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Abstract

The Paleocene-Eocene Thermal Maximum (PETM, approximately 56 Ma) represents the most typical
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abrupt climate change event of the Cenozoic era, characterized by a global mean temperature increase
of 4°C~5°C, a negative excursion in atmospheric carbon isotope values (A§13C reaching -2%o to —-3%0),
and the restructuring of marine-terrestrial ecosystems. This event resulted in a significant “high-lati-
tude amplification of warming” globally, triggering ocean acidification, enhanced continental weather-
ing, and major reorganization of biological communities. These pronounced environmental changes
collectively shaped the conditions for the formation of specific sedimentary mineral deposits and hy-
drocarbon source rocks. However, existing research still faces methodological challenges, including re-
gional limitations of sedimentary strata, multi-proxy interpretation ambiguities in paleoclimate indi-
cators, chronological dating uncertainties, and complexities in Earth system modeling. Current hypoth-
eses regarding the triggering mechanisms of this event remain highly debated: (1) The mainstream
hypothesis of submarine methane hydrate dissociation, while consistent with carbon isotope evidence,
faces difficulties in quantitatively constraining the size of the paleo-methane reservoir; (2) The extra-
terrestrial impact hypothesis, proposed based on observed iridium anomalies and microtektites, is
heavily questioned due to the lack of global evidence for an impact crater; (3) Other hypotheses, such
as tectonic uplift leading to organic carbon oxidation and astronomical orbital forcing, offer potential
pathways for carbon cycle perturbations over different timescales. A deeper analysis of the coupling
mechanisms between the carbon cycle, climate, and biosphere during the PETM event can not only pro-
vide critical empirical evidence for understanding extreme climate evolution in geological history but
also serve as a crucial geological analog for assessing the potential environmental effects of modern
greenhouse gas emissions.
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Figure 1. Global distribution of PETM study sites (modified from Tierey e al., 2020). red five-pointed stars represent PETM
sites. The pink circle denotes the NAIP sampling location. The grey line denotes the distribution of ocean currents [3 ]
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Table 1. Characteristics of major hyperthermals and their environmental and ecological effects [6]

1. TEREMEHERE SRR TR SR 6]

v g PETM LMWE Dan-C2 L.C29n LDE D/STE ETM-2 H2
FA(Ma) 4] 56 %) 66.34 #165.86  #165.35 41621 #1614 %) 54 #]53.9
FrEEmfEl(ka) 29 140~220 #] 100~200 £] 100 2] 38 #£1100~191  #j 160 27100 £) 100
CIE 2] 4%o 27 0.5%o 2] 1.0~1.5%0 £ 0.4~0.5%0 £ 0.6~1.0%0 % 1%o 21 1.4%o 2] 0.8%o
HE %) 5°C~8°C #)2.5C~5C ¢y 4°C — Y)2C~3'C #42C #43C~4C #42C
HEKERAL R s R s b 7 7 7
PR R R K
WY MILBL WE TKEM B e B
R e KK 1@
AT L
- SR SR
WY 30%~S0%JEHE . . . JEEATA FL A A AL R
- : SHUWEMRKRL AR ARl — — " ‘
s HILRK L AL 5 Lk ZREVE R ZREPEPRAE
e — —— —— B B[ 7N I o N e S [ NP S | 7 i B

il Kili Kili Kili

Notes: LMWE—— Iy it BRI R I F; Dan-C2 A1 L.C29n——FFHE I 3 4F; LDE 1 D/STE——FH R 1
HHff; ETM-2 fl Ho—— At B e

