# 基于优势方位RGB融合的低序级断层识别技术

#### 王若腾

中国石化胜利油田分公司物探研究院,山东 东营

收稿日期: 2025年4月18日; 录用日期: 2025年6月17日; 发布日期: 2025年6月27日

# 摘要

低序级断层的识别对于发现剩余油有利富集区、提高油气采收率具有重要的研究意义,渤南地区北部断 裂系统发育,常规叠后资料上低序级断层的反射特征不明显,识别精度低,制约着该区域的勘探开发。 针对以上问题,文章基于五维地震数据,划分优势偏移距和方位扇区,结合现有地质认识,优选断层法 向方位,并通过RGB属性融合技术,有效提高了低序级断层的识别精度,明晰了断层展布特征,为研究 区的构造精细描述和滚动开发提供了技术支撑。

# 关键词

OVT数据,RGB融合,低序级断层识别

# Low-Order Faults Recognition Technology Based on Dominant Azimuth RGB Fusion

#### **Ruoteng Wang**

Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying Shandong

Received: Apr. 18<sup>th</sup>, 2025; accepted: Jun. 17<sup>th</sup>, 2025; published: Jun. 27<sup>th</sup>, 2025

#### Abstract

The identification of low-order faults is of significant research importance for discovering favorable accumulation areas of remaining oil and improving oil and gas recovery rates. In the northern part of the Bonan region, a fault system is well developed, but the reflection characteristics of low-order faults in conventional post-stack data are not obvious, resulting in low identification accuracy, which restricts exploration and development in this area. To address these issues, this paper focuses on five-dimensional seismic data, categorizes dominant offset distances and azimuth sectors, and combines existing geological knowledge to optimize the fault-normal azimuth. By employing RGB attribute fusion technology, the identification accuracy of low-order faults has been effectively

improved, clarifying the fault distribution characteristics and providing technical support for the fine structural description and rolling development of the research area.

# Keywords

**OVT Data, RGB Fusion, Low-Order Faults Recognition** 

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC ① Open Access

# 1. 前言

低序级断层具有纵向断距小、平面延伸距离短的特点,控制着油水关系及剩余油的分布,通常断距 不超过 50 m, 延伸距离小于 2 km。在复杂断块油气田中, 断裂发育程度高, 随着很多老区块进入特高含 水开发阶段,剩余油的有利富集区规模逐步缩小,低序级断层的识别描述已经成为勘探开发的痛点难点。 针对低序级断层的刻画,许多学者都开展了相关的研究,主要分为两大类。第一类方法是基于地球物理 属性的断层识别技术,常规做法是在叠后数据上进行构造导向滤波,突出地震数据断裂特征,以此为基 础计算相干体、曲率、蚂蚁体等属性,辅助构造解释。Bahorich和 Farmer (1995) [1]基于地震数据的互相 关原理,率先将相干算法应用于断层解释方面,在此基础上,又相继有学者[2][3]从算法的抗噪性、横向 分辨率和计算效率等方面对该技术进行了改进。Dossary 等(2006) [4]将二维曲率属性推广至三维,并阐明 了其对应的地质含义,通过地层弯曲程度的变化来反映断层、裂缝等构造。针对曲率属性的实际应用效 果,国内一些学者[5][6]也进行了深入研究和改进,包括多种属性的对比测试、方位信息加强、不同属性 的融合表征等方面,均取得了良好的效果。同一时期,斯伦贝谢公司在蚁群算法的基础上进一步研发了 蚂蚁追踪技术,用于追踪低序级断层和开展裂缝预测,并迅速推广至全球范围,众多研究者[7][8]在此基 础上不断深化,提升算法性能和识别精度。第二类方法是基于人工智能的断层自动解释,随着卷积神经 网络的迅速发展,开始有学者将该项技术应用于断层识别领域。Ronneberger等(2015)[9]以 CNN 为基础, 针对语义分割问题,提出了 Unet 网络结构,进行医学图像自动分割,该网络因其简洁明晰的架构、突出 有效的识别精度而迅速被应用于其他领域,包括断层识别等,Wu等(2019)[10]建立了一种从数据生成到 网络搭建的断层自动解释的范式,通过正演模拟的方法构建了三维地震数据和相应的断层标签数据集, 利用 Unet 网络训练数据,部署断层自动检测模型,应用于多个开源三维地震数据上,均取得了较高的精 度,后续有研究人员针对各自工区的特征,断层的构造样式,进行了持续的应用和改进。王冬娜(2022)[11] 对相干体等地震属性进行优化组合,识别了老爷庙地区的低序级断层。张陈强等(2023)[12]结合注意力机 制和 VNet 网络,提高了构造复杂区域的低序级断层识别精度。马玉歌等(2024) [13]利用振幅和几何体等 属性构建特征,利用正演模型和实际数据,增强了神经网络的泛化性能。然而,现有的多数方法都是以 常规叠后数据为基础,在全叠加地震数据上,一些低序级断层断点模糊或无地震响应,容易被解释人员 忽略,造成构造不落实的问题。本文以叠前五维数据为基础,通过一些预处理方法提高叠前、叠后地震 数据的信噪比和分辨率,采用优势方位 RGB 融合技术,提高低序级断层识别精度。

