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摘  要 

随着浅表矿产资源日益减少，深部与隐伏矿产勘查成为全球资源勘探的核心挑战。传统地球化学方法在

覆盖层厚、地形复杂区域难以提取深部微弱信息。地电化学勘查技术通过外加电场驱动离子迁移，可强

化获取深部矿化信息，已成为深部找矿的重要手段。与此同时，大数据与人工智能技术为处理地球化学

数据的高维、非线性、小样本等特性提供了新方法。本文系统阐述地电化学技术原理与发展，探讨其与

机器学习融合的技术路径，并以川西木绒锂矿为例，详细分析随机森林与概率神经网络在异常识别与靶

区预测中的应用。文章总结该融合技术的优势与挑战，并对未来发展进行展望，旨在为智能矿产资源勘

查体系构建提供参考。 
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Abstract 
As shallow mineral resources are increasingly depleted, the exploration of deep and concealed mineral 
deposits has become a central challenge in global resource prospecting. Traditional geochemical meth-
ods struggle to extract weak deep-seated information in areas with thick overburden or complex ter-
rain. Electrogeochemical exploration technology, which employs an external electric field to drive ion 
migration, enhances the acquisition of deep mineralization information and has emerged as a critical 
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tool for deep mineral exploration. Concurrently, big data and artificial intelligence technologies offer 
novel approaches for handling the high-dimensional, nonlinear, and small-sample characteristics of 
geochemical data. This article systematically elaborates on the principles and development of electro-
geochemical technology, explores the technical pathways for its integration with machine learning, and 
provides a detailed analysis of the application of random forest and probabilistic neural networks in 
anomaly identification and target prediction, using the Muzrong lithium deposit in western Sichuan as 
a case study. The article summarizes the advantages and challenges of this integrated technology, of-
fers insights into future developments, and aims to provide a reference for constructing an intelligent 
mineral resource exploration system. 
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1. 引言 

矿产资源是工业文明的基石。随着浅部资源日益枯竭，勘查工作正向“攻深找盲”阶段推进，面临

穿透覆盖层、识别弱信息、处理海量数据等关键挑战[1] [2]。传统地球化学方法在覆盖层薄、景观简单区

效果显著，但在厚覆盖区、复杂地形下，深部信息被屏蔽，方法往往失效。地电化学勘查作为一种主动

源技术，通过人工电场驱动深部离子向地表迁移富集，可有效提取隐伏矿体信息，自 20 世纪 80 年代以

来已在多矿种、多景观区得到成功验证[3]-[5]。与此同时，大数据与人工智能为矿产勘查带来新机遇。传

统数据处理方法难以应对地球化学数据的非线性、高维、高噪声等特征，而机器学习能够从数据中自动

学习复杂关系，建立预测模型，显著提升异常识别与靶区预测的效率和准确性[1] [2] [6]。 
因此，将地电化学技术与大数据分析相结合，构建“智能采集–深度挖掘–精准预测”的找矿体系，

既是技术发展的必然趋势，也是实现深部找矿突破的迫切需求。本文系统梳理该融合领域的最新进展，

通过典型案例阐明其技术路径与发展前景。 

2. 地电化学勘查技术：原理、发展 

2.1. 基本原理与工作机制 

原理是经过人工加设电场，驱动土壤中电活动态元素迁移至地表接收器附近并富集，再通过分析富

集的元素信息推断可能存在的矿体/矿化体位置，以达到找矿评价目的一种穿透性地球化学技术[4] [7] [8]，
该方法是基于电场作用的勘探原理，通过外电场驱动处于电活性态的离子或带电元素聚集体，使其迁移

至接收电极的载体上；通过采集并分析载体物质中的元素含量来指示矿化信息，因而在本质上兼具地球

化学勘查的属性。为此，可将地电化学方法定义为一种非常规化探技术：其借助外部电场，使带电离子

或元素聚集体定向迁移至接收载体，经后续样品分析实现找矿与评价目的。其实施过程通常如下：在测

线上按一定间距布设采样点，在每个点上埋设一对(或多对)电极(通常为碳棒或金属棒)构成偶极子[3] [9]。
电极埋深通常至土壤 B 层或 C 层(约 30~50 厘米)，以避开强烈的生物和耕作干扰。通过外部电源(通常为

