD, m ARNLGEE, B (a) M1 B (a) /S WIFRIEMRNLERE m+1
A T8 R VTG S A 10 ) B0 2 i, HRak =0

B (@)= 2 B () (M
Bm+l (a):—zBmH( ) (8)

Nmtl
FEARRSES m Mo BRMEA XK, (ELBRRAF, mlHREN 283, Ha=(010~025)s, SHE
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LM PN BbREZE . ACT I m =2, a=0.1S o XPPRFE B AL RO R I 18] 5 510 B8 1) B2 4
U5 CAHAEM AR AR 14].
4. BETIBFINME I RFUREHE

ASCHRH T — AT VMD-SE-BILSTM-CNN-TL 5 8 f) XU HL 37 Dh A S50 ik, 38 3 M) it = & 1Y)
PRIBR LI 2 SIS, R SR RO RS 28 H AR REAR U7, 385 H ARISOX A3 TR Pk g . T30
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Figure 1. BILSTM-CNN-TL prediction model architecture
[ 1. BILSTM-CNN-TL HuUl#& R 254

BiLSTM-CNN-TL 5% i &5 /3 4 k: — & BILSTM-CNN ZERBRERY,  F T 58 B L T R 300 1) S il
{145, GFERESRIURI DI T R 28288, VBB R T X 0 B AR AR i ok IR . 7E VISR
FEr, SRR EIE N J7i%, il /A6 % 7 & & (Distribution Discrepancy Metric, DDM)#: /MU RIS A H Fx
Wz W RFIE o A 22 5, I SIS BTN ZREAR, RS0 2888 DX 0 IR B FRIARRAE , (R (8RR AIE F X
A I ANAR (R, TERRAE 2% 18] b SEEE ISR H AR A AR 5, S RS TS
4.1. BILSTM-CNN s

7ERF VMD-SE J57%:53 fif S A5 2 KB I3 I A SRS =0 e)E, BHS5RE. KmF
FIFLRIAL G, MBBARHE Xo ZFAER 85 28 K D26 7 51 o AN (R 1) RS R ke ik, 5 XU
JR )5 BB M0 R L AT AR B AR AR A G, SRR R T — AR P R s A 5 A IR Bl DR K 1)
% YERFAE 2 TR), TR B 6% B AT i b2 A R R T 5 5 R U 2 R IR E R R R, i b R
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XEARRINRAAC KR RE 5 T HERA I . SRR 5 A2 WS X R ERIBURFE,  JFR LML 21 XU B
FME y e ZBERER A TIRG2EM, 455 1 CNN A1 BILSTM L%
LSTM & —Fi BA T NI R IROG PR 22 P 2%, =N 195 8 70 Y TP A5 S i N it RE s

BRI WE 2 s
h(t)
t—1
et =1~ o
f(©)
h(t—1) A L
x(t) h(t)

Figure 2. LSTM network architecture diagram
2. BILSTM-CNN-TL FR 81454

BT A48 RNN, LSTM 2 [ 14 5 GRS Y FEDS1E, A RGO 7R EE W R AR E R . &«
BT a9~ (14) s

fi=0c(W, [h .x]+b,) ©)
i, =c(W[h_.x]+b,) (10)

0, =0 (W,[h_.x]+b,) (11)

¢ =tanh(W,[h_.x,]+b,) (12)
¢, =f®c,  +i®F (13)

h, =0, ®tanh(c,) (14

K fi i Mo, XARBETT. MANTTFRH IRt W RRBE; b RRME: o Fn Sigmoid
TEPREL  tanh SEWE PREL.

