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Abstract

Marine controlled-source electromagnetic (MCSEM) surveying is an effective geophysical method
for investigating the electrical structure of the seafloor and has been widely applied in the explo-
ration of hydrocarbons, gas hydrates, and deep-sea mineral resources. Conventional marine elec-
tromagnetic surveys are commonly conducted using a single-vessel towed source combined with
seafloor receivers, a configuration that is often associated with complex operational logistics and
high acquisition costs. In this study, a systematic investigation of three-dimensional inversion is
carried out for a deep-towed frequency-domain marine CSEM acquisition configuration, with the
aim of achieving accurate imaging of subseafloor electrical resistivity distributions. The forward
modeling framework s first introduced, including the governing equations of the electromagnetic
field and element-based discretization. Subsequently, the inversion methodology is discussed,
covering the formulation of the objective function, regularization strategies, and numerical solu-
tion approaches. The effectiveness of the proposed method is finally demonstrated through a se-
ries of numerical experiments. The inversion is implemented using an approximate Gauss-New-
ton scheme in combination with regularization constraints and a line-search strategy, thereby
improving the stability and computational efficiency of parameter estimation for large-scale
three-dimensional models. In consideration of the characteristics of the deployed source-receiver
offset distribution, mesh refinement strategies are employed to ensure inversion convergence
and adequate resolution under limited observational conditions. Numerical experiments indicate
that the proposed approach can effectively delineate the spatial distribution of subsurface anom-
alies and exhibits good robustness. This study provides a useful reference for low-cost, high-effi-
ciency deep-towed marine CSEM surveys, as well as for deep-sea resource exploration and inves-
tigations of seafloor structures.
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Figure 3. Towed survey track
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