9~24 V 直流电)在偶极子间建立稳定的电场，持续通电一定时间(通常为 20~48 小时)。在此过程中，电场

力、电渗流、电迁移、浓度梯度扩散等多种营力共同作用，驱动深部岩石孔隙水、裂隙水中的可溶性离
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子(特别是活动态的金属阳离子)向负极(或正极，取决于离子性质)迁移，并被包裹在电极周围的特殊离子

收集器(早期使用碳棒，现多采用经化学处理的高密度泡塑)吸附[10]。 
通电结束后，取出离子收集器，经过清洗、晾干、消解等前处理，使用高精度的分析仪器(如 ICP-MS)

测定其中目标元素的含量。 

2.2. 技术发展历程与应用拓展 

中国的地电化学研究始于上世纪 80 [2]年代末，以桂林理工大学罗先熔教授团队的工作为代表。早期研

究主要集中在方法机理探索、装置优化和可行性验证阶段。90 年代至 21 世纪初，该技术进入推广应用期，

在一系列不同类型和景观区的矿床(如金矿、铜矿)上进行了大量试验[11]-[14]，积累了丰富的经验[5] [10]。 
近年来，地电化学技术呈现出以下几个明显的发展趋势： 
集成化：不再作为单一方法使用，而是与土壤金属量测量、汞气测量、地气测量、电法勘探等方法

组合，形成综合地球化学勘查体系，实现信息互补与相互验证。 
标准化与规范化：针对采样装置、提取时间、电压电流、样品处理、质量监控等环节，逐步形成更统

一、更规范的操作流程，以提高数据的可比性和重现性。 
面向特殊矿种：从最初主要应用于金、铜等矿种，成功拓展到稀有金属(锂、铌、钽)、稀土、铀等战

略性新兴矿产的勘查中，显示出广阔的应用前景[15] [16]。 
适应复杂景观：在青藏高原高寒区[17]、内蒙古戈壁荒漠区[18]、西南原始林区等极端或复杂景观条

件下开展了成功应用，证明了其良好的环境适应性[4] [9] [19]。 

3. 大数据与机器学习：赋能地球化学数据分析的新引擎 

3.1. 机器学习在地学中的应用范式 

机器学习是人工智能的核心分支，其基本思想是让计算机从数据中自动学习规律，并利用学习到的

模型对新的数据进行预测或决策。在地球科学领域，机器学习应用通常遵循以下范式[1]： 
问题定义与数据准备：明确预测目标(如二分类：成矿/非成矿)，收集和整理已知标签的样本数据(如

已知含矿点与无矿点的地球化学数据)。 
特征工程与数据预处理：这是关键步骤，包括数据清洗(处理缺失值与异常值)、特征选择(筛选与成

矿最相关的元素或指标)、数据变换(标准化、归一化)等，以构建高质量的输入特征集。 
模型选择与训练：根据数据特点和问题性质，选择合适的机器学习算法(如决策树、支持向量机、神

经网络等)，使用训练集数据对模型参数进行优化学习。 
模型评估与验证：使用独立的测试集或交叉验证方法，评估模型的泛化性能，常用指标包括准确率、

精确率、召回率、F1 分数、受试者工作特征曲线下面积(AUC)等。 
预测与应用：将训练好的模型应用于未知区域的样本数据，生成预测结果(如成矿概率图)，用于指导

进一步的勘查工作[20]。 

3.2. 适用于地球化学数据的常用机器学习算法 

在地球化学异常识别和矿产预测中，以下几类算法应用最为广泛： 
集成学习算法：以随机森林[21]为代表。RF 通过构建大量互不关联的决策树，并对所有树的预测结

果进行投票或平均来做出最终决策。其主要优势在于：① 能够处理高维数据且无需特征降维；② 对缺

失值和噪声不敏感；③ 能够评估变量的重要性；④ 不易产生过拟合，泛化能力强[22]。这些特点使其非

常适合处理地球化学数据。 
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神经网络算法：包括传统的人工神经网络(ANN)和更专门化的模型。概率神经网络(Probabilistic Neural 
Network, PNN)是一种基于贝叶斯决策理论和 Parzen 窗概率密度估计的前馈神经网络。它具有结构简单、

训练速度快、无需迭代训练、能够包容一定错误样本、对小样本分类效果好等优点。其四层结构(输入层、

模式层、求和层、输出层)能直接输出样本属于各个类别的概率，非常直观[23] [24]。 
支持向量机(SVM)：通过寻找一个最优超平面来最大化不同类别样本间的间隔，适用于小样本、非线

