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Abstract

Wetlands, as transitional ecosystems between terrestrial and aquatic environments, play crucial
roles in maintaining biodiversity, regulating hydrology and buffering regional climate, and repre-
sent important carbon sinks in the global carbon cycle. In the permafrost region of the Da Xing’'an-
ling Mountains, Carex-dominated hummock wetlands around Arctic Village are characterized by
pronounced hydrological fluctuations, substantial organic matter accumulation and slow litter de-
composition, and thus constitute key carbon pools in cold regions. In recent decades, climate warm-
ing and human disturbances have led to various degrees of wetland degradation in this area, accom-
panied by increasing frequency and intensity of rodent invasion. Rodent activities not only disrupt
hummock structures, but also alter microtopography and soil hydrothermal and nutrient condi-
tions, thereby driving a community shift from Carex subpediformis to Calamagrostis angustifolia
and Anemone dichotoma as dominant species, with potential impacts on litter decomposition dy-
namics and wetland carbon sink capacity. This review synthesizes current knowledge on the
sources and biochemical characteristics of wetland plant litter, summarizes key processes and con-
trolling factors of litter decomposition and C, N and P release in wetland ecosystems, and highlights
the roles of structural compounds such as lignin, cellulose and hemicellulose, as well as extracellu-
lar enzyme activities, in regulating decomposition. By integrating studies on wetland degradation
and small mammal invasion, we further discuss how rodent disturbance may affect litter mass loss
and nutrient cycling through modifying plant community composition, litter quality and soil envi-
ronment. Finally, we identify a lack of quantitative evidence on the responses of litter decomposi-
tion and nutrient release along gradients of rodent invasion, and propose that future work should
combine field litterbag experiments with microbial and enzymatic measurements in typical perma-
frost wetlands, in order to support ecological restoration and carbon sink management in degraded
wetlands.
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Table 1. Major controlling factors and mechanisms regulating litter decomposition in wetland ecosystems
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TR CIN Lt i CIN LEBR A G E A K A ) il 1]

KRR EE SO0 25 R AT WL 4 ) 2 1]
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26 4L et 56 PRI B BUI R BT [R], AR5 W] ME A HLRRAN RS, 85597 70 (K BRI 2R 32 R [31] [61]
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TR A7) BB A 5 9 i A A ) o A 42 3 B K 1 LR TR AR [63] [64]

FEZFUR LR, KSR AL 2 B IR ATE S 2 E R B, AT 3R 45 - Ry
o 8 B HRAKAN I IR A M T R E WS AR T AR S I RE NG, ARG M R4 0 I 2 4 3R AN~ £ 4
R A BT, PR TR BURANR, Bk EL CO JE SRR LI 4% AN [65]-[67]. {H iR AE R Id v s
S R, AR A E AN EYE ST R, FVEY) R R AT BE AN UK B2 BR - SRR B
AR ORI TEEZR” R, I ARZ R [68]-[70].

UEAt, IR A AT A B A PR B O, a0 pH BT SEAGIE IR AL B . TR R S R TR AL
R R Eh A IXARAR A — Ty T I A0 70 2R A Vi 45 K (AR TR TR L] L G S IR SR B e E A ) ) 1
TRVEY R AR [71] [72]0 55— 7 BRSO IR > BRI EIE, 0, AR IR R e
ARG AR, T BEAE IR LR D 4 LA CORETIUN T AU S8 0 At i A2 B, Bk i 2 2RI i - i3 [ 73]

i, @GR COKAL - R - IR MR = TS EA RIS AT, ST B
BRI S vE A LR A AR P AR R R, O RS SEN SL S N AR AN R TR AR

(DASE

3.2. RENRXEMRE S RAFMRENET

FEMPHIIR AR AL 1 B B ) B AR R S, RS NI FLE S B IR B Sk - e IRI o T
MNZIEY B FLHCE R SUETE S AR AT N AR Y 08 2 R AN AR R e AR B R : —
M, BB EFEENEERY . Fr Mt FERBE, MEEFERBE TR H—J7m, HEREH
8 TE SR I SR b 0, R IR e i B BRAIG, T (AR K DX T AR DR B 30 1R R B B [1.3]
[16].
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MR . ANFETHREBUE N AE R BE . HEVE . AR LA R RIRT RS =L CIN, C/IP FUARJREIN
EE T THAAAE 2 22, IR LMK YUE TSR “ Gy o g™ B “Heor i ” FRRE[19]. — MM &, ARER(
ANIFEE) TR CIN LU AR S5 R PR 2H 40 L 8 v, T 22 P 22 A AR B A MRS AE 2R PP vl B
IRV WL 5 B R AL S [ 74]-[76] . AEYDDIRE AL (1) = AR R itk 2 O R Y 1) R T Vs 1 2 5 25 M e i
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Table 2. Major rodent behavior types and their potential ecological effects on wetland environments
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(1) #24#47 A (burrowing)

20 BRI I F T AN B TS B 2 O SR LR A A AN TR R, I8 i g A I R
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(3) T3k 5 HEME AT v (hoarding and excretion)
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FVED AR PRI EE” AN “ISAR R WAL, XHRHBRIC DI RER A g PRI .
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