# 2. 区域地质概况

研究区地处渤南油田北部,是埕东凸起沿埕南大断层滑至渤南洼陷的小型滑脱山,处于被孤西大断

层和埕南大断层夹持的二台阶上,油藏类型为构造油藏。目的层位于下古生界,埋深在4000~5100m,埋 深较深,上覆地层及潜山内幕均发育火成岩,研究区潜山带位于北西向孤西山潜山体系,构造发育复杂, 断层发育,地层断缺严重,解释难度大。因此,需要开展多技术精细构造描述,明确地层及断点,理清该 区断裂体系及低序级断层展布特征,精细落实区域构造。

# 3. 低序级断层识别技术及应用效果

### 3.1. 叠前道集优化

由于叠前五维道集资料整体信噪比较差,在优选偏移距和方位扇区之前,需要进行叠前资料解释性处理,实现道集优化。在 AnisoScope 中,针对叠前道集数据中的随机噪声,利用噪声剔除法衰减随机噪声、异振幅及线性干扰等,选择强去噪模式,设置噪声回填 50%,改善道集信噪比,提高地震有效反射的连续性,随后,以 Zoeppritz 弹性波动力学理论为基础,通过 shuey 三项式对地震数据按照一定的剔除百分比进行剔除 - 拟合,保留未处理到的有效信息,恢复目标道真振幅,最后,选择移动积分拉平算法,采用反射轴自动追踪的方法,自动拾取相对时间偏移量,将道集数据拉平,实现剩余动校正处理,完成叠前道集优化流程,获得高信噪比、高分辨率的五维叠前地震数据。对比叠前优化前后的五维道集,可以看出(见图 1),道集的地震反射连续性得到了很大的提升,随机噪声压制效果明显,整体资料品质增强。





### 3.2. 叠后目标处理

针对叠加后的地震体,在 Geoeast 软件中,设计了如下的处理流程。由于叠后地震数据在纵向上存在 能量不均衡的情况,首先,设置滑动视窗 100 ms,通过振幅能量均衡,抑制振幅失真,改善幅频特性, 消除非地质因素造成的地震信号特性变化,接着,采用带通滤波和高斯平滑滤波的方法,平滑系数为 2, 去除地震记录中的噪声成分,增强地震信号的有效成分,提高地震反射横向连续性,最后,采用构造导 向滤波技术,最大倾角为 35 度,倾角间隔 3 度,时窗长度 20,在压制噪声的同时,保留断层、裂隙等边 缘细节信息,突出断层的边界特征,使得断裂展布特征更加清晰,消除陡倾地层造成的背景干扰,完成 断层识别的预处理工作。与原始叠加剖面对比可以看出(见图 2),处理后地震剖面同相轴连续性更好,分 辨率得到有效提升,断点清晰度明显增强,为后续地震断层的精细识别奠定了基础。