TERL A W 2 hkg b, A5 B2 AT )5 I 7 G i o RTT, BT B I DRT 350 Tl a8 SR 2 A =
BIRZMA, ASCRH BILSTM M AYHE IF (7] 15 S [y B (AR 0C &R, DASEII B IR 2 IR IR AR A S L o

CNN HA R AE LA RE SR IR 77, AT DA R IO e At 16 R R . HAZ D 85 i B S =
Al )=, did 2 )2 A8 B HES SN SRR 7 A BORE IR BERRE SR B . it — DI 2 e, BB g
A T #it &4 —4k(Batch Normalization, BN)JZ 14 ¥ #it4t.(Global Average Pooling, GAP))Z, H T id
W W ST I H 5 Tl R, X FR 2 )2 IR 2R TS5 CNIN ZE IR 7 250 A B rh R 1 28002 L) 308
FHE IR FFBAR I FIE R A

BiLSTM-CNN ZEAHAR 1 RFHESR IS 05— BILSTM B, =4 “ConvID” i, —/> GAP 2
F—A~42i%EHz (Fully Connected, FC)/Z . 4~ “CoviD” Hh lEFRZE . BN EMH KA ZEH . TR
MFSR—AFC JZ, HHRFAESR IS Ry th Bl 555 38 5000 1) XL D 28

TER I 2Rt fE b, SR 3475 1% 2 (Mean Squared Error, MSE)/E 45t 2k p& HOK i & FIME 55, HERIA
X
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1 &

. 2
LSZN_S,Z:]: yS,i_yS,i| (15)

A N BRI SR D, FORIIEER | MREARIITINME:  yg, R N RS fE . 8 R/ME
PRI, R BE G 7 >) BIFIAEE 1A RS, IO IER 27 2] R ik S At

4.2. HHAE

N T AR R AE SR A AR B AN AR (R R AIE I 1Y 5 R 7R B I 55 Th iz Ak e 0, Bk — AN g 2R 28k
XA N FRIE SRR S, B2 SR FRE0E & H AR @ xt Hrilgem oy, A e s 2 5] 215 B AR
PERIRHIER TR o 37 KA A 45 — 4 BN JE. —> Dropout ZHI—A> FC 2. /3 KA K R ECH
T RIS R R, HARIE A

1 Ng+Np

SNEN, 2 [nilog(3)+(1-y)log(1-3,)] (16)

K N BN BVREEARNEE: § 258 i MFERR TSRS P, 85 i NFREARR B .
4.3. B BIERN

FE R D) R BEAE 55 o, RN H BRI i Bt o0 A 2 S A A 2 S BURRLAE FAR L (92 ALV RE T F%
EbXehiX — i, A SR 48 & B (Domain Adaptation, DA) 71, B RFIERS SRR HLINSRB AL, 5
AT AR S AT 22 5%, SR st 2R 2 S PN e

PRI H ARSI R X A X 237 A2 BILSTM-CNN-TL AU RHMESRIES G, ) 4RI
BBIRFAE 7> A IR Fg A EARRHE F, -

Fy =G, (X;) (17)
F =G, (X;) (18)

FE LT 28 FIOAT 55w, WRIBORT BRI a7 AT 22 S A1 A 2 S BB AE H ARl b vz Ak B T R
BESHX — ), A0SR P38 B i b (Domain Adaptation, DA)J5i%, B IHBFEXT F AR LI R P FIRLE], %
NIRRT B REAE A 28 5, i e A 28 ) T e

FEAESEEAR I 2 K i N HHE WU S B A RO RF D) 3 T I R IE R, ISR R AR MY R 22
P NEE 5 DR 2 M N AE R R, B8 B LRI H ARz (7] SEEUARFAE 2 A (1 — 8. N
TEIIX— HAR, REOESRECERE I 5 5] — NSNS AR A3 R), A A3 78 1272 ) JRS0RT H AR I REAE 23
Mz /M. KA DDM X RHEZS ] F rfsoR H AR R e o A A AT Bk, R4 AR i &= i
ECRFAIE 1) 3 A BE 5 1045 2K R 5

C

Lypy =DDM(Fy, ) (19)
DDM(A,B)=MMD(A,B)+CORAL(A,B) (20)

DDM Hi #3434/ : MMD #1 CORAL. MMD J& s Fl 650 A BE 25 FE &, v SRFAEAE AR %A /R AH
¢ 2% ] (Reproducing Kernel Hilbert Space, RKHS)H IIME 22 7, HEZRIEZN:

Yo 2o

s =l T j=1

2

MMD(F, F, ) = 1)

H
At A, R R0 ¢(-) Fm RKHS PR RS | RREBER S %5 j %R
HARBAF LR 51 5
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CORAL i id VT EC IR AN H AR — B ¥ 75 ZZ G0 vH ok b i M Z IR Al 22 57, (A R e g =7
S BIEPI N A G TR B R IE R R -

CORAL(Fy, F; ) =—|Covs — Cov, . (22)

yE -

A} (1"Dy) (1" Dy )J

S
1 1
Cov, = N (D D, - N, (ITDT )T (ITDT )]

Xh: Covg + Cov, FoR U HAREIII T ZHRE; 1 FoRPrA T R#N 1 KATRE.