性、高维模式识别，在地球化学异常分离中效果良好[25]。 
深度学习算法：如卷积神经网络(CNN)、自编码器(AE)、图神经网络(GNN)等，在处理具有空间结构

的地球化学数据、进行无监督异常检测等方面展现出潜力，但对数据量和计算资源要求较高[25]。 

3.3. 特征提取与降维：从原始数据到有效指标 

在地球化学领域，特征工程尤为重要。直接使用所有原始元素含量作为模型输入，往往会引入冗余

和噪声。因此，常借助多元统计方法进行预处理： 
因子分析(Factor Analysis)：用于揭示众多观测变量之间的内在依赖关系，用少数几个不可观测的“公

共因子”来解释原始变量的协方差结构。在地球化学中，这些公共因子常代表不同的成矿作用、岩性控

制或表生过程[26]。 
R 型聚类分析(R-mode Cluster Analysis)：根据元素之间的相关系数或相似性，将元素逐次聚合，形成

谱系图。它可以直观地展示哪些元素具有相似的地球化学行为，常与因子分析结果相互印证。 
主成分分析(PCA)：一种线性降维方法，将原始变量转换为一组线性不相关的主成分，保留数据中的

主要变异信息。 
通过这些方法，可以从原始的高维元素数据中，提炼出少数几个具有明确地质意义的“组合指

标”(如 F1、F2 因子)或元素组合(如 Li-Rb-Cs)，作为机器学习模型的核心输入特征，这被称为数据的“白

化”或“降维”。 

4. 融合实践：川西木绒锂矿智能找矿案例深度剖析 

 
Figure 1. Flowchart for the establishment and debugging of the PNN model [15] 
图 1. PNN 模型建立与调试流程图[15] 

 
四川省雅江县木绒锂矿是近年来在松潘–甘孜造山带发现的超大型花岗伟晶岩型锂矿床，其发现过
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程本身就体现了新方法、新技术的巨大价值。该矿区地形切割强烈，覆盖层分布不均，给传统找矿方法

带来困难。研究团队在该区系统开展了地电化学测量，并分别应用随机森林和概率神经网络进行数据处

理与靶区预测，为我们提供了对比研究两种方法的绝佳范例[15] [16]。 

4.1. 地质与地电化学工作概况 

木绒矿区出露地层主要为三叠系上统新都桥组砂板岩，发育多条含锂辉石的伟晶岩脉[27]-[29]。研究

分为已知区(已钻探验证)和外围预测区。在已知区以较密网度(100 m × 40 m 或 80 m × 40 m)布设采样线，

在预测区以较稀网度或剖面形式采样。使用偶极提取装置，采集样品经 ICP-MS 分析 Li、Be、Rb、Cs、
Nb、Ta、Th、U、Al、Fe 等多种元素。 

4.2. 概率神经网络(PNN)模型的应用流程与结果 

特征选择：同样经过因子分析和 R 型聚类，该研究选取了 Li、Rb、Cs、Al、Fe 五种元素作为 PNN
的输入特征。其中，Al、Fe 作为常量元素，可能反映了与成矿有关的围岩蚀变或地球化学背景场信息。 

 

 
Figure 2. Verification map of PNN model-predicted mineral exploration targets for Li, Cs, and Rb elements [15] 
图 2. PNN 模型预测的找矿靶区与 Li、Cs 和 Rb 元素验证图[15] 
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样本标签制定：将已知区 111 个点详细分为 4 个等级：1 级(无潜力)、2 级(低潜力，C 类靶区)、3 级

(中潜力，B 类靶区)、4 级(高潜力，A 类靶区)。分类依据是各点地电提取的 Li、Rb、Cs 异常强度、规模

及其与已知矿体的空间关系[15]。 
数据标准化：使用 Min-Max 归一化方法，将各元素含量映射到[0, 1]区间，以消除量纲影响，满足

PNN 的输入要求[15]。 
模型训练与 Spread 值调优：PNN 模型的关键超参数是平滑参数 Spread 值，它控制着概率密度估计

窗口的宽度。Spread 值过大，模型过于平滑，区分能力下降；过小则易过拟合。研究通过反复试验，发

现当 Spread 值设为 0.08 时，模型在训练集(95 个样本)上的准确率达到 88.42%，在独立测试集(16 个样本)
上的准确率达到 81.25%，取得了最佳平衡(见图 1) [15]。 