(a)原始叠加剖面

(b)处理后叠加剖面

Figure 2. Seismic data before and after post-stack target processing 图 2. 叠后目标处理前后地震数据

#### 2500-2500and a state of the second s Pers, norm III#1 3000-3000 \_\_\_\_\_ 966 . Altrall<sup>ere</sup> 3500 3500

# 3.3. 偏移距优选

(a)近偏移距叠加剖面

(b)近中偏移距叠加剖面



(c)远偏移距叠加剖面

 Figure 3. Stacked sections of different offset ranges

 图 3. 不同偏移距叠加剖面





(a)近偏移距叠加

(b)远偏移距叠加



#### (c)近中偏移距叠加

Figure 5. Coherence slices of the Tg1 from multi-offset stacked data volumes: (a) Near-Offset Stack (b) Far-Offset Stack (c) Mid-Near-Offset Stack

图 5. 不同偏移距叠加数据体下古生界顶界相干切片: (a)近偏移距叠加; (b)远偏移距叠加; (c)近中偏移距叠加

在优化后的地震数据上,进行偏移距的优选,选择近偏移距、中偏移距、远偏移距三个叠加方案对 比,从叠加后的地震剖面可以看出(见图 3),中偏移距叠加地震体断点更为清晰,且资料信噪比较好。由 于目的层位于下古生界,考虑埋深和资料品质,选择中偏移距叠加方案。在测网上选择不同位置的叠前 道集,整体上近偏移距和远偏移距的数据横向连续性差,资料品质较低,需要剔除掉这两部分的信息(见 图 4)。对比不同偏移距叠加体计算的下古生界顶面沿层相干图,从平面上看,图 5 中红色箭头处,近、 远偏断层噪音较多,断层不连续或未识别出,而通过中偏移距叠加体识别的南北向、北西向断层更加清 晰,连续性更好,识别精度更高。通过剖面、道集、平面的多维度对比,明确了偏移距的优势范围。

# 3.4. 方位扇区优选

研究区断层主要呈北西、北东及近南北向展布,根据研究区断裂展布方向,分方位角划分,优选3个 敏感角度段,对地震数据进行分方位角叠加。选择北东方位进行叠加,测试不同扇区大小的叠后地震体 对断层识别精度的影响,对比10度、30度、70度扇区叠加体的沿目的层相干切片(见图6),10度扇区叠 加体的相干图噪音最多,30度扇区叠加体的相干图噪音相对较少,70度扇区叠加体的相干图噪音最少且 断层识别精度和连续性较好,因此,优选70度扇区范围作为最终叠加方案。



(a) 10°扇区叠加

(b) 30°扇区叠加



(c) 70°扇区叠加

**Figure 6.** Coherence slice along the top of Tg1 from NE-Oriented azimuthal sector-stacked mid-near-offset volume 图 6. 近中偏移距北东向不同方位扇区叠加数据体下古生界顶面相干切片

# 3.5. 优势方位融合



Figure 7. Comparison of seismic sections with different stacking methods 图 7. 不同叠加方式的地震剖面对比



(a)北东向叠加

(b)北西向叠加



(c)东西向叠加

(d)优势方位 RGB 融合



基于优选的偏移距范围和方位扇区,叠加北东向,北西向,东西向三个方位的地震数据体。如图 7 中 红色方框处,在常规全叠加地震剖面上,一些不同走向的低序级断层不明显,容易被忽略,而在分方位 叠加的地震剖面上,原本断点不清晰,同向轴表现为扭曲、微扭动的位置,断点变得更加清楚,同向轴 表现为明显的错开、错断,为开展精细构造解释提供了多尺度依据。对新生成的三个地震数据体计算下 古生界顶面的相干图,可以看出(如图 8 中红色椭圆圈处),沿着垂直断裂的方位,断层的连续性更好,低 序级断层的识别得更加清晰,凸显出与方位对应的断裂特征。最后,利用 RGB 属性融合的方法,调整每 个属性的权重,对于低序级断层更多的方位,适当增加权重系数,将各个方位的断层组合起来,体现了 分方位数据断层检测的优势,明晰了研究区的断层展布特征。