2.3. PETM 3TgEiR - FiRAISNE

TR Y AR A HUTULE S 8 7 - IR A - AR R TR G 45 0. R IEE I UL,
kBT s, BRIE R - PRos SR e 5] ORRE 1A R8O AE AN T IR AR B B AL B A . PETM S 1],
AERIGEZ R B R EAREEE, R T AR EIEAE T R, R AR vl B I 2 R
FRGEA, R SRR S BUEE S E IR, IECEIR AT IR, R UTE MLURALE S
AR OREARE, MR E A, AENURRAESR A T AR E BRI [9]. BAAERPEY: Kilda ZH A1,
PETM AT A MR & = (TOC) Ik 3%~5%, Ak Rl AR se it 7 HERIF[10]. MrERATIR R
S, PETM F AR o % o A K B AU A 38 58, 3 350 ORI R A ) A, o038 T IV /KA o
AR N B IE JE I R R ALY, FEEm T AR R SRR, flln, YIOZH PETM R /K
WEEFRN. EEDK, B TOC ZMBAEMRM, B EAR S TUE MR /1117,

PETM HAE LB IRT R, X ATRESI R FEK SRR . Za RO T AT BRVK ¥ R 46
fiisd, BRI IFLIR A T B T AR g 77, AR F etk — 2B R = R . k4t
Fe i A L A TR TR, ISR B X K> B B s, AEREOR T LE PETM JZ407
IR . B, d63E Wyoming M HT SR REAH LD ZHUR, VR HERRS T, S EURRTTIA &
7£ PETM JZA7H H BB S5 (8]

W P2 I B 2 B2 AR R A AR Rl #5478 PETM SEAR 1), 423k ETF 5°C~8°C, W Mamm

DOI: 10.12677/ag.2026.162015 152 HuERFL 2 AW


https://doi.org/10.12677/ag.2026.162015

ZEE

Wi b AR S 5 R PR AR, (R T RERR B A2 Rk 6] TR T 5 A 7 i 28 R AEF, T
PR HUAR 2 A HEAR[12] 0 PG P LU AR A= 17 LLbKOR B TR 1K 100~200 KA E, O RN B Z #5258
WPk iR AR AGEIE T8 S BRI B ANER, 7RI B IR s T R
W RAARERT B K. AR, PETM B IR 3 0 4l A 2, s & i T, ek 7 4%
SRIIBEIRA NS RALTER, oNP & SRS T Pt R4 4 T LAk 11].

PETM AR A I FERR AL . SRS FR BRS04, Som IR URR P2 140 A o R 2 KAk
At wocE NE N PR, B EFHRER A ERE, SRS BRI K. BIU0EE % EF Ouled
Abdoun 731 PETM #iba 2 i & B EE 20%~30%, %SRRI EZ X R E I 3] 145 5
AP AE (3 T RE SR AR WU ) R B B, 3 P R R SR i X 4, AL K PG VR 4> PETM Hb
JEHREAE IR o LR T 40% [4]. TERERIIBIZE, PETM BHABKEREEN Wi A B=h) S5
BRERR A DURRY, I T ARSI SR A A R, AR Bh 2 A0 T JEUR T R AL 7 25111

PETM X EERAEIR 55 P2 IR A R = A T IR . — 51, % s 5 &
AR PEB A A ST BOE AU E MU S R A7, (3 TR BB IRE IR, N JE SRl S R
AL T EEY TG - Or T, miR TR AR S TR R, IR R X Y kSR IR
[ I R 2 AL 22 XA 5 28 R AR R T 28 R 8 AR L RIBE B S TR K 1] [4]-[6] [8]. FEREAM RS,
PETM AN iU KA AR AN R R R FH S T A AU I s S S TUA s ), nihifs
TR FLIEZAE PETM B 5 SR B AR R 05 OSTAE[O] [11][13]. Bh4bh, HETHES] K FliK &Y
I), SECTRUKAE IR, R IX R A BE AR D0 O A MU [ R [6]. PETM (R URR 1) A=
Yy - 85 - SRR A HLE], JEREE T IX — R BRI S B IR A A AR R