预测与应用：将优化后的 PNN 模型应用于预测区 162 个样本，预测结果为：1 级点 135 个，2 级点

14 个，3 级点 1 个，4 级点 12 个。将预测的 4 级点和部分 3 级点在空间上投图，圈定出一处找矿靶区(见
图 2) [15]。 

4.3. 随机森林(RF)模型的应用流程与结果 

数据预处理与特征选择：对已知区地电化学数据进行因子分析和 R 型聚类分析。结果显示，Li、Rb、
Cs、Th 元素在 F1 因子上具有高载荷(>0.5)，且 R 型聚类也将其归为一类。这与锂辉石伟晶岩矿床的典型

元素共生组合(Li、Rb、Cs 同属碱金属，地球化学性质相似)相符。因此，确定以 Li、Rb、Cs、Th 的单元

素含量及其组合因子 F1 的得分作为模型的“训练指标”[16]，模型构建流程见图 3。 
 

 
Figure 3. Flowchart of random forest model construction [16] 
图 3. 随机森林模型构建流程图[16] 

 
样本标签制定：根据已知区地质认识和已有异常图，将采样点按成矿潜力分为 A (高潜力)、B (中高
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潜力)、C (低潜力)及无潜力四类。通过对比实验，发现将 A、B 类合并为“1 号点”(成矿潜力大)，C 类

及无潜力点合并为“0 号点”(成矿潜力小)的二分法，比四分类的模型准确率更高(86.74% vs 72.07%)，故

采用二分法建模[16]。 
模型训练与调优：使用 R 语言中的 randomForest 包构建模型。关键参数是决策树的数量(ntree)和每

棵树分裂时随机考虑的特征数(mtry)。通过绘制模型误差随树数量变化的曲线，确定当树数量达到 350 棵

时，误差趋于稳定，故设定 ntree = 350。变量重要性分析显示，Li、Cs、Rb 对模型分类的贡献最大[16]。 
模型评估：采用 5 折交叉验证评估模型稳健性。最终模型在训练集上的 AUC 值为 0.963，在测试集

上的 AUC 值为 0.822，表明模型具有优秀的拟合能力和较好的泛化能力。混淆矩阵也显示对正负样本的

预测准确率均较高。 
预测与应用：将训练好的 RF 模型应用于预测区 180 个样本数据，预测出 33 个“1 号点”。将这些

点在空间上投图，圈定出两处异常集中区，划为 I 号和 II 号找矿靶区，见图 4 [16]。 
RF 模型识别出的 Th 元素重要性高，除其统计意义外，可能暗示其与锂矿化在成因或迁移过程中的

特殊关联，其具体的地球化学机制值得未来专门研究。 

4.4. 两种方法的对比分析与启示 

 
Figure 4. Verification map of random forest-predicted mineral exploration targets for indi-
vidual elements Li, Cs, Rb, Th, and the combined element F1 [16] 
图 4. 随机森林预测的找矿靶区和 Li、Cs、Rb、Th 单元素、F1 组合元素验证图[16] 
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方法有效性：两项研究均成功圈定了经地球化学和地质证据验证的找矿靶区，证明了地电化学数据

与机器学习方法结合的有效性。 
问题定义的灵活性：RF 研究采用了更简洁的二分法，而 PNN 研究尝试了更精细的四分法。二分法

可能更稳健，而多分类能提供更丰富的潜力分级信息，但难度更大。 
特征选择的差异性：RF 选择了 Li、Rb、Cs、Th + F1；PNN 选择了 Li、Rb、Cs、Al、Fe。这说明

特征工程没有唯一最优解，不同的模型可能对不同的特征组合敏感，结合地质认识的专家判断至关重

要。 
优势互补：RF 的优势在于可解释性(变量重要性)和稳健的泛化性能；PNN 的优势在于训练速度和对

小样本分类的天然适应性。在实际工作中，可以尝试多种模型，对比其结果，形成共识性更强的预测结

论。 
地质验证的核心地位：无论模型多么复杂，其预测结果必须接受地质事实的检验。木绒案例中，红

柱石带的野外发现，是连接地球化学异常与地质成矿模型的关键桥梁，使智能预测结果落地生根。 

5. 优势、挑战与未来发展方向 

5.1. 融合技术体系的突出优势 

探测深度与信息质量的提升：地电化学技术直接获取来自深部的活动态离子信息，从根本上克服了

厚覆盖层的屏蔽效应。机器学习则能从中提取非线性弱异常，实现了“探得深”且“认得准”。 
预测过程的客观化与定量化：数据驱动模型减少了人为设定异常下限、圈定异常时的主观随意性，

