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Abstract

Sandstone is primarily composed of detrital grains and cement, representing a typical heteroge-
neous medium. Based on X-ray computed tomography technology, this study obtained the real
microstructures of two sandstone samples. Subsequently, numerical simulations of the effective
elastic moduli of the sandstone samples were conducted by integrating a porosity-elastic modu-
lus semi-empirical model with the finite element method. The results were compared with
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ultrasonic testing measurements. The findings demonstrate that the proposed numerical simu-
lation method for effective elastic moduli, driven by real microstructures, is both feasible and
highly accurate.
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Table 1. Mineral components of sandstones
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Figure 1. 3D XCT image of sandstones (a) red sandstone; (b) gray sandstone
1. BYE =4 XCT BfRDRE; (b)&ibE
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Figure 2. Ultrasonic detector for testing the elastic modulus of sandstones. (a) Sensor
and coupling agent; (b) Sample test diagram
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Table 2. Ultrasonic velocity of sandstones
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Figure 3. Statistical distribution of micro-porosity in sandstones. (a) Red sandstone; (b) gray sandstone
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Table 3. Fitted parameters of Spriggs formula in porosity-modulus relation for sandstones [28]
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Figure 4. Schematic diagram of finite element nodes
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Table 4. Unit node numbering rules
4. BT RSN
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1 0 0 0
2 1 0 0
3 1 1 0
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Table 5. Mathematical expressions of strain-displacement transformation operators
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Figure 5. Red sandstone Eo = 162 GPa, a = 8.0, dimensionless Strain, Stress unit GPa (a) Stress; (b) Strain
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Figure 6. Gray sandstone Eo = 124 GPa, a = 8.7, dimensionless Strain, Stress unit GPa (a) Stress; (b) Strain
B 6. kAbE Eo=124GPa, a=8.7, NEREMN, NIEM GPa(a) RASH; (b) HNENTH
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Table 6. Numerical effective elastic modulus of sandstones
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