#### 4. 结束语

本文基于研究区 OVT 域地震数据,通过一系列叠前道集优化和叠后处理的方法,提高了地震资料品 质,减少了噪音的影响,并以对比的方式,阐明了偏移距和方位扇区的有利范围,利用优势偏移距和方 位角进行叠加,从地震剖面上看,可以发现全叠加剖面上不明显或不存在的低序级断层,断面更清晰, 断点位置更准确,在地震数据体上,结合相干体属性,开展了 RGB 属性融合分析,能够有效提高断层识 别精度,明确了研究区复杂断块的低序级断层展布特征,精细落实了区域构造,为滚动勘探效益开发提 供了技术支撑。

# 参考文献

- Bahorich, M. and Farmer, S. (1995) 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. *The Leading Edge*, 14, 1053-1058. <u>https://doi.org/10.1190/1.1437077</u>
- [2] Marfurt, K.J., Kirlin, R.L., Farmer, S.L. and Bahorich, M.S. (1998) 3-D Seismic Attributes Using a Semblance-based Coherency Algorithm. *Geophysics*, 63, 1150-1165. <u>https://doi.org/10.1190/1.1444415</u>
- [3] 杨葆军,杨长春,陈雨红,等. 自适应时窗相干体计算技术及其应用[J]. 石油地球物理勘探, 2013, 48(3): 436-442+506+330.
- [4] Al-Dossary, S. (1949) Inter Azimuth Coherence Attribute for Fracture Detection. *SEG Technical Program Expanded Abstracts*, **23**, 2586.
- [5] 方海飞,周赏,王永莉,等.几何类属性深度处理技术在断层解释中的应用[J].石油地球物理勘探,2013,48(S1): 120-124+203+10.
- [6] 盛新丽. 基于三维地震曲率的小断裂识别方法[J]. 中国煤炭地质, 2018, 30(S1): 109-112+117.
- [7] 刘财, 刘海燕, 彭冲, 等. 基于加权一致性的蚁群算法在断层检测中的应用[J]. 地球物理学报, 2016, 59(10): 3859-3868.
- [8] 李楠, 王龙颖, 黄胜兵, 等. 利用高清蚂蚁体精细解释复杂断裂带[J]. 石油地球物理勘探, 2019, 54(1): 182-190+12.
- [9] Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: *Lecture Notes in Computer Science*, Springer International Publishing, 234-241. <u>https://doi.org/10.1007/978-3-319-24574-4\_28</u>
- [10] Wu, X., Liang, L., Shi, Y. and Fomel, S. (2019) Faultseg3D: Using Synthetic Data Sets to Train an End-To-End Convolutional Neural Network for 3D Seismic Fault Segmentation. *Geophysics*, 84, IM35-IM45. <u>https://doi.org/10.1190/geo2018-0646.1</u>
- [11] 王冬娜. 低序级断层识别技术在老爷庙地区的应用[J]. 中国石油和化工标准与质量, 2022, 42(15): 196-198.
- [12] 张陈强, 贺锡雷, 谌洪平, 等. 基于 SA-VNet 卷积神经网络的低序级断层识别方法[J]. 地球物理学进展, 2024, 39(2): 634-646.
- [13] 马玉歌, 苏朝光, 丁仁伟, 等. 基于 LOFUnet 深度卷积神经网络低序级断层多属性识别方法[J]. 物探化探计算 技术, 2024, 46(3): 272-283.