使预测结果更具可重复性和可比性。模型的概率输出(如成矿概率图)为风险评估和勘查决策提供了定量

依据。 
勘查效率的飞跃：实现了从数据到靶区图的(半)自动化流程，极大缩短了资料解释周期，能够快速对

大面积勘查区进行扫描和优选，实现“快速锁定、重点详查”。 
多源信息融合能力：机器学习框架易于整合地电化学、地质、地球物理、遥感等多源异构数据，构

建综合信息找矿模型，实现“1 + 1 > 2”的信息增益。 

5.2. 当前面临的主要挑战 

样本瓶颈问题：地电化学采样成本高，导致有精确地质标签(尤其是“含矿”标签)的样本数量非常有

限。小样本量制约了复杂模型(如深度学习)的应用，也影响了模型的泛化能力。 
机理与数据的平衡：当前研究多为纯粹的数据驱动，对地电提取过程中离子迁移、富集的具体物理

化学机理结合不够。如何构建“机理约束下的数据驱动模型”，提高预测的地质合理性，是一个重要课

题。 
模型的可解释性焦虑：尽管 RF 等模型提供了一定可解释性，但许多高性能模型(如复杂神经网络)仍

是“黑箱”。地质学家需要理解“为什么这里被预测成矿”，而不仅仅是“哪里被预测成矿”。 
成果转化的“最后一公里”：如何将机器学习输出的概率图、分类图有效地转化为野外可操作的探

矿工程布设方案，并与矿产经济评价相结合，仍需探索成熟的流程。 
数据标准化与共享壁垒：不同单位、不同项目的地电化学数据在采样、分析、质量控制上存在差异，

缺乏统一的行业标准，阻碍了大规模数据集的构建与共享。 

5.3. 未来重点发展方向 

发展面向小样本的机器学习方法：积极研究迁移学习、元学习、主动学习等范式，利用已有矿床的
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模型知识辅助新区预测，或通过智能算法选择最具价值的样本进行补充采样，以缓解样本瓶颈。 
推进多模态数据深度融合：构建统一平台，整合地电化学元素含量、高光谱遥感矿物信息、地球物

理反演属性(如电阻率、极化率)、三维地质模型等多维度数据，利用图神经网络、多模态深度学习等技术

进行联合建模。 
增强模型的可解释性与地质知识嵌入：大力发展可解释人工智能(XAI)技术，如 SHAP 值、LIME 方

法等，量化每个特征对单个预测结果的贡献。同时，探索将成矿系统理论、矿床模型等先验地质知识作

为规则或约束条件嵌入到机器学习模型中。 
构建云端智能勘查平台：研发基于云计算和 WebGIS 的在线智能找矿系统，实现地电化学等数据的

云端上传、自动化处理、模型调用、在线预测和可视化，降低技术门槛，推广实用化。 
加强基础理论研究与标准化建设：深入开展地电化学迁移机理的精细实验和模拟研究，为特征选择

和模型构建提供理论指导。推动行业协会和机构制定地电化学技术规范与数据标准。 
拓展应用领域：不仅限于金属矿产，可尝试将地电化学与机器学习结合应用于地热资源勘查、油气

微渗漏探测、环境污染溯源、工程地质调查等领域。 

6. 结论 

地电化学与大数据、人工智能的深度融合，正推动矿产勘查从经验驱动向数据驱动、智能化的新范

式转变。本文系统阐述了地电化学技术的原理与数据特性，论证了机器学习方法处理此类数据的必要性

与优势。以川西木绒锂矿为例，通过随机森林(RF)和概率神经网络(PNN)的全流程应用，展示了该融合方

法在识别深部弱异常、精准圈定找矿靶区方面的显著效能。 
尽管仍面临样本量有限、模型可解释性不足、多源数据融合困难等挑战，但其发展前景清晰。未来

通过发展小样本学习、推动多模态数据融合、加强可解释性研究、构建云端智能平台，地电化学与大数

据的结合将更加紧密。这一交叉领域不仅将助力深部找矿突破、保障资源安全，也为地球科学迈向“智

慧”时代提供了重要范式。 
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