3. PETM E4IREhH1 &
3.1. IERBIRAESYH B

ABRFIAIR BEEZ) 6000 SR EFHZ) 5°C, HEMBRHEBUE 2Ly 6 A0MiRR/AF, PR %I AR 2 R
FINL RIS, KRG RKERBENINGEIRSG[14], (AHEARIEG KPR G R AR A
PemBEbe. B X v EE PRI E KBS EANURDUBHLE R B AR 45 1] [6].
FEEARPGER O R ECER T R BRI, R IR R IRTUK G R T e B Y BRI . Dickens 45
16 1995 SEHE I FHH AR RE G K S04 TR PETM S1R] FORR A7 R 0, 48 HURZ /KR BT+ AT
REFEUK B RAR, BEHOKE 63C BUR(Z1-60%0) 1 i bt, ZAALE I REAFRIRE 61°C FEIKL1-2%0 2 -3%0
[15]0 SR, SETRE e K G006 RS AL TH TR O B 1, 5200 T 0 RR TS0 2 B [R5 28 RIS VT
FEHERATE . 59— 71, Maxim 2583 % PEHF]IE. Bakchar 5 PR PETM B ISR ERHFE 5T 8 2 Fabn 04
RIVEFTR YR AAAE S BRSO S I ERERE 4, v PETM HAIA] B BeRe e it 7 B EEIEHE[16]

3.2. HiISbR{FfbIE

BRI HB S B AR ARIER T4 N LT 4°C~5°C, FfERiR % CIE, XML S REtiE
BRI o BERTHE TS 2 VA FBEK &P iy CIE (MU, EZ AL il 1 ) R R 455 i A L
HIA L EFHR SR TTREA IR, DR A P DL 5 2 R S0 AR 0 i 48 i M BB TR 56 e B2 AR 52
(CCDYRIESATHEEILR [6]. EULTTHT, oMb T B -

Kent S57E 2003 R T RPUHENT R 2 DR FLE S0, A2 - 4670 Hh(P/E) F 4k i A AR 57
WRIREVERORL ARSI IR, R TU PRI R IR TR 549 B LIl 2] 1870s/880s B, HEit
HEM OB R A T — IR E B [6] [8] (HAAL 9~10 km). 1ZfEdH@E I BRI BRI RSB, BBl R ki

DOI: 10.12677/ag.2026.162015 153 HuERFL 2 AW


https://doi.org/10.12677/ag.2026.162015

Bt G UTAR ) T I B e K G o R AE MUB AR, BOB I R SR A RO AR e 1, 51 i R I PR
BB, M fikk PETM FH4F([6]. Schaller Z57F 2003 FF7RE K PEVEIAZ P/E S22 i R DURERR 2h g Bk
hi, PSR A ME T AR AE[6]

SR, HbAME SR U= 5 PETM W) & i h IT ik, “HKGe a7 S0t BRI 2 fabs, Hifd
FAEA G 3 DL B AR PETM BRSSO (0 RUASE . RIS 71 2 B KB IR R AE (6] [17]0 AP BT AL & 4
VeE N Bl 2%, 8 I B R (A0 51 R AK B 43 R BRURR A AU AR SR TSR I 3 SRR TR, (R
ROV o BEAF B

3.3. #ERFHA

FAERFI G AAAEIAUE 10~10° km? FKFEAZ00E, g i 2R ] IX Le I AT F PR B A A
i, HERR T E EANBR(E R 2~> 10 wt%)IUTRRY), BORKAS - 8 R G Ig R 1 BORBRE[6]