DDM #1445 & MMD 1 CORAL PIFH & T 1%, REMS A ISAE AN 77 22 P AN T7 T 45 A VAl IR AT H AR
R IR AT ZE SR, N JE SERRFAEXT S A R I SRR BT e A IR . XM SR & VR B B D7 I A X RE
i HETA S WU IR) 70 A5 72 7, I RESR SR 2 2] B SE B2 AL RE ) IRHIE R R .

N T HE— ISR B G RE ST, ASCEIN TR HUI SR, JRIE R B S8 = (Gradient Rever-
sal Layer, GRL)SEHL. fEIZRMT B, GRL JERE T RFALIRECER AR 885, 7E I 13 A% 3 N P RAAE AR fT 25
A%, AHRAE R AR SoR BRI T [ S, IR LA— NI AL 5o I AL ] (6 755 AL 3 HCES WA 3 O
FEAR 5 50 FAR ) H AR %?ET%EX%%@UJ?EHEWK’}E%EL)‘Iﬁ'ﬂ%ﬂé"%’é%% M35 53 3845 W)
RETHERR I IX 70y NS AE ARV, ASEBUS I ZRi R Jlid GRL Y51, FRAESRHUER RE S 5] AL iR
BFRIVRERR, SRTHER (I (L fE

£ BiLSTM-CNN-TL Fil A gl Zxid Rt , O 1 RIS AR ARFAE S B AN Zh S B g vk g,
RSE N CINYESZVSE

Covg = [DTD

-1
23)

Ly =Ls+ A Lypy = 4L (24)
4.4. EERIEHR
AR TP 45T R Z(MAE) . Y77 R 1% 2 (RMSE)F 8 REUR)E NFEFR, KX ATHE H 0 5 1

BTV
1 N
MAE =—Y[9, - ». 25
N2 ¥ (25)
14, . 2
RMSE =, [—>(5,-») (26)
N i=1
N 2
z(yl yl)
R?=1-& 27)
2
z(yl yt)

ey, Rom i N ZISCPR L ZhRAE s P, o i I ZIT00 K KRB D) 3B . Hor MAE. RMSE /), #tH
TRMAE s RBRERIT 1, BORE RORBRES .

5. Bl

ASCRH AR WFL Al WF2 B SEFRig /T80 s A 3E AT 50, Bl RED HER N 15 8.
WF1 MR T 2021 423 HZE 6 H, WF2 AR T 2021 4 6 H, [EAM T+, M#XHZ WF]
YE IR, WE2 W4 6 e o B bRl . Bl SER 2 5T, 2R 05 A BR VR s A B brig 3 i aT 90%.

DOI: 10.12677/aepe.2026.141004 30 ML) 5 REYR L R


https://doi.org/10.12677/aepe.2026.141004

BH

H AR A 10% 80 A4 e ik 4 . BRI 2R 5 TN SR R BN 7 ISP 91 o

5.1. IEPMEEMER

PTG BT, SR S A R D F AT A, RO S (SCSO) X VMD ()
ZHGEATIAG . BESHORE W R YRR EEE N 10, SOERRECH 30, BEH N2, BIHT o
X [A] 152 4[100, 2000], A &R K HUE TSR3, 10N 5, MIE 3(a) T BAE i, SCSO 7EiE1k Y
ARG IZEE TS # 3(b)FrsiE TR TRt 263 8, 7Edkb 2 56 DUARR SR AR 1E ST 2408 100,
[FS, [l 3(c) o IMF L0 4. %0 B ARSI SR A 8035 R FAR R 1K) K F o 34T 73 fif . IRIZUH) IMF

