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Abstract

Depth completion aims to combine sparse depth measurements with RGB images to recover high-
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resolution dense depth maps. This technology is crucial for autonomous driving scenarios. Most ex-
isting approaches rely on spatial propagation mechanisms that iteratively refine the initial dense
depth estimates. However, initial depth estimation typically extracts features directly through con-
ventional convolutions, which makes it prone to convolution noise when handling empty regions
and less effective in reconstructing object boundaries. To address these issues, this paper proposes
a Dual-branch Multi-scale Depth Completion Network (DM-Net). The method adopts a two-stage “in-
terpolation + update” strategy. In the interpolation branch, guided bilateral interpolation is intro-
duced and combined with Submanifold Sparse Convolution and Atrous Spatial Pyramid Pooling to
generate the initial dense depth map. Meanwhile, a Convolutional Block Attention Module is incor-
porated to achieve dynamic weighting of cross-modal features. In the update branch, an iterative
propagation mechanism is employed to refine the initial results, thereby enhancing global con-
sistency and local detail recovery. Experiments on the KITTI dataset demonstrate that the proposed
dual-branch multi-scale depth completion network outperforms other mainstream methods.
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Figure 1. Structure diagram of the dual-branch multi-scale depth completion network (DM-Net)
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Figure 2. Schematic diagram of the guided bilateral interpolation module
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Figure 3. Schematic diagram of sparse convolution and atrous spatial pyramid pooling
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Figure 4. Diagram of convolutional block attention module (CBAM)
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Table 1. Comparative test results of various methods on the KITTI dataset
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Figure 5. Visualization comparison of KITTI-DC dataset test results
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