B X PETM R, 2232 T RGBT IR 30 S A WU EARE COY” it . 1Z AR
IR T AT B8 5 B0 G055 1 B0 B 25 20T I, 3 i e Ao L v SR P LS ZE A P R AL
BB CO,o USSR N A A 13 22 5 BLAC L 3B T IRUH 22(50~2000 g-C/(m2-a))HH 2, BN L LT
TS5 PUBSEAE FE AT E 10~30 ka W5ERK, 1X—HK 5 PETM Bk [F47 2 UE v R K5 — 5 6]
John £ )UK PETM 5 88 76 52 2 ¥ £ Hl.(Messinian Salinity Crisis, f#% MSC)Xf b5 & H, W B85 M it
TEREG B 5, H PETM 5 AT g 52 B U BLAE H (n ER Rl 5 R R B Pe 5GP I o [, PETM
N} 3K Bl 120 ki LA T MISC I, MISC BB OMASEAS 2 LA RE PETM B IR] ()5 Z0 35 . bk
Ab, ZARETIN, R TE S A WA S B R UUREYS 5 R~ T s SR A oy AR (RARZE . T
RN, wEA, ARENUR). B FT AR - BRI RO K Rl < (A AA A g, e Bl 2R A6 R v ) 2
B BN BRI R PR W O AR S E, dbig . PEEEF RURRER TR St X B OR B v P T R
B, NE AR CO BEBURHE T 2 AF(6].

FUEZAR VAT iR PETM B[R 07 25 U (AT QG I [A] SR T 55, (HADAZAE A B R PR . ARt
— R Z BRSNS, HWERTRA X ERE, Bk S B 28 LR R & . 55—
JiTH, RV SN AVUEAE R CO, B2 2 DR 2R 4°C~5°C, MTiaH ST —D &
o BRI,  ARACHIFTN SR AR T W Bt i 17 41 0 R P AF SRRl - SRR AR & 0 &R, LB
Bt AR AR R, #E— BB IESEE PETM 1 R Rt .

34. RIHESH

KZRMETIRIAE 7S 1 HERPUIE A AT R R GEPERZ N, i 70 R A (AR R AT
feft 7 BB EISHESL. 7E PETM FAFHE T, ROCHREN A A 2 e A R 2 —. HA O
FHEEAZ AT AR = 1 b tHE S BRI i 028 A 13100 kyn) HE N iERIE BT B, o 2 32 2 K PR S 184 588 5| A
HhoK SR R - P BT - BT AL 2R R A [N, BB SRIE SRAN /RIS ~ = A SRR )
HIl S5 AL, T SRR AR 2R (L IR DU HLI) R BRI, S IFDh PETM (R A7 3% 01 TR R A3
“Pifh AR A

H S AR L S R3] PETM I IR R SCAE 5o B, AL RPE IR 1262 3 R A 3=
IR, PETM Hlf & F-4E~405 kyr Kofi-0o A1, H 5 MERMPLshN P&, BoRPuEiiE, v PETM
HBE Bt s (B AR P ik A = (v R LA ) BRI CRR IRV, o R TR SR B Je [m] [ 3]

TR SCIRE R SR T I 7 iR B DB E R ANESE . AR 2 M. ROCHFEMR Y “UIRER
FasE” ARBUMZE . A EFHE A PR (£0.5 Ma) S e LR T4, #1205 PETM R SCEREIHLH] B9 N . i

DOI: 10.12677/ag.2026.162015 154 HuERFL 2 AW


https://doi.org/10.12677/ag.2026.162015

ZEE

TR, FETHIAEFEThZO)FPIBEREIEHAR, AR “ SR B i, 2y PETM
= R PUE b € S AET TR [14]
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Table 2. Comprehensive assessment for the completeness of geological evidence regarding the PETM trigger mechanism hypothesis
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g e y Rifise RIERGEETE, W RN, BA5 (K

; & 3%
B A B RIS B AT R

TN PETM Ml 2 BRBRIE T 65C (9BRIIR (s A it b MRS 5 PETM 7ERE 1) bW 2 1 7% H PRI - 5656
9 MO R AR 55 6 S, GOV : B N VI A B + %30T % P BT P S + 4
WEHE A s K ——H (A B 55 Bk = AT 58 EHEHE[1]-[6] [13] [18]-[39]-
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Figure 2. Associative model diagram of volcanic activity and environmental change [40]
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Figure 3. Schematic diagram of the PETM event Chain [11] [39]
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