SrENE 4 PR

SCSOBEAL 25 TET R AR Abt 72 il 28
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Figure 3. Schematic diagram of the VMD optimization process based on SCSO
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Figure 4. Decomposition results of historical wind power VMD (source domain)
E 4. HEXBINE VMD 5L R (R
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B A

B E T IMF (1) SE X SR Th R TR BT ERK, DUEFE s EAL R B PP M E 2. % 15
H 7 & IMF FRIREAS

Table 1. Entropy of subsequence samples

F 1. BTN

-~ IMF IMF1 IMF2 IMF3 IMF4
o SE 0.0386 0.2084 0.3532 0.0679
) IMF IMF1 IMF2 IMF3 IMF4

H Frisg
SE 0.0424 0.2541 0.4645 0.5077

a2 1 FroR, XTSRS GE, IMF1 A IMF4 FOREASR(E B35 T HAh IMF 438, 1500 22 A2 A
AR, R R EARE, KL ERNEA T IME2 NESFS], IMF3 NEHTH. X
T HArEESE, IMF1 FEARBERAR, ISR TS, IMF2 MESUF4], IMF3 fl IMF4 FIFREA IR (E T
T HE IMF 0 &, XEPHEAERENE RSN, EREIH SR a s, Kk HE
LAyt 2
5.2. PREBVIEIEUE

RIGAE S R R, ASHE SO0 = R TS AL 43 i S H T VMD-SE Sk R AT B iAbEE . 46 2 JROR
T BRI R Sy A AL R S AR BT T 45 R

Table 2. Comparison of decomposed and undecomposed prediction performance across models
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Table 3. Comparison of evaluation metrics across different models
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Figure 5. Prediction results of different models
& 5. NEHREAFUNLE R
DOI: 10.12677/aepe.2026.141004 33 ML) 5 REYR L R


https://doi.org/10.12677/aepe.2026.141004

B A

NHEEMM R AR Ve REZE R, B 5 R SRR I i 2. SR TR, IR
NP R R AR A, SERAE T SR RHIE SR UL 55 . BILSTM. AR RENS A R SE i 18] 7 47 b AR
R AR, T CNN BLHRE5E 10 J5 SR RHIE S m4E R IR A BE /). PN ZE S T kA% VIR EBMAE L
JERHIE S 2 TS, W BEAR TN L BE AP TH B8 T MESEHEAtl. PR Z 45 KRR, IR AL
RS AE TS 2 77 Th A0 T B — e IR 2 A 2

6. &t

BN T KL 7 /N REA SR AT T D A TS FE AN R O R, AN SO TIT A% 2 2] AN SR A6 B8 1 70 il A
S — R R D SR B I E, RO SRS R, R R A R IR B L 4 iE

1) JE R P SRR B AT 0 g5 S, AT AR iR s [ A PR s AN ALE D KB T A A
RBCEETE . ERURIAIN AT S T T ARSI ) s P AR E 1

2) ML T MR, &G A F R AT CLSCEIUIE S AN, S i A p B bR 5 ] AR
P, N TRIR 72, 5 e R A T A R

HE&mHE
B R BRI 4(62473151) R REEEABHIT Y 55 3% & 105 4:(2025JC003) ZE B i H .
SEHk

P 5 Be R Ry R A 2023 4E4x [ LD DAV G- SET]. i i RHE S 3R R, 2024, 40(1): 95.

FFE, XIEE, PhEMS, 25 FT7F EIESER CNN-GRU-LightGBM #5570 45 U X HL D S F50I 1], A B A 224K,
2025, 46(1): 105-114.

[3] Yang, T., Yang, Z., Li, F. and Wang, H. (2024) A Short-Term Wind Power Forecasting Method Based on Multivariate

Signal Decomposition and Variable Selection. Applied Energy, 360, Article ID: 122759.
https://doi.org/10.1016/j.apenergy.2024.122759

[4] Zhang, Y., Zhao, Y., Kong, C. and Chen, B. (2020) A New Prediction Method Based on VMD-PRBF-ARMA-E Model
Considering Wind Speed Characteristic. Energy Conversion and Management, 203, Article ID: 112254.
https://doi.org/10.1016/j.enconman.2019.112254

[S] Aasim, Singh, S.N. and Mohapatra, A. (2019) Repeated Wavelet Transform Based ARIMA Model for Very Short-Term
Wind Speed Forecasting. Renewable Energy, 136, 758-768. https://doi.org/10.1016/j.renene.2019.01.031

[6] Chen, K. and Yu, J. (2014) Short-term Wind Speed Prediction Using an Unscented Kalman Filter Based State-Space
Support Vector Regression Approach. Applied Energy, 113, 690-705. https://doi.org/10.1016/j.apenergy.2013.08.025

[7] Wang, S., Li, B., Li, G., Yao, B. and Wu, J. (2021) Short-Term Wind Power Prediction Based on Multidimensional Data
Cleaning and Feature Reconfiguration. Applied Energy, 292, Article ID: 116851.
https://doi.org/10.1016/j.apenergy.2021.116851

[8] MR, TEih, 5 JET RGE-TRH G R E AN X R IR BI]. KBHEESHR, 2024, 45(11): 418-426
[9]1 &K%, WRME, FEE. HBEREMWEARHER R B IR A AT, KBHREY:H, 2024, 45(12): 220-227.

[10] Meng, A., Chen, S., Ou, Z., Xiao, J., Zhang, J., Chen, S., et al. (2022) A Novel Few-Shot Learning Approach for Wind
Power Prediction Applying Secondary Evolutionary Generative Adversarial Network. Energy, 261, Article ID: 125276.
https://doi.org/10.1016/j.energy.2022.125276

[11] Liu, X, Cao, Z. and Zhang, Z. (2021) Short-term Predictions of Multiple Wind Turbine Power Outputs Based on Deep
Neural Networks with Transfer Learning. Energy, 217, Article ID: 119356. https://doi.org/10.1016/j.energy.2020.119356

[12] Tang, Y., Zhang, S. and Zhang, Z. (2024) A Privacy-Preserving Framework Integrating Federated Learning and Transfer
Learning for Wind Power Forecasting. Energy, 286, Article ID: 129639. https://doi.org/10.1016/j.energy.2023.129639

(131 M, BRES, S, 55, LT IER 5% > A0 G it % R % 1 S X R D2 TN T]. 0 R EE E 3hAk,
2025, 49(16): 85-95.

[14] Su, Y., Wang, Z., Dong, Z., Hua, X., Ye, T., Song, Z., et al. (2025) Frequency-Aware Ultra-Short-Term Wind Power
Forecasting Using CEEMDAN-VMD-SE and Transformer-GRU Networks. Energy, 338, Article ID: 138715.
https://doi.org/10.1016/j.energy.2025.138715

— —
N =
_

DOI: 10.12677/aepe.2026.141004 34 ML) 5 REYR L R


https://doi.org/10.12677/aepe.2026.141004
https://doi.org/10.1016/j.apenergy.2024.122759
https://doi.org/10.1016/j.enconman.2019.112254
https://doi.org/10.1016/j.renene.2019.01.031
https://doi.org/10.1016/j.apenergy.2013.08.025
https://doi.org/10.1016/j.apenergy.2021.116851
https://doi.org/10.1016/j.energy.2022.125276
https://doi.org/10.1016/j.energy.2020.119356
https://doi.org/10.1016/j.energy.2023.129639
https://doi.org/10.1016/j.energy.2025.138715

	基于特征迁移学习和VMD-SE的超短期风电功率预测
	摘  要
	关键词
	Ultra-Short-Term Wind Power Forecasting Based on Feature Transfer Learning and VMD-SE
	Abstract
	Keywords
	1. 引言
	2. 问题描述
	3. 原始数据的分解与重构
	3.1. 基于VMD的数据分解
	3.2. 基于SE的子序列重构

	4. 基于迁移学习的风电功率预测模型构建
	4.1. BiLSTM-CNN基础模型
	4.2. 域分类器
	4.3. 领域自适应
	4.4. 模型评估指标

	5. 算例分析
	5.1. 数据分解与重构结果
	5.2. 分解有效性验证
	5.3. 不同预测模型性能对比

	6. 结论
	基金项目
	参考文献

